首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of the Indonesian Throughflow(ITF) in the influence of the Indian Ocean Dipole(IOD) on ENSO is investigated using version 2 of the Parallel Ocean Program(POP2) ocean general circulation model. We demonstrate the results through sensitivity experiments on both positive and negative IOD events from observations and coupled general circulation model simulations. By shutting down the atmospheric bridge while maintaining the tropical oceanic channel, the IOD forcing is shown to influence the ENSO event in the following year, and the role of the ITF is emphasized. During positive IOD events,negative sea surface height anomalies(SSHAs) occur in the eastern Indian Ocean, indicating the existence of upwelling.These upwelling anomalies pass through the Indonesian seas and enter the western tropical Pacific, resulting in cold anomalies there. These cold temperature anomalies further propagate to the eastern equatorial Pacific, and ultimately induce a La Nia-like mode in the following year. In contrast, during negative IOD events, positive SSHAs are established in the eastern Indian Ocean, leading to downwelling anomalies that can also propagate into the subsurface of the western Pacific Ocean and travel further eastward. These downwelling anomalies induce negative ITF transport anomalies, and an El Nio-like mode in the tropical eastern Pacific Ocean that persists into the following year. The effects of negative and positive IOD events on ENSO via the ITF are symmetric. Finally, we also estimate the contribution of IOD forcing in explaining the Pacific variability associated with ENSO via ITF.  相似文献   

2.
This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a season after summer). This study strongly supports the need of simulating the correct onset and decay phases of El Niño/La Niña for capturing the realistic ENSO teleconnections. These results have strong implications for the forecasting of Indian summer monsoon as this model is currently being adopted as an operational model in India.  相似文献   

3.
Xin Wang  Chunzai Wang 《Climate Dynamics》2014,42(3-4):991-1005
Our early work (Wang and Wang in J Clim 26:1322–1338, 2013) separates El Niño Modoki events into El Niño Modoki I and II because they show different impacts on rainfall in southern China and typhoon landfall activity. The warm SST anomalies originate in the equatorial central Pacific and subtropical northeastern Pacific for El Niño Modoki I and II, respectively. El Niño Modoki I features a symmetric SST anomaly distribution about the equator with the maximum warming in the equatorial central Pacific, whereas El Niño Modoki II shows an asymmetric distribution with the warm SST anomalies extending from the northeastern Pacific to the equatorial central Pacific. The present paper investigates the influence of the various groups of El Niño events on the Indian Ocean Dipole (IOD). Similar to canonical El Niño, El Niño Modoki I is associated with a weakening of the Walker circulation in the Indo-Pacific region which decreases precipitation in the eastern tropical Indian Ocean and maritime continent and thus results in the surface easterly wind anomalies off Java-Sumatra. Under the Bjerknes feedback, the easterly wind anomalies induce cold SST anomalies off Java- Sumatra, and thus a positive IOD tends to occur in the Indian Ocean during canonical El Niño and El Niño Modoki I. However, El Niño Modoki II has an opposite impact on the Walker circulation, resulting in more precipitation and surface westerly wind anomalies off Java-Sumatra. Thus, El Niño Modoki II is favorable for the onset and development of a negative IOD on the frame of the Bjerknes feedback.  相似文献   

4.
The Indian Ocean Dipole (IOD) can affect the El Niño–Southern Oscillation (ENSO) state of the following year, in addition to the well-known preconditioning by equatorial Pacific Warm Water Volume (WWV), as suggested by a study based on observations over the recent satellite era (1981–2009). The present paper explores the interdecadal robustness of this result over the 1872–2008 period. To this end, we develop a robust IOD index, which well exploits sparse historical observations in the tropical Indian Ocean, and an efficient proxy of WWV interannual variations based on the temporal integral of Pacific zonal wind stress (of a historical atmospheric reanalysis). A linear regression hindcast model based on these two indices in boreal fall explains 50 % of ENSO peak variance 14 months later, with significant contributions from both the IOD and WWV over most of the historical period and a similar skill for El Niño and La Niña events. Our results further reveal that, when combined with WWV, the IOD index provides a larger ENSO hindcast skill improvement than the Indian Ocean basin-wide mode, the Indian Monsoon or ENSO itself. Based on these results, we propose a revised scheme of Indo-Pacific interactions. In this scheme, the IOD–ENSO interactions favour a biennial timescale and interact with the slower recharge-discharge cycle intrinsic to the Pacific Ocean.  相似文献   

