首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The potential for the mean climate of the tropical Pacific to shift to more El Niño-like conditions as a result of human induced climate change is subject to a considerable degree of uncertainty. The complexity of the feedback processes, the wide range of responses of different atmosphere–ocean global circulation models (AOGCMs) and difficulties with model simulation of present day El Niño southern oscillation (ENSO), all complicate the picture. By examining the components of the climate-change response that projects onto the model pattern of ENSO variability in 20 AOGCMs submitted to the coupled model inter-comparison project (CMIP), it is shown that large-scale coupled atmosphere–ocean feedbacks associated with the present day ENSO also operate on longer climate-change time scales. By linking the realism of the simulation of present day ENSO variability in the models to their patterns of future mean El Niño-like or La Niña-like climate change, it is found that those models that have the largest ENSO-like climate change also have the poorest simulation of ENSO variability. The most likely scenario (p=0.59) in a model-skill-weighted histogram of CMIP models is for no trend towards either mean El Niño-like or La Niña-like conditions. However, there remains a small probability (p=0.16) for a change to El Niño-like conditions of the order of one standard El Niño per century in the 1% per year CO2 increase scenario.  相似文献   

2.
Some argue that global climate change may alter the frequency and strength of extreme events. This paper examines the economic damages in the agricultural sector arising from a shift in El Niño Southern Oscillation (ENSO) event frequency and strength. The assumptions about the frequency of ENSO shift are motivated by an article by Timmermann etal. (1999). The damage estimates reported here are in the context of the global agricultural system. Annual damages in the 3 to 4 hundred million U.S. dollar range are found if only the frequency of ENSO events changes. However, annual damages rise to over $1 billion if the events also intensify in strength. Event anticipation and crop mix adaption on the part of farmers can help offset the damages but cannot fully alleviate them.  相似文献   

3.
Observations indicated that for the El Niño/Southern Oscillation (ENSO) there have been eastward displacements of the zonal wind stress (WS) anomalies and surface heat flux (short wave heat flux and latent heat flux) anomalies during El Niño episodes in the 1981–1995 regime relative to the earlier regime of 1961–1975 (without corresponding displacements during La Niña episodes). Our numerical experiments with the Zebiak–Cane coupled model generally reproduced such displacements when the model climatological fields were replaced by the observed climatologies [of sea surface temperature (SST), surface WS and surface wind atmospheric divergence] and simulated climatologies (of oceanic surface layer currents and associated upwelling) for the 1981–1995 regime. Sensitivity tests indicated that the background atmospheric state played a much more important role than the background ocean state in producing the displacements, which enhanced the asymmetry between El Niño and La Niña in the later regime. The later regime climatology state resulted in the eastward shifts in the ENSO system (WS and SST) only during El Niño, through the eastward shift of the atmosphere convergence heating rate in the coupled model. The ENSO period and ENSO predictability were also enhanced in the coupled model under the later regime climatology. That the change in the mean state of the tropical Pacific atmosphere and ocean after the mid 1970s could have produced the observed changes in ENSO properties is consistent with our findings.  相似文献   

4.
Historical ENSO teleconnections in the eastern hemisphere   总被引:2,自引:0,他引:2  
Examination of instrumental data collected over the last one hundred years or so shows that rainfall fluctuations in various parts of the eastern hemisphere are associated with the El Niño-Southern Oscillation (ENSO) phenomenon. Using proxy rainfall data-sets from Indonesia, Africa, North China; and a chronology of droughts from India, we investigate the occurrence of ENSO-related floods and droughts over the last five hundred years. The aim of this work is to examine the stability of the pattern of ENSO teleconnections over this longer period, noting any changes in ENSO behaviour which may be relevant in estimating its future behaviour, such as its response to climate change due to the enhanced greenhouse effect.Comparisons of the various data sets with each other and with El Niño chronology from South America, showed statistically significant evidence of teleconnections characteristic of ENSO back to around 1750. Prior to that time, relationships characteristic of ENSO were weak or absent. The disappearance of the ENSO signal in the early period is considered to be most likely due to the poorer quality of the data at that time. From the 18th Century onwards, chronologies of ENSO and anti-ENSO events are given and compared with similar chronologies in the literature.  相似文献   

