首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 921 毫秒
1.
通过对1951—2020年罗甸县逐日降水观测资料、2010—2020年罗甸县各乡镇逐日降水观测资料的统计分析,计算出要素保证率80%的值,采用线性趋势分析、等值线分布、Mann-Kendal检验、Morlet小波方法分析罗甸县境内暴雨的时空分布特征。结果表明:近70 a罗甸县年暴雨日数、近11 a罗甸县各乡镇总年暴雨日数均缓慢增多,区域暴雨次数逐渐减少,在年际变化中,均存在显著的3 a左右周期振荡。暴雨集中发生在5—9月,近70 a占全年暴雨日数91%,各月暴雨日数时空分布差异显著,暴雨发生最多月份为6月,近70 a平均每年1.3 d,占全年暴雨日数的36%。各乡镇年平均暴雨日数分布区域性特征明显,存在2个多值区(西北部、东南部)和1个少值区(西南部)。暴雨多发生在夜间,尤其大暴雨以上量级降水在夜间发生的概率高达93%。降水强度等级从北向南逐级减小,与罗甸县略呈“撮箕口”朝南地形较一致,从西北、北、东北向南逐级减小,在西部、东北部存在较稳定的2个极端暴雨中心。各乡镇连续暴雨次数分布差异明显,呈北多南少分布。总体而言,西部在年暴雨日数、暴雨强度、连续暴雨次数及连续降水量均居全县首位,在天气预报、防汛工作中应重点关注和防范。  相似文献   

2.
利用昌都市1980—2015年逐日降水资料统计分析其降水量与暴雨时空分布特征,应用Morlet小波分析、Mann-Kendall检验等方法对暴雨日数时间尺度特征进行分析。结果表明:近36 a昌都市降水量、暴雨量、暴雨日数空间分布一致,总体呈北多南少分布,暴雨强度呈西弱南强分布;暴雨在西北部最早开始,东南部最早结束;降水量、暴雨量、暴雨日数、暴雨强度均呈增加趋势,增加趋势不显著;暴雨日数存在准7 a、准12 a、准22 a三个变化周期,时间域上无明显突变;夏季暴雨逐时分布不均,多发生在晚间。  相似文献   

3.
利用1971—2015年呼和浩特地区6个国家气象观测站逐日降水资料,采用线性拟合、T检验、Mann-kendall秩次相关检验、滑动平均等统计方法,分析该地区暴雨时空演变趋势。结果表明:近45a呼和浩特地区暴雨空间分布具有中部多、南北少、年际变化程度自北向南减小的特点,暴雨集中发生在7月中旬到8月下旬且7月中旬出现跃增,20世纪70年代暴雨出现最多、21世纪前10a最少,暴雨日数在20世纪70年代初突增、70年代末突减。  相似文献   

4.
分析2000一2009年广西89个国家地面气象观测站的逐日降水资料和持续性暴雨的特点,定义桂东南区域来描述和统计近10年5-8月桂东南区域持续性暴雨,统计分析和研究该区域持续性暴雨时空特征和范围特点,得出桂东南持续性暴雨的年、月、旬分布特征,持续性暴雨空间分布特征以及影响范围特点.  相似文献   

5.
通过对正安县近45a来的地面气象观测资料及洪涝灾情的调查报告进行分析,揭示了正安县暴雨分布的时空特征。表明其在时间上具有集中性和连续性,日内强降水多出现在夜间;空间分布呈现东南和中部地区为暴雨多发区,是导致正安县洪涝灾害多发的主要诱因。最后结合正安县暴雨天气特征提出防御洪涝灾害的一些措施。  相似文献   

6.
《气象与环境学报》2017,(辽宁省汛)
利用1960—2014年辽宁省54个国家气象站逐日降水观测资料,对近55 a辽宁省汛期(6—9月)暴雨日数和暴雨强度的时空变化特征进行了分析。结果表明:1960—2014年辽宁省暴雨集中出现在汛期(6—9月),其中尤以7—8月暴雨出现最多,7—8月暴雨总量占年暴雨总量的72%。近55 a辽宁省汛期暴雨日数呈由东南部地区向西北部地区减少的分布,暴雨强度则自沿海地区向内陆地区减小;辽宁省汛期持续性暴雨主要为连续2 d的暴雨过程,暴雨发生次数不同区域差异较大。1960—2014年辽宁省汛期平均暴雨日数、暴雨强度和暴雨范围均无明显变化趋势,汛期暴雨日数和暴雨强度序列主要变化周期均为12 a,在20世纪90年代二者还存在显著的2 a变化周期。  相似文献   