5.
Being triggered by different physical processes, the eastern Pacific (EP) and central Pacific (CP) El Niño events have several different teleconnection features around the globe. Using the ERA-Interim re-analysis monthly data during the period 1980–2016, the El Niño-Southern Oscillation (ENSO) teleconnections on the global scale and their statistical significance are investigated, with an emphasis on the contrasting features of the EP and CP El Niño events. With some exceptions, the EP El Niño and La Niña have generally similar teleconnection patterns with the reversed sign, while in some parts of the globe different and occasionally contrasting teleconnections of the EP and CP El Niño events are identified. Compared to the CP El Niño, more regions of the world are influenced by the statistically significant positive surface pressure anomalies during the EP El Niño, particularly over the Indian Ocean, tropical Atlantic and Northern Africa. It is found that the mid-tropospheric geopotential height anomalies across the globe are significantly different during the EP and CP El Niño events. Associated with different surface pressure and mid-tropospheric geopotential height anomalies, precipitation anomalies in many regions of the world are found different during the EP and CP El Niño events, particularly over the tropical Pacific, central to eastern equatorial Atlantic and the eastern Sahara. While central and eastern equatorial Atlantic experience statistically significant negative (positive) rainfall anomalies during the EP El Niño (La Niña), the CP El Niño does not have a strong influence on the amount of annual rainfall over the equatorial Atlantic. For the first time, statistically significant anomalously dry conditions are found over some parts of the Middle East and Southwest Asia during La Niña, and over the eastern Sahara during the EP El Niño.  相似文献   

6.
Winter-spring precipitation in southern China tends to be higher (lower) than normal in El Niño (La Niña) years during 1953–1973. The relationship between the southern China winter-spring precipitation and El Niño-Southern Oscillation (ENSO) is weakened during 1974–1994. During 1953–1973, above-normal southern China rainfall corresponds to warmer sea surface temperature (SST) in the equatorial central Pacific. There are two anomalous vertical circulations with ascent over the equatorial central Pacific and ascent over southern China and a common branch of descent over the western North Pacific that is accompanied by an anomalous lower-level anticyclone. During 1974–1994, above-normal southern China rainfall corresponds to warmer SST in eastern South Indian Ocean and cooler SST in western South Indian Ocean. Two anomalous vertical circulations act to link southern China rainfall and eastern South Indian Ocean SST anomalies, with ascent over eastern South Indian Ocean and southern China and a common branch of descent over the western North Pacific. Present analysis shows that South Indian Ocean SST anomalies can contribute to southern China winter-spring precipitation variability independently. The observed change in the relationship between southern China winter-spring rainfall and ENSO is likely related to the increased SST variability in eastern South Indian Ocean and the modulation of the Pacific decadal oscillation.  相似文献   

7.
利用逐月台站观测降水、HadISST1.1海温和ERA5大气再分析资料,研究了前冬印度洋海盆一致模(Indian Ocean Basin,IOB)对华南春季降水(SCSR)与ENSO关系的影响,并分析了IOB通过调控ENSO环流异常进而影响SCSR的可能机制。结果表明:当前冬El Ni?o(La Ni?a)与IOB暖(冷)位相同时发生时,SCSR显著增多(减少);而当El Ni?o或La Ni?a单独发生而IOB处于中性时,SCSR并无明显多寡倾向。其原因在于,当El Ni?o与IOB暖相位并存时,前冬热带印度洋和赤道中东太平洋均为正海温异常(Sea-Surface Temperature Anomaly,SSTA),且印度洋SSTA强度可一直维持至春季。在对流层低层,春季赤道中东太平洋的正SSTA激发出异常西北太平洋反气旋(Western North Pacific Anticyclone,WNPAC)。而热带印度洋的正SSTA在副热带印度洋激发出赤道南北反对称环流,赤道以北的东风异常有利于异常WNPAC西伸;赤道以南的西风异常与来自赤道西太平洋的东风异常在东印度洋辐合上升,气流至西北太平洋下沉,形成经向垂直环流,有利于春季WNPAC维持。在对流层高层,印度洋的正SSTA在热带印度洋上空激发出位势高度正异常,随之形成的气压经向梯度加强了东亚高空副热带西风急流,进而在华南上空形成异常辐散环流。WNPAC的西伸和加强可为华南提供充足的水汽,同时高空辐散在华南引发水汽上升运动,共同导致SCSR正异常。而若El Ni?o发生时IOB处于中性状态,El Ni?o相关的SSTA衰减较快,春季WNPAC不显著,SCSR无明显多寡趋势。   相似文献   

