首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2009年秋季冀中南暴雪过程的地形作用分析   总被引:3,自引:0,他引:3  
2009年11月10-11日,河北中南部地区出现了回流暴雪天气,强降雪中心位于太行山喇叭口地形南侧迎风坡处。本文使用MM5数值试验结果分析中小尺度地形对于降雪的影响。结果表明:在喇叭口地形作用下北侧为下坡风,南侧为迎风坡,出现上升运动;由于向东开口的喇叭口地形对于气流有汇聚作用,整个喇叭口地形上空到800 hPa为地形辐合产生的上升运动。垂直剖面显示低层地形产生的上升运动冲破逆温层(或与逆温层内波动的上升支叠加),与700 hPa以上的西风带低槽系统引起的上升支叠加,加强了垂直上升运动,且东北风遇山后呈现出两支气流,一支在山前堆积下沉,一支在山前冷空气堆前上升,且山前冷空气下沉支逐步形成环流圈,说明冷空气在山前堆积,气流在冷空气堆以东上升。这可能是降雪中心在平原而不在山坡的主要原因。  相似文献   

2.
山东半岛冷流强降雪和非冷流强降雪的对比分析   总被引:3,自引:2,他引:1  
李丽  张丰启  施晓晖 《气象》2015,41(5):613-621
利用1981—2000年常规气象观测和NCEP/NCAR再分析资料,采用合成分析和动力诊断分析方法,对冷流强降雪与非冷流强降雪的空间分布、大气环流、水汽输送、稳定度和垂直运动进行对比分析。结果表明:冷流强降雪是发生在槽后西北气流里的中小尺度不稳定降雪,非冷流强降雪是发生在槽前西南气流中大尺度稳定性降雪。冷流强降雪具有明显的地方性特点,是强冷空气对下垫面物理状态强迫响应的结果。提出强冷空气与渤海暖水面相互作用产生的大气边界层不稳定是产生冷流降雪的本质,在这种边界层不稳定层结中发生的降雪是冷流降雪的概念。  相似文献   

3.
应用常规探测资料和NCEP再分析资料, 对2011年2月下旬典型华北回流形势下天津地区一次大到暴雪天气进行了诊断分析。结果表明:回流降雪过程中,华北上空西风环流以纬向型为主,冷空气主体偏北,主要影响系统为华北回流冷高压和低压倒槽。同时,回流降雪中有浅薄的冷空气垫,其上有暖湿气流在爬升,爬升高度大约为650 hPa。回流降雪期间有来自西南和东北两个方向的水汽在天津地区交绥,西南方向的水汽较为暖湿,东北方向的水汽相对干冷,低空和超低空为一致的东北气流,900 hPa附近有超低空急流,700 hPa以上为西南暖湿气流。降雪过程中对流层低层到高层均为一致的强上升运动,上升高度可达200 hPa,对应于低空和超低空有强的辐合。降雪开始前天津及其周边地区有较强的对流不稳定能量和对称不稳定性,有利于对流的发展。  相似文献   

4.
2011年初北疆强寒潮过程诊断分析   总被引:2,自引:0,他引:2  
摘要:2010年12月31日至2011年1月2日,新疆出现了一次强寒潮天气,北疆41个站的极端最低温度突破和接近历史同期极值,气温由偏高转为异常偏低,给当地群众生产生活造成了严重危害。本文利用NCEP 1白1?的6小时分析资料和常规观测等资料,对本次强寒潮天气过程的环流背景、冷空气源地、向南爆发的机制及强降温的原因进行了分析。结果表明,本次强寒潮天气的成因是:(1)前期乌拉尔山脊异常增强,脊顶东扩,使西西伯利亚低涡西退南压形成横槽,横槽北侧的东北气流引导的超级低冷空气、槽后北风带引导的极地冷空气及西路冷空气在西西伯利亚合并加强,形成异常强的冷高压、高空强锋区和强冷平流。乌拉尔山高压脊向南衰退,导致强冷空气大规模向南爆发。(2)强冷平流是造成本次寒潮剧烈降温的主要原因。(3)随着冷空气进入新疆,北疆上空涡散场和垂直速度场上出现了较明显的辐合上升运动,为降雪提供了动力条件。(4)850hpa和700hpa偏西急流将里咸海上空湿空气部分携带到新疆上空,为降雪提供了基本水汽条件。由于没有副热带锋区配合,西南暖湿气流无法补充到北疆地区,因此本次寒潮过程的降水不明显。  相似文献   