7.
利用1960—2014年辽宁省54个国家气象站逐日降水观测资料,对近55 a辽宁省汛期(6—9月)暴雨日数和暴雨强度的时空变化特征进行了分析。结果表明:1960—2014年辽宁省暴雨集中出现在汛期(6—9月),其中尤以7—8月暴雨出现最多,7—8月暴雨总量占年暴雨总量的72%。近55 a辽宁省汛期暴雨日数呈由东南部地区向西北部地区减少的分布,暴雨强度则自沿海地区向内陆地区减小;辽宁省汛期持续性暴雨主要为连续2 d的暴雨过程,暴雨发生次数不同区域差异较大。1960—2014年辽宁省汛期平均暴雨日数、暴雨强度和暴雨范围均无明显变化趋势,汛期暴雨日数和暴雨强度序列主要变化周期均为12 a,在20世纪90年代二者还存在显著的2 a变化周期。  相似文献   

8.
近48a山西暴雨日数气候特征及其变化趋势   总被引:5,自引:2,他引:3  
利用山西省68个气象台站近48 a(1961-2008年)的逐日降水资料,采用线性趋势分析、Mann-Kendall法、Morlet小波变换以及合成分析等统计方法,分析了山西省暴雨发生次数(日数)的时空分布特征及其变化规律。结果表明:全省暴雨发生次数存在由南向北递减的空间分布特征,暴雨主要集中在太行山以南的晋东南一带;在季节分布上,暴雨主要出现在汛期(5-9月),特别是主汛期(7-8月)是全省暴雨最集中的时段;在旬季分布上,暴雨次数从5月中旬开始缓慢增加,7月上旬则急剧增加,7月下旬达到峰值。近48 a来全省暴雨日数呈现出下降趋势,尤其是7月份下降趋势最为明显;上世纪70年代末暴雨发生次数出现了较为明显的转折,全省大部分地区暴雨发生次数有所减少,特别是在晋东南南部一带和吕梁山北部地区减幅最大。  相似文献   

9.
利用1959—2014年江西省83个国家气象站汛期逐日降水资料,运用要素分析和EOF、REOF分析等统计方法,分析了江西省汛期暴雨和区域性暴雨的时空分布特征。结果表明:近56 a来江西省汛期多年平均暴雨日和日暴雨量分布呈从西南至东北递增的特征。4—6月日暴雨频次和当月降水贡献率呈逐月上升趋势,7月上旬略有下降,日暴雨中心大多位于江西省中南部,落区略有差异。江西省汛期区域性暴雨分为6个分布型态:江西省北部沿江型、江西省中北部型、浙赣铁路东段型、浙赣铁路西段型、江西省中部型和江西省南部型。  相似文献   

10.
利用1967—2017年近51a兴安盟8个国家级气象观测站的逐日降水资料,采用线性倾向估计、11a滑动平均和EOF分解等统计方法,对当地暴雨的气候特征、暴雨的年际和年代际变化以及暴雨的时空演变特征进行分析,结果表明:(1)兴安盟暴雨日数的中心轴线呈南北走向,正好位于西风带上大兴安岭的背风坡沿线;而暴雨雨量大值区域主要位于东部,由蒙古高原向松辽平原过渡的低海拔地区。(2)近51a来兴安盟暴雨日数呈减小的负增长趋势,并经历了偏少—显著偏多—显著偏少—偏多4个阶段。(3)暴雨日数EOF分解前两个模态可以代表兴安盟暴雨日数空间分布类型的一半以上,依次表现为全盟一致型和东—西反向型。  相似文献   

11.
贵州夏季暴雨的气候特征   总被引:3,自引:0,他引:3  
 利用贵州52个测站的1961-2006年历年夏季(6-8月)逐日降水资料,分析了贵州夏季暴雨的时空分布特征、周期振荡及其突变特征。结果表明:46 a来贵州夏季暴雨量呈增加趋势,并存在明显的年际、年代际变化特征;暴雨日数和暴雨量在1985年发生突变;暴雨日数和暴雨量均存在15 a和准10 a的周期振荡;暴雨日数和暴雨量EOF分解的第一特征向量的荷载场空间分布基本一致,表明全省呈偏多(少)的一致型同位相分布。  相似文献   