8.
Bases on the NCEP / NCAR reanalysis products, HadISST dataset, and data of tropical cyclone (TC)landfalling in the Chinese mainland during 1960-2019, the possible impacts of Indian Ocean Dipole (IOD) mode andIndian Ocean basin (IOB) mode on the last-TC-landfall date (LLD) and first-TC-landfall date (FLD), respectively, areinvestigated in this study. The LLD is in significantly negative correlation with autumn IOD on the interannual time-scale and their association is independent of El Ni?o-Southern Oscillation (ENSO). The LLD tends to be earlier when theIOD is positive while becomes later when the IOD is negative. An anomalous lower-level anticyclone is located aroundthe Philippines during October-November, resulting from the change of Walker circulation over the tropical Indo-westPacific Ocean forced by sea surface temperature (SST) anomalies related to a positive IOD event. The Philippinesanticyclone anomaly suppresses TCs formation there and prevents TCs from landfalling in the Chinese mainland due tothe anomalous westerly steering flows over southeast China during October-November, agreeing well with the earlierLLD. However, the robust connection between spring IOB and FLD depends on ENSO episodes in preceding winter.There is an anticyclonic anomaly around the Philippines caused by the tropical SST anomalies through modulating theWalker circulation during May-June when the IOB is warming in the El Ni?o decaying phase. Correspondingly, the TCsgenesis is less frequent near the Philippines and the mid-level steering flows associated with the expanded westernPacific subtropical high are disadvantageous for TCs moving towards southeast China and making landfall during May-June, in accordance with the later FLD. By contrast, cooling IOB condition in spring of a La Ni?a decaying year andnegative IOD cases during autumn could produce a completely reversed atmospheric circulation response, leading to anearlier FLD and a later LLD over the Chinese mainland, respectively.  相似文献   

9.
The present study reveals cross-season connections of rainfall variability in the South China Sea (SCS) region between winter and summer. Rainfall anomalies over northern South China Sea in boreal summer tend to be preceded by the same sign rainfall anomalies over southern South China Sea in boreal winter (denoted as in-phase relation) and succeeded by opposite sign rainfall anomalies over southern South China Sea in the following winter (denoted as out-of-phase relation). Analysis shows that the in-phase relation from winter to summer occurs more often in El Niño/La Niña decaying years and the out-of-phase relation from summer to winter appears more frequently in El Niño/La Niña developing years. In the summer during the El Niño/La Niña decaying years, cold/warm and warm/cold sea surface temperature (SST) anomalies develop in tropical central North Pacific and the North Indian Ocean, respectively, forming an east–west contrast pattern. The in-phase relation is associated with the influence of anomalous heating/cooling over the equatorial central Pacific during the mature phase of El Niño/La Niña events that suppresses/enhances precipitation over southern South China Sea and the impact of the above east–west SST anomaly pattern that reduces/increases precipitation over northern South China Sea during the following summer. The impact of the east–west contrast SST anomaly pattern is confirmed by numerical experiments with specified SST anomalies. In the El Niño/La Niña developing years, regional air-sea interactions induce cold/warm SST anomalies in the equatorial western North Pacific. The out-of-phase relation is associated with a Rossby wave type response to anomalous heating/cooling over the equatorial central Pacific during summer and the combined effect of warm/cold SST anomalies in the equatorial central Pacific and cold/warm SST anomalies in the western North Pacific during the mature phase of El Niño/La Niña events.  相似文献   