5.
Maintaining a multi-model database over a generation or more of model development provides an important framework for assessing model improvement. Using control integrations, we compare the simulation of the El Niño/Southern Oscillation (ENSO), and its extratropical impact, in models developed for the 2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report with models developed in the late 1990s [the so-called Coupled Model Intercomparison Project-2 (CMIP2) models]. The IPCC models tend to be more realistic in representing the frequency with which ENSO occurs, and they are better at locating enhanced temperature variability over the eastern Pacific Ocean. When compared with reanalyses, the IPCC models have larger pattern correlations of tropical surface air temperature than do the CMIP2 models during the boreal winter peak phase of El Niño. However, for sea-level pressure and precipitation rate anomalies, a clear separation in performance between the two vintages of models is not as apparent. The strongest improvement occurs for the modelling groups whose CMIP2 model tended to have the lowest pattern correlations with observations. This has been checked by subsampling the multi-century IPCC simulations in a manner to be consistent with the single 80-year time segment available from CMIP2. Our results suggest that multi-century integrations may be required to statistically assess model improvement of ENSO. The quality of the El Niño precipitation composite is directly related to the fidelity of the boreal winter precipitation climatology, highlighting the importance of reducing systematic model error. Over North America distinct improvement of El Niño forced boreal winter surface air temperature, sea-level pressure, and precipitation rate anomalies to occur in the IPCC models. This improvement is directly proportional to the skill of the tropical El Niño forced precipitation anomalies.  相似文献   

6.
Summary The impact of pronounced positive and negative sea surface temperature (STT) anomalies in the tropical Pacific associated with the El Niño/Southern Oscillation (ENSO) phenomenon on the atmospheric circulation in the Northern Hemisphere extratropics during the boreal winter season is investigated. This includes both the impact on the seasonal mean flow and on the intraseasonal variability on synoptic time scales. Moreover, the interaction between the transient fluctuations on these times scales and the mean circulation is examined. Both data from an ensemble of five simulations with the ECHAM3 atmospheric general circulation model at a horizontal resolution of T42 each covering the period from 1979 through 1992 and operational analyses from ECMWF for the corresponding period are examined. In each of the simulations observed SSTs for the period of investigation are given as lower boundary forcing, but different atmospheric initial conditions are prescribed.The simulations with ECHAM3 reveal a distinct impact of the pronounced SST-anomalies in the tropical Pacific on the atmospheric circulation in the Northern Hemisphere extratropics during El Niño as well as during La Niña events. These changes in the atmospheric circulation, which are found to be highly significant in the Pacific/North American as well as in the Atlantic/European region, are consistent with the essential results obtained from the analyses. The pronounced SST-anomalies in the tropical Pacific lead to changes in the mean circulation, which are characterized by typical circulation patterns. These changes in the mean circulation are accompanied by marked variations of the activity of the transient fluctuations on synoptic time scales, that are changes in both the kinetic energy on these time scales and the atmospheric transports of momentum and heat accomplished by the short baroclinic waves. The synoptic disturbances, on the other hand, play also an important role in controlling the changes in the mean circulation associated with the ENSO phenomenon. They maintain these typical circulation patterns via barotropic, but counteract them via baroclinic processes.The hypothesis of an impact of the ENSO phenomenon in the Atlantic/European region can be supported. As the determining factor the intensification (reduction) of the Aleutian low and the simultaneous reduction (intensification) of the Icelandic low during El Niño and during La Niña events respectively, is identified. The changes in the intensity of the Aleutian low during the ENSO-events are accompanied by an alteration of the transport of momentum caused by the short baroclinic waves over the North American continent in such a way that the changes in the intensity of the Icelandic low during El Niño as well as during La Niña events are maintained.With 16 Figures  相似文献   