12.
利用贵州52个测站的1961-2006年历年夏季(6-8月)逐日降水资料,分析了贵州夏季暴雨的时空分布特征、周期振荡及其突变特征。结果表明:46 a来贵州夏季暴雨量呈增加趋势,并存在明显的年际、年代际变化特征;暴雨日数和暴雨量在1985年发生突变;暴雨日数和暴雨量均存在15 a和准10 a的周期振荡;暴雨日数和暴雨量EOF分解的第一特征向量的荷载场空间分布基本一致,表明全省呈偏多(少)的一致型同位相分布。  相似文献   

13.
利用1981—2010年30 a贵州省83个地面气象观测站月降水量和月暴雨日数资料,采用合成、方差分析和经验正交函数(EOF)分解,着重讨论贵州省主汛期6-7月暴雨日数的空间分布及其时间演变特征,进而对6-7月暴雨日数EOF第一模态的时间序列作小波分析、趋势分析及突变检验,分析贵州省6-7月暴雨日数时间序列的短期气候特征。结果表明:近30 a贵州省6-7月暴雨日数与降水量的时空分布一致,并对降水量有主要贡献。暴雨日数的空间分布存在3个暴雨多发区和2条暴雨少发带,范围最广、强度最大的暴雨多发区位于省之西南部,大值中心在六枝、晴隆和镇宁附近。暴雨日数时间序列的变化在20世纪90年代是偏多时期,20世纪80年代和21世纪至今是偏少时期。贵州省6-7月暴雨日数EOF第一模态时间序列在20世纪90年代存在显著的3~5 a年际震荡,在1981—2010年间总体变化趋势分为3个时段:1981—1990年、1991—2000年和2001—2010年,呈"降—升—降"变化,没有明显的突变点。  相似文献   

14.
基于1980-2018年山西省太行山南麓晋城市5个站点的降水资料,利用小波分析和Mann-Kendall方法,研究了太行山南麓暴雨时空变化特征。结果表明:39年平均年暴雨日数有0.9个,年际变化幅度较小。暴雨量与暴雨日数的空间分布并不一致,1980、1981、1982、1995和1996年暴雨日数较多。分析50-59、60-69、70-79、80-89、90-99、100以上6个暴雨量区间空间分布发现,暴雨的空间分布在不同区间并没有明显的趋同性。年暴雨降水量有不同程度的增加趋势,晋城市下辖5站暴雨量趋势均存在突变,突变时间存在差异,暴雨量在19811983年和19921995年为两个峰值时段,之后有所缓和。39年暴雨时间序列的小波波谱显示,太行山南麓暴雨呈现0~3 a、3~7 a、8~24 a等3类周期准振荡变化规律,各波动周期稳定性和显著性不同。3~7 a出现5个多少准周期振荡,该周期表现较为显著,8~24 a出现2个准振荡周期,且这两个周期非常稳定,具有全域性的特征。晋城市3~7 a的暴雨振荡周期和8~24 a特大暴雨振荡周期与现实非常吻合。  相似文献   

15.
利用常规地面、高空观测资料、自动站资料、NCEP1°×1°再分析资料和新一代多普勒天气雷达观测资料,分析2015年8月16—18日四川盆地持续性大暴雨过程,给出了此次大暴雨过程不同阈值短时强降水的时空分布特征,研究此次大暴雨过程中造成短时强降水的成因。结果表明:螺旋度的变化对短时强降水有指示作用,螺旋度等值线密集(稀疏),短时强降水增强(减弱)。水汽收支方程中,水汽通量散度项为短时强降水的发生提供了主要的水汽来源。永川雷达反演的风场上具有明显的低空急流、低层辐合,以及局地气旋性涡旋的中小尺度环流特征。通过对比分析发生在2013年6月30日的相似大暴雨过程,发现两次过程的关键影响系统均是西南涡。"8·17"大暴雨过程低涡前部偏南暖湿急流及低涡后部东北冷流均显著,是斜压锋生类短时强降水";6·30"大暴雨过程低涡前侧偏南暖湿急流显著,暖平流建立的不稳定起了主导作用,是暖平流强迫类短时强降水。雷达特征显示"8·17"过程强反射率因子面积小,回波质心发展较高,有明显的辐合特征";6·30"过程强反射率因子面积大,回波质心发展低,并伴有中气旋活动。  相似文献   