10.
Sea-surface temperature interannual anomalies (SSTAs) in the thermocline ridge of the southwestern tropical Indian Ocean (TRIO) have several well-documented climate impacts. In this paper, we explore the physical processes responsible for SSTA evolution in the TRIO region using a combination of observational estimates and model-derived surface layer heat budget analyses. Vertical oceanic processes contribute most to SSTA variance from December to June, while lateral advection dominates from July to November. Atmospheric fluxes generally damp SSTA generation in the TRIO region. As a result of the phase opposition between the seasonal cycle of vertical processes and lateral advection, there is no obvious peak in SSTA amplitude in boreal winter, as previously noted for heat content anomalies. Positive Indian Ocean Dipole (IOD) events and the remote influence of El Niño induce comparable warming over the TRIO region, though IOD signals peak earlier (November–December) than those associated with El Niño (around March–May). Mechanisms controlling the SSTA growth in the TRIO region induced by these two climate modes differ strongly. While SSTA growth for the IOD mostly results from southward advection of warmer water, increased surface shortwave flux dominates the El Niño SSTA growth. In both cases, vertical oceanic processes do not contribute strongly to the initial SSTA growth, but rather maintain the SSTA by opposing the effect of atmospheric negative feedbacks during the decaying phase.  相似文献   

11.
Many features of the El Niño-Southern Oscillation (ENSO) display significant interdecadal changes. These include general characteristics such as amplitude, period, and developing features, and also nonlinearities, especially the El Niño-La Niña asymmetry. A review of previous studies on the interdecadal changes in the ENSO nonlinearities is provided. In particular, the methods for measuring ENSO nonlinearities, their possible driving mechanisms, and their interdecadal changes are discussed. Two methods for measuring ENSO nonlinearities are introduced; the maximum potential intensity, which refers to the upper and lower bounds of the cold tongue temperature, and the skewness, which represents the asymmetry of a probability density function. For example, positive skewness (a strong El Niño vs. a weak La Niña) of the tropical Pacific sea surface temperature (SST) anomalies is dominant over the eastern tropical Pacific, with an increase seen during recent decades (e.g., 1980–2000). This positive skewness can be understood as a result of several nonlinear processes. These include the warming effect on both El Niño and La Niña by nonlinear dynamic heating (NDH), which intensifies El Niño and suppresses La Niña; the asymmetric negative feedback due to tropical oceanic instability waves, which has a relatively stronger influence on the La Niña event; the nonlinear physics of the ocean mixed layer; the Madden-Julian-Oscillation/Westerly-Wind-Burst and ENSO interaction; the biological-physical feedback process; and the nonlinear responses of the tropical atmospheric convection to El Niño and La Niña conditions. The skewness of the tropical eastern Pacific SST anomalies and the intensities of the above-mentioned mechanisms have both experienced clear decadal changes in a dynamically associated manner. In particular, there is a dynamic linkage between the decadal changes in the El Niño-La Niña asymmetry and those in NDH. This linkage is based on the recent decadal changes in mean climate states, which provided a favorable condition for thermocline feedback rather than for zonal advection feedback, and thus promoted the eastward propagation of the ENSO-related atmospheric and oceanic fields. The eastward propagating ENSO mode easily produces a positive NDH, resulting in asymmetric ENSO events in which El Niño conditions are stronger than La Niña conditions.  相似文献   

12.
Increased evidence has shown the important role of Atlantic sea surface temperature (SST) in modulating the El Niño–Southern Oscillation (ENSO). Persistent anomalies of summer Madden–Julian Oscillation (MJO) act to link the Atlantic SST anomalies (SSTAs) to ENSO. The Atlantic SSTAs are strongly correlated with the persistent anomalies of summer MJO, and possibly affect MJO in two major ways. One is that an anomalous cyclonic (anticyclonic) circulation appears over the tropical Atlantic Ocean associated with positive (negative) SSTA in spring, and it intensifies (weakens) the Walker circulation. Equatorial updraft anomaly then appears over the Indian Ocean and the eastern Pacific Ocean, intensifying MJO activity over these regions. The other involves a high pressure (low pressure) anomaly associated with the North Atlantic SSTA tripole pattern that is transmitted to the mid- and low-latitudes by a circumglobal teleconnection pattern, leading to strong (weak) convective activity of MJO over the Indian Ocean. The above results offer new viewpoints about the process from springtime Atlantic SSTA signals to summertime atmospheric oscillation, and then to the MJO of tropical atmosphere affecting wintertime Pacific ENSO events, which connects different oceans.  相似文献   