5.
利用天气学原理对2004年12月下旬发生在全国大部分地区的连续降雪、持续低温及寒潮天气过程分析,发现:过程是在两槽一脊的环流形势下发生的,西伯利亚阻高稳定,高原上有西南气流发展,造成我国大范围的雨雪和持续低温天气;当阻塞高压崩溃,横槽转竖,寒潮爆发。冷低压的加深与高空西风急流有关。东路冷空气的回流和低压倒槽的维持,形成持续低温和降雪天气。  相似文献   

6.
利用常规观测资料、ERA-Interim、NCEP/NCAR再分析资料,对比分析了2016年1月21—26日和2018年12月28日至2019年1月2日影响广西柳州的2次低温雨雪冰冻天气的成因。结果表明:2次过程期间中高纬均为两槽一脊形势,阻塞高压较常年同期偏强28dagpm;2018年过程期间近地层强冷平流的持续输送和高层冷空气的补充是柳州2018年气温低于2016年的重要原因,中低层持续的水汽输送及水汽辐合,长时间逆温层维持以及较强的逆温强度使得降雪持续时间及范围强于2016年;2016年过程期间中层强盛的西北气流使冷空气南下迅速,700hPa急流区以及850hPa风速辐合区的偏南导致明显的降雪主要出现在广西南部,柳州只出现少量降雪,温度回升较快。  相似文献   

7.
利用常规气象观测资料、以及国家气候中心的海温监测资料等,对2008年初呼市地区出现低温降雪天气的强度、范围、持续时间和灾害影响作了初步分析,并与历史同期进行了比较。分析表明:此次低温降雪天气是在近年来最严重的一次“拉尼娜”事件背景下发生的,与欧亚地区持续大气环流异常密切相关,在“北脊南槽”和西太平洋副高偏北偏强的形势下,北方冷空气不断南下,同时印度洋和盂加拉湾暖湿气流源源不断地往北到东北方向输送,冷暖气流在我国中东部地区频繁交汇,造成了我市持续低温、降雪异常偏多。  相似文献   

8.
应用常规地面、探空观测资料和NCEP 1°×1°再分析资料,对2011年11月28-29日山西低空偏东风暴雪天气结构特征进行了探讨。结果表明:(1)这次低空偏东风暴雪是由高空西风槽、低空切变线、地面回流和倒槽共同影响造成。降雪前约18 h,山西925~850 hPa上空出现东北风;降雪前约12 h,山西中南部地面出现较强东北风,强降雪期间地面东北风强劲;降水开始前,低空东北风是干冷性质,降水开始后低空东北风是湿冷垫。(2)暴雪的水汽来源主要是源于西太平洋的偏东风水汽输送在北部湾附近转向的西南水汽与南支槽前的西南气流在西南地区汇合北上,再与西风槽前西南水汽结合;强降雪出现在700 hPa水汽通量中心西北侧等值线密集区且风向气旋性辐合的偏南气流区域。(3)强降雪伴随山西上空深厚湿层、500 hPa以下明显水汽辐合,以及800 hPa以上对流层中强上升气流,而上升区下是明显的下沉气流,这是由低空偏东风的契入产生的。(4)强降雪期间300 hPa西风急流不断东移南压,山西位于其入口区右侧,出现强辐散,有利于地面河套倒槽发展、维持,以及垂直上升运动的增强。  相似文献   

9.
2008年12月2—6日寒潮天气过程分析   总被引:20,自引:0,他引:20  
牛若芸  乔林  陈涛  孔期  张亚妮 《气象》2009,35(12):74-82
利用常规天气观测资料、美国NCEP/NCAR 1°×1°网格点逐6h再分析资料,采用天气学原理和天气动力学诊断分析方法,对2008年12月2-6日寒潮天气过程进行分析和总结.结果表明:此次寒潮天气过程出现在欧洲脊强烈发展并缓慢东移、北半球中高纬环流形势由纬向型向经向型转换过程中.西脊前强偏北风带南移、横槽涡度西部大于东部、横槽前东南方的负变高和横槽后部的暖平流正变高等促使横槽转竖;南掉极涡与转竖低槽合并后,低槽明显向南加深,冷空气势力显著加强并开始向南爆发;自西脊西北部入侵小槽压迫高脊向东南方向移动并逐渐崩溃,脊前偏北气流逆转为西北气流,引导冷空气大举向南爆发,造成了此次寒潮天气过程.强盛的冷平流是造成气温骤降的主要原因.强风的形成除与冷平流侵入有关外,还与高空动量下传的增加密切相关.山东半岛降雨和强降雪的环流成因和物理量特征存在明显差异,降雨为冷暖空气交汇所致;强降雪则是冷平流、海陆分布差异和地形抬升共同影响的结果.T639、ECMWF和日本等3种数值模式均对这次亚欧中高纬大气环流的演变和调整均做出了较准确的预报,尤以ECMWF模式预报性能最好.  相似文献   