7.
The Paraná-Plata basin is the second largest hydrological basin in South America and is of great importance for the countries of the region (Argentina, Bolivia, Brazil, Paraguay and Uruguay). The present study focuses on the long-term trends in basin-scale precipitation with special emphasis on the role of distribution changes in extreme large-scale precipitation events and on the characteristics and evolution of ENSO teleconnections over the last 50 years. First, we defined a Paraná-Plata basin total precipitation index (PTPI) as the precipitations spatially averaged over the hydrological basin. On interannual time scales, such an index is mainly representative of anomalous monsoon precipitations in the northern part of the basin and large convective precipitation anomalies in the center of the basin (Paraguay-southern Brazil-Uruguay-northern Argentina) typical of the canonical ENSO teleconnection pattern. Our major findings clearly highlight a positive trend in yearly averaged PTPI mainly from the late 1960s to the early 1980s with a strong dependence from month-to-month. The largest precipitation increase is observed from November to May in southern Brazil and Argentina. A close examination of PTPI distributions during the two halves of the period 1950–2001 shows that the changes in the mean state from 1950–1975 to 1976–2001 result from significant changes in each calendar month mean state and in the tails of the PTPI anomaly distributions in May with lesser and weaker large-scale dry events and stronger large-scale wet events. Further studies will be needed to assess whether the observed trend in large-scale extreme precipitation conditions can be related to natural climate variability or anthropogenic activities and whether it is associated to changes in local/regional extreme events. The stronger wet conditions in different months seem to be associated to changes in ENSO characteristics (amplitude, propagation, spatial structure, ...) since the 1982–1983 El Niño. Indeed, spatial ENSO teleconnections (stronger in November and April–May) have greatly evolved from 1950–1975 to 1976–2001. Moreover, we demonstrate that there is a strong modulation and displacement of the teleconnection patterns from one event to another, impeding the definition of robust statistical relationship between ENSO and precipitation in the Paraná-Plata basin (except maybe over a very limited area near the common border between Paraguay, Argentina and Brazil). Finally, the non-antisymmetrical patterns of precipitation between El Niño and La Niña conditions and the non-linear relationship between precipitation and either Niño3.4 or Niño1+2 sea surface temperature indices show that linear statistical forecast systems are actually of very limited use for impact predictions on society on a local or regional scale.  相似文献   

8.
Since the devastating southern Africa drought of 1991/92 awareness has grown of the potential to better manage climate variability in the region through seasonal climate forecasting and monitoring of El Niño and the Southern Oscillation (ENSO). While other factors besides ENSO affect southern Africa's climate, and climate forecasting for the region is not based exclusively on ENSO, a major El Niño beginning in 1997 captured the attention of policy-makers and the public. Awareness of drought risks associated with the 1997/98 event was greater than during previous El Niños in 1991/92 and 1994/95. Mitigation and planning efforts also began earlier, with drought early warnings widely available and being taken seriously prior to the 1997/98 agricultural season. Actions taken include issuance of guidance to the public, on-going monitoring and preparedness efforts including the development of national preparedness plans in some countries, pre-positioning of food stocks, donor coordination, and greater reliance on the private-sector for meeting regional food needs. Although 1998 regional crop production was slightly below average, a major drought did not materialize. Nonetheless the experience is likely to ultimately strengthen capacity within the region to manage climate variability over the long term.  相似文献   

9.
A. Wu  W. W. Hsieh 《Climate Dynamics》2003,21(7-8):719-730
Nonlinear interdecadal changes in the El Niño-Southern Oscillation (ENSO) phenomenon are investigated using several tools: a nonlinear canonical correlation analysis (NLCCA) method based on neural networks, a hybrid coupled model, and the delayed oscillator theory. The leading NLCCA mode between the tropical Pacific wind stress (WS) and sea surface temperature (SST) reveals notable interdecadal changes of ENSO behaviour before and after the mid 1970s climate regime shift, with greater nonlinearity found during 1981–99 than during 1961–75. Spatial asymmetry (for both SST and WS anomalies) between warm El Niño and cool La Niña events was significantly enhanced in the later period. During 1981–99, the location of the equatorial easterly anomalies was unchanged from the earlier period, but in the opposite ENSO phase, the westerly anomalies were shifted eastward by up to 25°. According to the delayed oscillator theory, such an eastward shift would lengthen the duration of the warm events by up to 45%, but leave the duration of the cool events unchanged. Supporting evidence was found from a hybrid coupled model built with the Lamont dynamical ocean model coupled to a statistical atmospheric model consisting of either the leading NLCCA or CCA mode.  相似文献   

10.
The frequent coincidence of volcanic forcing with El Niño events disables the clear assignment of climate anomalies to either volcanic or El Niño forcing. In order to select the signals, a set of four different perpetual January GCM experiments was performed (control, volcano case, El Niño case and combined volcano/El Niño case) and studied with advanced statistical methods for the Northern Hemisphere winter. The results were compared with observations. The signals for the different forcings are discussed for three variables (temperature, zonal wind and geopotential height) and five levels (surface, 850 hPa, 500 hPa, 200 hPa and 50 hPa). The global El Niño signal can be selected more clearly in the troposphere than in the stratosphere. In contrast, the global volcano signal is strongest in the stratospheric temperature field. The amplitude of the perturbation for the volcano case is largest in the Atlantic region. The observed effect of local cooling due to the volcanic reduction of shortwave radiation over large land areas (like Asia) in subtropical regions, the observed advective warming over Eurasia and the advective cooling over Greenland are well simulated in the model. The radiative cooling near the surface is important for the volcano signal in the subtropics, but it is weak in high latitudes during winter. A statistically significant tropospheric signal of El Niño forcing occurs in the subtropics and in the midlatitudes of the North Pacific. The local anomalies in the El Niño forcing region in the tropics, and the warming over North America in middle and high latitudes are simulated as observed. The combined signal is different from a simple linear combination of the separate signals. It leads to a climate perturbation stronger than for forcing with El Niño or stratospheric aerosol alone and to a somewhat modified pattern.  相似文献   