13.
The differences in tropical Pacific sea surface temperature (SST) expressions of El Niño-Southern Oscillation (ENSO) events of the same phase have been linked with different global atmospheric circulation patterns. This study examines the dynamical forcing of precipitation during October–December (OND) and March–May (MAM) over East Africa and during December–March (DJFM) over Central-Southwest Asia for 1950–2010 associated with four tropical Pacific SST patterns characteristic of La Niña events, the cold phase of ENSO. The self-organizing map method along with a statistical distinguishability test was used to isolate La Niña events, and seasonal precipitation forcing was investigated in terms of the tropical overturning circulation and thermodynamic and moisture budgets. Recent La Niña events with strong opposing SST anomalies between the central and western Pacific Ocean (phases 3 and 4), force the strongest global circulation modifications and drought over the Northwest Indian Ocean Rim. Over East Africa during MAM and OND, subsidence is forced by an enhanced tropical overturning circulation and precipitation reductions are exacerbated by increases in moisture flux divergence. Over Central-Southwest Asia during DJFM, the thermodynamic forcing of subsidence is primarily responsible for precipitation reductions, with moisture flux divergence acting as a secondary mechanism to reduce precipitation. Eastern Pacific La Niña events in the absence of west Pacific SST anomalies (phases 1 and 2), are associated with weaker global teleconnections, particularly over the Indian Ocean Rim. The weak regional teleconnections result in statistically insignificant precipitation modifications over East Africa and Central-Southwest Asia.  相似文献   

14.
A principal component decomposition of monthly sea surface temperature (SST) variability in the tropical Pacific Ocean demonstrates that nearly all of the linear trends during 1950–2010 are found in two leading patterns. The first SST pattern is strongly related to the canonical El Niño-Southern Oscillation (ENSO) pattern. The second pattern shares characteristics with the first pattern and its existence solely depends on the presence of linear trends across the tropical Pacific Ocean. The decomposition also uncovers a third pattern, often referred to as ENSO Modoki, but the linear trend is small and dataset dependent over the full 61-year record and is insignificant within each season. ENSO Modoki is also reflected in the equatorial zonal SST gradient between the Niño-4 region, located in the west-central Pacific, and the Niño-3 region in the eastern Pacific. It is only in this zonal SST gradient that a marginally significant trend arises early in the Northern Hemisphere spring (March–May) during El Niño and La Niña and also in the late summer (July–September) during El Niño. Yet these SST trends in the zonal gradient do not unequivocally represent an ENSO Modoki-like dipole because they are exclusively associated with significant positive SST trends in either the eastern or western Pacific, with no corresponding significant negative trends. Insignificant trends in the zonal SST gradient are evident during the boreal wintertime months when ENSO events typically mature. Given the presence of positive SST trends across much of the equatorial Pacific Ocean, using fixed SST anomaly thresholds to define ENSO events likely needs to be reconsidered.  相似文献   

15.
Chaofan Li  Riyu Lu  Buwen Dong 《Climate Dynamics》2014,43(7-8):1829-1845
Predictability of the western North Pacific (WNP) summer climate associated with different El Niño–Southern Oscillation (ENSO) phases is investigated in this study based on the 1-month lead retrospective forecasts of five state-of-the-art coupled models from ENSEMBLES. During the period from 1960 to 2005, the models well capture the WNP summer climate anomalies during most of years in different ENSO phases except the La Niña decaying summers. In the El Niño developing, El Niño decaying and La Niña developing summers, the prediction skills are high for the WNP summer monsoon index (WNPMI), with the prediction correlation larger than 0.7. The high prediction skills of the lower-tropospheric circulation during these phases are found mainly over the tropical western Pacific Ocean, South China Sea and subtropical WNP. These good predictions correspond well to their close teleconnection with ENSO and the high prediction skills of tropical SSTs. By contrast, for the La Niña decaying summers, the prediction skills are considerably low with the prediction correlation for the WNPMI near to zero and low prediction skills around the Philippines and subtropical WNP. These poor predictions relate to the weak summer anomalies of the WNPMI during the La Niña decaying years and no significant connections between the WNP lower-tropospheric circulation anomalies and the SSTs over the tropical central and eastern Pacific Ocean in observations. However, the models tend to predict an apparent anomalous cyclone over the WNP during the La Niña decaying years, indicating a linearity of the circulation response over WNP in the models prediction in comparison with that during the El Niño decaying years which differs from observations. In addition, the models show considerable capability in describing the WNP summer anomalies during the ENSO neutral summers. These anomalies are related to the positive feedback between the WNP lower-tropospheric circulation and the local SSTs. The models can capture this positive feedback but with some uncertainties from different ensemble members during the ENSO neutral summers.  相似文献   