10.
采用都兰站地面观测资料和ECMWF每6h一次的再分析资料,对都兰2015年2月23—26日一次连续性降雪天气过程进行诊断分析,结果表明:此次强降雪天气过程期间,整体环流形势为西高东低型,极区冷空气沿脊前南下,在巴尔克什湖东北部积聚维持并向南侵入,是造成青海省海西东部地区连续性降雪的主要原因。此次过程以西南路径的水汽来源为主,结合500h Pa大气环流配置分析,由于伊朗低涡的存在,气旋前部的西南气流携带丰沛的水汽北上后转西北气流,与中高纬的冷空气在青海省汇合,为此次暴雪过程提供水汽。研究动力条件发现,过程期间都兰地区处于上升气流中,散度场上也表现为辐合状态,水汽抬升造成强降水。且K指数高值区一直在都兰地区稳定维持,为强降雪天气的发生提供有利条件。  相似文献   

11.
12.
Earlier GCM studies have expressed the concern that an enhancement of greenhouse warming might increase the occurrence of summer droughts in mid-latitudes, especially in southern Europe and central North America. This could represent a severe threat for agriculture in the regions concerned, where summer is the main growing season. These predictions must however be considered as uncertain, since most studies featuring enhanced summer dryness in mid-latitudes use very simple representations of the land-surface processes ("bucket" models), despite their key importance for the issue considered. The current study uses a regional climate model including a land-surface scheme of intermediate complexity to investigate the sensitivity of the summer climate to enhanced greenhouse warming over the American Midwest. A surrogate climate change scenario is used for the simulation of a warmer climate. The control runs are driven at the lateral boundaries and the sea surface by reanalysis data and observations, respectively. The warmer climate experiments are forced by a modified set of initial and lateral boundary conditions. The modifications consist of a uniform 3 K temperature increase and an attendant increase of specific humidity (unchanged relative humidity). This strategy maintains a similar dynamical forcing in the warmer climate experiments, thus allowing to investigate thermodynamical impacts of climate change in comparative isolation. The atmospheric CO 2 concentration of the sensitivity experiments is set to four times its pre-industrial value. The simulations are conducted from March 15 to October 1st, for 4 years corresponding to drought (1988), normal (1986, 1990) and flood (1993) conditions. The numerical experiments do not present any great enhancement of summer drying under warmer climatic conditions. First, the overall changes in the hydrological cycle (especially evapotranspiration) are of small magnitude despite the strong forcing applied. Second, precipitation increases in spring lead to higher soil water recharge during this season, compensating for the enhanced soil moisture depletion occurring later in the year. Additional simulations replacing the plant control on transpiration with a bucket-type formulation presented increased soil drying in 1988, the drought year. This suggests that vegetation control on transpiration might play an important part in counteracting an enhancement of summer drying when soil water gets limited. Though further aspects of this issue would need investigating, our results underline the importance of land-surface processes in climate integrations and suggest that the risk of enhanced summer dryness in the region studied might be less acute than previously assumed, provided the North American general circulation does not change markedly with global warming.  相似文献   