11.
Despite the strong signal of El Niño/Southern Oscillation (ENSO) events on climate in the Indo-Pacific region, models linking ENSO-based climate variability to seasonal rice production and food security in the region have not been well developed or widely used in a policy context. This study successfully measures the connections among sea surface temperature anomalies (SSTAs), rainfall, and rice production in Indonesia during the past three decades. Regression results show particularly strong connections on Java, where 55% of the country's rice is grown. Two-thirds of the interannual variance in rice plantings and 40% of the interannual variance in rice production during the main (wet) season on Java are explained by year-to-year fluctuations in SSTAs measured 4 and 8 months in advance, respectively. These effects are cumulative; during strong El Niño years, production shortfalls in the wet season are not made up later in the crop year. The analysis demonstrates that quantitative predictions of ENSO's effects on rice harvests can provide an additional tool for managing food security in one of the world's most populous and important rice-producing countries.  相似文献   

12.
Summary Observational data are used to explore the relationship between surface air temperature anomaly gradients and Indian summer monsoon rainfall (ISMR). The meridional temperature anomaly gradient across Eurasia during January directed towards equator (pole) is a very good precursor of subsequent excess (deficient) Indian summer monsoon rainfall (ISMR). This gradient directed towards equator (pole) indicates below (above) normal blocking activity over Eurasia, which leads to less (more) than normal southward penetration of dry and cold mid latitude westerlies over the Indian monsoon region, which ultimately strengthens (weakens) the normal monsoon circulation. These findings suggest a mechanism for the weakening of relationship between El Niño and ISMR.Though there is a strong fundamental association between El Niño (warm ENSO) and deficient Indian summer monsoon rainfall (ISMR), this relationship was weak during the period 1921–1940 and the recent decade (1991–1998). During the El Niño years of 1921–1940 and 1901–1998, the meridional temperature anomaly gradient across Eurasia (Eurasian forcing) during January was directed towards equator. On the other hand, during the El Niño years of 1901–1920 and 1941–1990 this gradient was directed towards pole. Thus during 1921–1940 and 1991–1998, the adverse impact of El Niño on Indian monsoon was reduced by the favorable Eurasian forcing resulting in the weak association between El Niño and ISMR. This finding disagrees with the hypothesis of winter warming over the Eurasian continent as the reason for the observed weakening of this relationship during recent decade.  相似文献   

13.
ENSO nonlinearity in a warming climate   总被引:1,自引:1,他引:0  
The El Niño Southern Oscillation (ENSO) is known as the strongest natural inter-annual climate signal, having widespread consequences on the global weather, climate, ecology and even on societies. Understanding ENSO variations in a changing climate is therefore of primordial interest to both the climate community and policy makers. In this study, we focus on the change in ENSO nonlinearity due to climate change. We first analysed high statistical moments of observed Sea Surface Temperatures (SST) timeseries of the tropical Pacific based on the measurement of the tails of their Probability Density Function (PDF). This allows defining relevant metrics for the change in nonlinearity observed over the last century. Based on these metrics, a zonal “see-saw” (oscillation) in nonlinearity patterns is highlighted that is associated with the change in El Niño characteristics observed in recent years. Taking advantage of the IPCC database and the different projection scenarios, it is showed that changes in El Niño statistics (or “flavour”) from a present-day climate to a warmer climate are associated with a significant change in nonlinearity patterns. In particular, in the twentieth century climate, the “conventional” eastern Pacific El Niño relates more to changes in nonlinearity than to changes in mean state whereas the central Pacific El Niño (or Modoki El Niño) is more sensitive to changes in mean state than to changes in nonlinearity. An opposite behaviour is found in a warmer climate, namely the decreasing nonlinearity in the eastern Pacific tends to make El Niño less frequent but more sensitive to mean state, whereas the increasing nonlinearity in the west tends to trigger Central Pacific El Niño more frequently. This suggests that the change in ENSO statistics due to climate change might result from changes in the zonal contrast of nonlinearity characteristics across the tropical Pacific.  相似文献   