16.
The role of tropical Atlantic sea surface temperature (SST) anomalies during ENSO episodes over northeast Brazil (Nordeste) is investigated using the CPTEC/COLA Atmospheric General Circulation Model (AGCM). Four sets of integrations are performed using SST in El Niño and La Niña (ENSO) episodes, changing the SST of the Atlantic Ocean. A positive dipole (SST higher than normal in the tropical North Atlantic and below normal in the tropical South Atlantic) and a negative dipole (opposite conditions), are set as the boundary conditions of SST in the Atlantic Ocean. The four experiments are performed using El Niño or La Niña SST in all oceans, except in the tropical Atlantic where the two phases of the SST dipole are applied. Five initial conditions were integrated in each case in order to obtain four ensemble results. The positive SST dipole over the tropical Atlantic Ocean and El Niño conditions over the Pacific Ocean resulted in dry conditions over the Nordeste. When the negative dipole and El Niño conditions over the Pacific Ocean were applied, the results showed precipitation above normal over the north of Nordeste. When La Niña conditions over Pacific Ocean were tested together with a negative dipole, positive precipitation anomalies occurred over the whole Nordeste. Using the positive dipole over the tropical Atlantic, the precipitation over Nordeste was below average. During La Niña episodes, the Atlantic Ocean conditions have a larger effect on the precipitation of Nordeste than the Pacific Ocean. In El Niño conditions, only the north region of Nordeste is affected by the Atlantic SST. Other tropical areas of South America show a change only in the intensity of anomalies. Central and southeast regions of South America are affected by the Atlantic conditions only during La Niña conditions, whereas during El Niño these regions are influenced only by conditions in the Pacific Ocean.  相似文献   

17.
Lim  Eun-Pa  Hendon  Harry H.  Shi  Li  de Burgh-Day  Catherine  Hudson  Debra  King  Andrew  Trewin  Blair  Griffiths  Morwenna  Marshall  Andrew 《Climate Dynamics》2021,56(11):3625-3641

We explore the causes and predictability of extreme low minimum temperatures (Tmin) that occurred across northern and eastern Australia in September 2019. Historically, reduced Tmin is related to the occurrence of a positive Indian Ocean Dipole (IOD) and central Pacific El Niño. Positive IOD events tend to locate an anomalous anticyclone over the Great Australian Bight, therefore inducing cold advection across eastern Australia. Positive IOD and central Pacific El Niño also reduce cloud cover over northern and eastern Australia, thus enhancing radiative cooling at night-time. During September 2019, the IOD and central Pacific El Niño were strongly positive, and so the observed Tmin anomalies are well reconstructed based on their historical relationships with the IOD and central Pacific El Niño. This implies that September 2019 Tmin anomalies should have been predictable at least 1–2 months in advance. However, even at zero lead time the Bureau of Metereorolgy ACCESS-S1 seasonal prediction model failed to predict the anomalous anticyclone in the Bight and the cold anomalies in the east. Analysis of hindcasts for 1990–2012 indicates that the model's teleconnections from the IOD are systematically weaker than the observed, which likely stems from mean state biases in sea surface temperature and rainfall in the tropical Indian and western Pacific Oceans. Together with this weak IOD teleconnection, forecasts for earlier-than-observed onset of the negative Southern Annular Mode following the strong polar stratospheric warming that occurred in late August 2019 may have contributed to the Tmin forecast bust over Australia for September 2019.