16.
1961-2012年山东汛期暴雨气候特征分析   总被引:1,自引:0,他引:1  
利用1961-2012年山东省35个气象站汛期逐日降水资料,采用常规统计法分析了山东省汛期暴雨日数和暴雨强度的时空变化特征,运用均生函数建立山东省汛期暴雨日数和暴雨强度的预测模型,并进行试报和预报检验。结果表明:1961-2012年山东省汛期暴雨日数和暴雨强度均呈减小趋势,但减小趋势不明显,未通过0.05信度的显著性检验。1961-2012年山东省汛期平均暴雨日数为2.2 d,存在3.4 a与准8.0 a周期振荡|暴雨平均强度为67.8 mm·d-1,有2.3 a、3.3 a、6.9 a与准12.0 a的变化周期。1961-2012年山东省汛期暴雨日数和暴雨强度未出现气候突变|山东省暴雨日数和暴雨强度自20世纪70年代中末期至80年代末期出现年代际减小的变化。山东省汛期多年暴雨平均日数和暴雨强度呈自西北向东南逐渐增加的分布趋势。鲁南、山东半岛南部和东部地区是山东省汛期暴雨(连续性暴雨)的多发地带及暴雨强度大值区域。对2003-2012年山东汛期暴雨预测表明,均生函数预测模型可较好拟合山东省汛期暴雨日数和暴雨强度的变化趋势,对山东汛期暴雨有较好的预测能力。  相似文献   

17.
基于区域气候模式RegCM4对4个全球气候模式动力降尺度模拟(分别记为CdR、EdR、HdR、MdR)以及高分辨率格点观测数据CN05.1的日降水数据,利用“追踪式”客观识别方法,对1981—2005年中国区域性暴雨事件进行了识别,并评估了模式对其气候特征的模拟性能。结果表明:4个动力降尺度模拟以及多模式集合能较好地模拟区域性暴雨事件发生频次、平均持续时间、平均降水量、平均影响范围和综合强度的年内分布特征以及气候平均值。观测的区域性暴雨事件持续时间、平均降水量、平均影响范围和综合强度在不同区间的频率分布特征以及区域性暴雨事件的累计频次、累计持续时间和累计降水量的空间分布特征也能得到很好地再现。模拟值与观测的空间相关系数都在0.9以上,且均方根误差不超过0.4。不过,相对而言,模式模拟的区域性暴雨事件频次略少,主要由对中度区域性暴雨事件低估所致;模拟的平均持续时间和平均降水量略偏高,而平均影响范围略偏小。综合强度方面,除HdR外,其余模拟均有所高估,尤其是MdR。在频率分布特征和空间分布方面,CdR的模拟性能低于其他模拟。多模式集合模拟的平均持续时间、平均降水量、平均影响范围和综合强度的相对误差分别为13%、2%、-11%和3%。  相似文献   

18.
精细化监测资料在山西暴雨预报模型改进中的应用   总被引:2,自引:0,他引:2  
苗爱梅  郝振荣  贾利冬  李苗  逯张禹  韩龙 《气象》2012,38(7):786-794
利用近3年5—9月山西63个GPS/MET临测站反演的逐时气柱水汽总量空间分布图与对应的459天气象观测资料、12个暴雨日的暴雨落区以及对应的流型配置图,对比分析发现:(1)当气柱水汽总量空间分布的水平梯度在25~40 mm/l经(纬)度时,未来12~36小时,在水平梯度的大值区及其南北(东西)0.5~1.0个经(纬)度的范围内,暴雨及其以上天气出现的概率达100%,当气柱水汽总量空间分布的水平梯度≥40 mm/l经(纬)度时,在水平梯度的大值区及其南北(东西)0.5个经(纬)度的范围内出现大暴雨的慨率为63.6%;(2)暴雨落区在气柱水汽总量空间分布图中水汽含量水平梯度大值区及其以北(西)还是以南(东)0.5~1.0)个经(纬)度的范围出现,不同的流型配置会出现不同的结果。应用逐时GPS/MET资料和逐时自动气象站极大风速风场资料,依据暴雨出现在气柱水汽总量空间分布图中水汽含量水平梯度大值区的不同位置,建立不同流型配置下的多种暴雨概念模型;采用轮廓识别技术在C/S架构下,对12~36小时暴雨落区预报模型进行改进并实现了自动化运行,2011年进行准业务使用证明效果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号