14.
ENSO Events Recorded in the Guliya Ice Core   总被引:7,自引:0,他引:7  
Based on the ENSO chronology and climatic information recovered from the Guliya ice core in the Tibetan Plateau, China, the ENSO teleconnection was investigated. The results showed that the negative precipitation anomalies are significantly associated with El Niño years but poorly with negative anomaly of 18O. Thus, the ice core records can be used as an archive of extremely global climate anomalies such as ENSO events.  相似文献   

15.
Summary This study investigates the impacts of five recent ENSO events on southern Africa, the associated circulation anomalies and the ability of an atmospheric general circulation model (UKMO HadAM3) to represent these impacts when forced by observed sea-surface temperature (SST). It is found that the model is most successful for the 1997/8 El Niño but does less well for the 1991/2 and 2002/3 El Niños and the 1995/6 and 1999/00 La Niña events. Diagnostics from the model and NCEP re-analyses suggest that modulations to the Angola low, an important centre of tropical convection over southern Africa during austral summer, are often important for influencing the rainfall impacts of ENSO over subtropical southern Africa. Since the model has difficulty in adequately representing this regional circulation feature and its variability, it has problems in capturing ENSO rainfall impacts over southern Africa. During 1997/8, modulations to the Angola low were weak and Indian Ocean SST forcing strong and the model is relatively successful. The implications of these results for dynamical model based seasonal forecasting of the region are discussed.Current affiliation: CSIR Centre for Mathematical Modelling and Computer Simulation, Bangalore, India.  相似文献   

16.
Summary The influence of ENSO on intraseasonal variability over the Tanzanian coast during the short (OND) and long (MAM) rainy seasons is examined. In particular, variability in the rainfall onset, peak and end dates as well as dry spells are considered. In general, El Niño appears to be associated with above average rainfall while La Niña is associated with below average rainfall over the northern Tanzanian coast during OND, and to lesser extent MAM. Over the southern coast, the ENSO impacts are less coherent and this region appears to be a transition zone between the opposite signed impacts over equatorial East and southern Africa. The increased north coast rainfall during El Niño years is generally due to a longer than normal rainfall season associated with early onset while reduced rainfall during La Niña years tends to be associated with a late onset, and thus a shorter than average rainfall season. Wet conditions during El Niño years were associated with enhanced convection and low-level easterly anomalies over the equatorial western Indian Ocean implying enhanced advection of moisture from the Indian Ocean while the reverse is true for La Niña years. Hovmöller plots for OLR and zonal wind at 850 hPa and 200 hPa show eastward, westward propagating and stationary features over the Indian Ocean. It was observed that the propagating features were absent during strong El Niño years. Based on the Hovmöller results, it is observed that the convective oscillations over the Tanzanian coast have some of the characteristic features of intraseasonal oscillations occurring elsewhere in the tropics.  相似文献   

17.
Summary The transition from a cold to a warm state of the E1 Niño-Southern Oscillation (ENSO) cycle is studied using Comprehensive Ocean-Atmosphere Data Sets (COADS) for the period 1950–1992.The onset of El Niño (November to December of the year preceding the El Niño) is characterized by an occurrence of minimum sea-level pressure anomalies in the subtropics around the node line of the Southern Oscillation. This pressure fall favors the formation of the anomalous cyclonic circulations over the western Pacific and leads to the establishment of anomalous westerlies in the western equatorial Pacific during the boreal spring of the El Niño year. The westerly anomalies then intensify and propagate into the central Pacific by the end of the El Niño year. This is an essential feature of the development of a basin-wide warming.It is argued that the development of the equatorial westerly anomalies over the western Pacific may result from the thermodynamic coupling between the atmosphere and ocean. In boreal winter and spring the mean zonal winds change from westerly to casterly over the western equatorial Pacific. A moderate equatorial westerly anomaly initially imposed on such a mean state may create eastward SST gradients via changing rates of evaporational cooling and turbulent mixing. The equatorial SST gradients would, in turn, induce differential heating and zonal pressure gradients which reinforce the westerly anomalies. The feedback between the eastward SST gradients and westerly anomalies promotes the eastward propagation of the westerly anomalies.With 9 Figures  相似文献   