13.
A simplified vegetation distribution prediction scheme is used in combination with the Biosphere-Atmosphere Transfer Scheme (BATS) and coupled to a version of the NCAR Community Climate Model (CCM1) which includes a mixed-layer ocean. Employed in an off-line mode as a diagnostic tool, the scheme predicts a slightly darker and slightly rougher continental surface than when BATS' prescribed vegetation classes are used. The impact of tropical deforestation on regional climates, and hence on diagnosed vegetation, differs between South America and S.E. Asia. In the Amazon, the climatic effects of removing all the tropical forest are so marked that in only one of the 18 deforested grid elements could the new climate sustain tropical forest vegetation whereas in S.E. Asia in seven of the 9 deforested elements the climate could continue to support tropical forest. Following these off-line tests, the simple vegetation scheme has been coupled to the GCM as an interactive (or two-way) submodel for a test integration lasting 5.6 yr. It is found to be a stable component of the global climate system, producing only ~ 3% (absolute) interannual changes in the predicted percentages of continental vegetation, together with globally-averaged continental temperature increases of up to + 1.5 °C and evaporation increases of 0 to 5 W m–2 and no discernible trends over the 67 months of integration. On the other hand, this interactive land biosphere causes regional-scale temperature differences of ± 10 °C and commensurate disturbances in other climatic parameters. Tuning, similar to the q-flux schemes used for ocean models, could improve the simulation of the present-day surface climate but, in the longer term, it will be important to focus on predicting the characteristics of the continental surface rather than simple vegetation classes. The coupling scheme will also have to allow for vegetation responses occurring over longer timescales so that the coupled system is buffered from sudden shocks.  相似文献   

14.
Summary The boundary-layer wind field during weak synoptic conditions is largely controlled by the nature of the landscape. Mesoscale (sub-synoptic) circulations result from horizontal gradients of sensible heat flux due to variation in local topography, variation in surface-cover, and discontinuities such as land-sea contrasts. Such flows are usually referred to as thermally-driven circulations, and are diurnal in nature and often predictable. In this paper we use a state-of-the-art non-hydrostatic computer model to shed light on the physical mechanisms that drive a persistent easterly wind that develops in the afternoon in the Mackenzie Basin, New Zealand. The easterly – Canterbury Plains Breeze (CPB) – is observed early in the afternoon and is often intense, with mean wind speeds reaching up to 12 m s−1. Although computer modelling in mountainous terrain is extremely challenging, the model is able to simulate this circulation satisfactorily. To further investigate the mechanisms that generate the Canterbury Plains Breeze, two additional idealized model experiments are performed. With each experiment, the effects of the synoptic scale wind and the ocean around the South Island, New Zealand were successively removed. The results show that contrary to previous suggestions, the Canterbury Plains Breeze is not an intrusion of the coastal sea breeze or the Canterbury north-easterly, but can be generated by heating of the basin alone. This conclusion highlights the importance of mountain basins and saddles in controlling near-surface wind regimes in complex terrain.  相似文献   

15.
Summary A formation of a cold air lake in a basin is studied with a mesometeorological model.A dynamic Boussinesq hydrostatic mesoscale numerical model is developed in a staggered orthogonal grid with a horizontal resolution of 1 km and with a varying vertical grid. The topography is presented in a block shape so that computation levels are horizontal.The mesometeorological model is tested in three idealized topography cases (a valley, a single mountain, a basin) and test results are discussed.In an alpine basin surrounded by mountains and plateaus the air is supposed to be stagnant at the beginning of the night. Due to differences in radiation cooling an inversion layer is formed in the basin and local wind circulation is studied by model simulations.With 14 Figures  相似文献   

16.
Simultaneous particle-image velocimetry and laser-induced fluorescence combined with large-eddy simulations are used to investigate the flow and pollutant dispersion behaviour in a rural-to-urban roughness transition. The urban roughness is characterized by an array of cubical obstacles in an aligned arrangement. A plane fence is added one obstacle height h upstream of the urban roughness elements, with three different fence heights considered. A smooth-wall turbulent boundary layer with a depth of 10h is used as the approaching flow, and a passive tracer is released from a uniform line source 1h upstream of the fence. A shear layer is formed at the top of the fence, which increases in strength for the higher fence cases, resulting in a deeper internal boundary layer (IBL). It is found that the mean flow for the rural-to-urban transition can be described by means of a mixing-length model provided that the transitional effects are accounted for. The mixing-length formulation for sparse urban canopies, as found in the literature, is extended to take into account the blockage effect in dense canopies. Additionally, the average mean concentration field is found to scale with the IBL depth and the bulk velocity in the IBL.  相似文献   

17.
Frequent fog severely restricts evaporation from blanket bogs in Newfoundland because it more than halves the radiant energy input, and it eliminates the vapor pressure deficit, resulting in evaporation at the equilibrium rate (average = 0.99 during fog). During these periods, there is no surface resistance to evaporation because the bog has been wetted by fog drip, and although the latent heat flux dominates over sensible heat (average = 0.8), both are small. In contrast, the surface dries during clear periods, increasing the surface resistance to evaporation so that sensible heat becomes more important ( = 1.05). When the mosses are dry, evaporation is below the equilibrium rate ( = 0.87), although the higher available energy ensures that actual evaporation is higher. During clear periods, daily evaporation averaged 2.5 mm, compared to 1.1 and 0.7 mm for fog and rain, respectively. The suppressed evaporation at this site is important in maintaining appropriate hydrological conditions for blanket bog development.  相似文献   