  相似文献   

18.
ENSO-phase dependent TD and MRG wave activity in the western North Pacific   总被引:1,自引:0,他引:1  
The three-dimensional structure and evolution characteristics of tropical depression (TD) and mixed Rossby-gravity wave (MRG) type disturbances in the tropical western North Pacific during El Niño and La Niña summers are investigated based on observational and reanalysis data. A clear MRG-to-TD transition was observed during El Niño summers while such a transition is unclear during La Niña summers. The vertical structure of the TD-MRG waves appears equivalent barotropic during El Niño but becomes tilted eastward with height during La Niña. The diagnosis of barotropic energy conversion shows that both the rotational and divergent components of the background flow change associated with E1 Niño-Southern Oscillation (ENSO) are responsible for energy conversion from the mean flow to the TD-MRG perturbations. A further examination of the pure MRG mode shows that its intensity does not vary between El Niño and La Niña while its phase speed does. A faster (slower) westward propagation speed during La Niña (El Niña) is attributed to enhanced (reduced) mean easterlies in the western equatorial Pacific. The heating associated with the MRG wave appears more anti-symmetric during La Niña than during El Niño. In contrast to the MRG waves, the amplitude of the TD waves depends greatly on the ENSO phase. The enhanced (suppressed) TD disturbances during El Niño (La Niña) is attributed to greater (less) barotropic energy conversion associated with the background flow change. The vertical structure of the TD waves appears quasi-barotropic in the geopotential height field but baroclinic in the divergence field.  相似文献   

19.
The influence of El Nio-Southern Oscillation (ENSO) on the convectively coupled Kelvin waves over the tropical Pacific is investigated by comparing the Kelvin wave activity in the eastern Pacific (EP) El Nio, central Pacific (CP) El Nio, and La Nia years, respectively, to 30-yr (1982-2011) mean statistics. The convectively coupled Kelvin waves in this study are represented by the two leading modes of empirical orthogonal function (EOF) of 2-25-day band-pass filtered daily outgoing longwave radiation (OLR), with the estimated zonal wavenumber of 3 or 4, period of 8 days, and eastward propagating speed of 17 ms-1 . The most significant impact of ENSO on the Kelvin wave activity is the intensification of the Kelvin waves during the EP El Nios. The impact of La Nia on the reduction of the Kelvin wave intensity is relatively weaker, reflecting the nonlinearity of tropical deep convection and the associated Kelvin waves in response to ENSO sea surface temperature (SST) anomalies. The impact of the CP El Nio on the Kelvin waves is less significant due to relatively weaker SST anomalies and smaller spatial coverage. ENSO may also alter the frequency, wavelength, and phase speed of the Kelvin waves. This study demonstrates that low-frequency ENSO SST anomalies modulate high-frequency tropical disturbances, an example of weather-climate linkage.  相似文献   

20.
By comparing correlation of sea surface temperature (SST) and vertical circulation with canonical El Niño and El Niño Modoki, we find that El Niño Modoki has an effect on the Indian Ocean different from traditional El Niño. There exists obvious Indian Ocean basin mode (IOBM) after canonical El Niño, while insignificant SST anomalies exist in the Indian Ocean after El Niño Modoki. Anomalous downdraft and updraft appear over the eastern and western Indian Ocean, respectively, during canonical El Niño, while anomalous updraft is weak over the Indian Ocean during El Niño Modoki. Besides, the strength of El Niño Modoki is slightly weaker than that of canonical El Niño. According to previous studies, two mechanisms can explain IOBM after canonical El Niño: tropospheric temperature (TT) mechanism and ocean dynamics. However, both of them do not exist during El Niño Modoki. Comparing with the complicated oceanic processes, it is convenient to verify the observed TT anomalies and test the possible mechanism using the simple model. Therefore, we pay more attention on the question why TT mechanism does not work during El Niño Modoki. Using a linear barocinic model (LBM), we demonstrate that the strength of SST anomalies and cold SST anomalies in the eastern Pacific have an influence on TT anomalies. Especially, cold SST anomalies in the eastern Pacific cancel the effects of warm SST anomalies in the central Pacific on TT anomalies. It suggests that the SST anomalies in the eastern Pacific are important for the TT mechanism in two types of El Niño.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号