18.
We document the characteristic time scales of variability for seven climate indices whose time-dependent behavior is sensitive to some aspect of the El Niño/Southern Oscillation (ENSO). The ENSO sensitivity arises from the location of these long-term records on the periphery of the Indian and Pacific Oceans. Three of the indices are derived principally from historical sources, three others consist of tree-ring reconstructions (one of summer temperature, and the other two of winter rainfall), and one is an annual record of oxygen isotopic composition for a high-elevation glacier in Peru. Five of the seven indices sample at least portions of the Medieval Warm Period (~ A.D. 950 to 1250).Time series spectral analysis was used to identify the major time scales of variability among the different indices. We focus on two principal time scales: a high frequency band (~ 2–10 yr), which comprises most of the variability found in the modern record of ENSO activity, and a low frequency band to highlight variations on decadal to century time scales (11 <P < 150 yr). This last spectral band contains variability on time scales that are of general interest with respect to possible changes in large-scale air-sea exchanges. A technique called evolutive spectral analysis (ESA) is used to ascertain how stable each spectral peak is in time. Coherence and phase spectra are also calculated among the different indices over each full common period, and following a 91-yr window through time to examine whether the relationships change.In general, spectral power on time scales of ~ 2–6 yr is statistically significant and persists throughout most of the time intervals sampled by the different indices. Assuming that the ENSO phenomenon is the source of much of the variability at these time scales, this indicates that ENSO has been an important part of interannual climatic variations over broad areas of the circum-Pacific region throughout the last millennium. Significant coherence values were found for El Niño and reconstructed Sierra Nevada winter precipitation at ~ 2–4 yr throughout much of their common record (late 1500s to present) and between 6 and 7 yr from the mid-18th to the early 20th century.At decadal time scales each record generally tends to exhibit significant spectral power over different periods at different times. Both the Quelccaya Ice Cap 18O series and the Quinn El Niño event record exhibit significant spectral power over frequencies ~ 35 to 45 yr; however, there is low coherence between these two series at those frequencies over their common record. The Sierra Nevada winter rainfall reconstruction exhibits consistently strong variability at periods of ~ 30–60 yr.  相似文献   

19.
基于1979~2013年多种再分析资料,合成分析了El Ni?o发展年和La Ni?a年东亚夏季风的季节内变化。结果表明,东亚夏季风在两种情况下呈现出不同的季节内变化特征。在El Ni?o发展年,初夏期间高纬度地区出现偏北风异常,造成东亚地区位势高度场偏低,西太平洋副热带高压偏东,但均不显著。盛夏期间,El Ni?o强迫造成中太平洋对流增强,副热带西太平洋出现气旋异常,位势高度显著降低,副热带高压明显偏东。与此不同的是,La Ni?a年春季暖池海温偏高,造成夏季对流偏强,西太平洋地区位势高度场偏低,副热带高压减弱东退。此外,La Ni?a年东亚夏季风的季节内变化较为复杂,6月异常较弱,7月达到最强,8月又开始减弱。因此,虽然El Ni?o发展年和La Ni?a年夏季平均副高异常有一定的相似性,但季节内变化则有很大差异,其成因也完全不同。  相似文献   

20.
利用1963—2013年Hadley中心月平均海表温度资料,以及NCEP/NCAR再分析资料,根据两类厄尔尼诺事件发生时北半球冬季赤道太平洋地区海温异常的不同空间分布特征,即赤道中太平洋CP型和东太平洋EP型海温异常空间分布,从寻找与之相似的空间型角度出发,设计了一组新的海温异常指数I_(CP)和I_(EP)。与以往ENSO指数相比,新指数组I_(CP)和I_(EP)不仅表示了空间上相互独立的海温异常分布,而且在相同的研究时段内,因时间域上相互独立而能更好地表征和区分两类El Ni?o/La Ni?a事件。据此,采用该新指数组探讨了与中部型和东部型海温异常事件相关的热带太平洋的主要海气耦合特征。结果表明,与传统的东部型El Ni?o事件发生时最大暖海温中心位于赤道东太平洋地区不同,中部型El Ni?o事件,异常增暖中心位于赤道中太平洋。中部型时异常Walker环流的上升支向西偏移,异常降水集中于热带中太平洋,不似东部型时异常限定于赤道东太平洋地区。不论哪类事件,海洋性大陆均可受到影响,即CP或EP型El Ni?o发生时,海洋性大陆区域降水偏少。但比较而言,中部型ENSO对海洋性大陆区域的影响更大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号