18.
Summary An eddy effect of tropical deep convection on the large-scale momentum, resp vorticity budget is investigated. The process is specified by a simple parameterization approach which is based on a concept of rotating clouds exerting a momentum on the large-scale flow. The cloud rotation is associated with the thermal properties of a cloud ensemble by the principle of conservation of potential vorticity. A decomposition of cloud classes is applied in consistency with the thermodynamical parameterization scheme of Arakawa and Schubert (1974).The parameterization is tested with observations of GATE74, Phase III. The data are processed on a B/C-scale grid (55km) in a region within 9N and 16N, and between 21W and 27W, and with a vertical resolution of 41 levels. The parameterization results correspond to the observed patterns, especially in situations with strong large-scale wind shear. The findings suggest that certain large-scalle flow regimes provoke convective scale momentum generation rather than redistributing large-scale momentum by convective circulations.With 10 Figures  相似文献   

19.
Spatial structure of a jet flow at a river mouth   总被引:1,自引:0,他引:1  
The present work concentrates on the latest data measured in the Jordan river flow in lake Kinneret. Spectral characteristics of fluctuating velocity components have been obtained and processed. The three-dimensional structure of turbulence along the flow has been described. The main features of the jet flow turbulence in the river mouth are: a) The supply of turbulent energy changes due to different mechanisms along the flow. b) The structure of turbulence formed in the river decays rapidly along the flow, and c) In the sand area and beyond it, a significant generation of turbulent energy occurs. Quantitative estimations of the above effects were carried out.  相似文献   

20.
Flow over a two-dimensional obstacle and dispersion of a heavier-than-air gas near the obstacle were studied. Two species, one representing air and the other representing the heavier-than-air gas were treated. Equations for mass and momentum were cast in mass-averaged form, with turbulent Reynolds stresses and mass fluxes modeled using eddy-viscosity and diffusivity hypotheses. A two-equation k- turbulence model was used to determine the effective turbulent viscosity. Streamline curvature and buoyancy corrections were added to the basic turbulence formulation. The model equations were solved using finite difference techniques. An alternating-direction-implicit (ADI) technique was used to solve the parabolic transport equations and a direct matrix solver was used to solve the elliptic pressure equation.Mesh sensitivities were investigated to determine the optimum mesh requirements for the final calculations. It was concluded that at least 10 grid spaces were required across the obstacle width and 15 across the obstacle height to obtain valid solutions. A non-uniform mesh was used to concentrate the grid points at the top of the obstacle.Experimental measurements were made with air flow over a 7.6 by 7.6 cm obstacle in a boundary-layer wind tunnel. Smoke visualization revealed a low-frequency oscillation of the bubble downstream of the obstacle. Hot-wire anemometer data are presented for the mean velocity and turbulent kinetic energy at the mid-plane of the obstacle and the mid-plane of the downstream recirculation bubble. A single hot-wire probe was found to be suitable for determining mean streamwise velocities with an accuracy of 11 %. The downstream recirculation bubble was unsteady and had a length range from 3 to 8 obstacle lengths.The experimental results for flow over the obstacle were compared with numerical calculations to validate the numerical solution procedure. A sensitivity study on the effect of curvature correction and variation of turbulence model constants on the numerical solution was conducted. Calculations that included the curvature correction model gave a downstream recirculation bubble length of 5.9 obstacle lengths while excluding the correction reduced this length to 4.4.In the second part of the study, numerical calculations were performed for the dispersion of a heavier-than-air gas in the vicinity of the two-dimensional obstacle. Characteristics of an adiabatic boundary layer were used in these calculations. The densities of the contaminant gases were 0, 25 and 50% greater than the air density. Calculations were performed with the contaminant injection source upstream and downstream of the obstacle.Use of the pressure gradient model reduced the size of the dense gas cloud by as much as 12%. The curvature correction model also affected the cloud expanse by reducing the effective turbulent viscosity in the downstream recirculation bubble. The location of the injection source had the largest impact on the cloud size. The area of the cloud within the 5 % contour was three times larger for downstream injection than for upstream injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号