首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Snow surface and sea-ice energy budgets were measured near 87.5°N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to ?7°C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between ?50 W m?2 and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m?2, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area.  相似文献   

2.
By using regular meteorological data, physical quantity fields, satellite pictures and Doppler radar echo data, we analyze the mesoscale features and the conditions of 4 successive heavy precipitation processes in Yunnan aroused by the storm over the Bay in the early summer. The results show that the life of the storm over the Bay is usual 2 or 3 days and the cloud top temperature of the storm is always below -65°C. The storm over the Bay affects Yunnan by mesoscale convective cloud clusters, cloud system in peripheral or weaken itself moving to the northeast. The Tibetan Plateau shear lines and vortexes, NE-SW convergence channels and southwest wind convergence supply favorable circulation background and dynamical conditions. There are many common features about Doppler radar echoes, the flocculent echoes with intensity about 35-45 dBZ move to the east to produce successive precipitation in Yunnan, and the mesoscale features of southwest jet and wind veering with altitude not only are favorable to transport warm and moist airflow brought to the north by the storm over the Bay, but also are favorable to convective development.  相似文献   

3.
Summary A method to estimate monthly cloud conditions (monthly cloud frequencies) from multispectral satellite imagery is described. The operational cloud classification scheme SCANDIA (the SMHI Cloud ANalysis model using DIgital AVHRR data), based on high resolution imagery from the polar orbiting NOAA-satellites, has been used to produce monthly cloud frequencies for the entire year of 1993 and some additional months in 1991, 1992, 1994 and 1995. Cloud analyses were made for an area covering the Nordic countries with a horizontal resolution of four km. Examples of seasonal, monthly and diurnal variation in cloud conditions are given and an annual mean for 1993 is presented.Comparisons with existing surface observations showed very good agreement for horizontal cloud distributions but approximately 5% smaller cloud amounts were found in the satellite estimations. The most evident problems were encountered in the winter season due to difficulties in identifying low-level cloudiness at very low sun elevations. The underestimation in the summer season was partly fictious and caused by the overestimation of convective cloud cover by surface observers.SCANDIA results were compared to ISCCP (International Satellite Cloud Climatology Project) cloud climatologies for two selected months in 1991 and 1992. ISCCP cloudiness was indicated to be higher, especially during the month with anticyclonic conditions where a cloudiness excess of more than 10% were found. The regional variation of cloud conditions in the area was found to be inadequately described by ISCCP cloud climatologies. An improvement of the horizontal resolution of ISCCP data seems necessary to enable use for regional applications.The SCANDIA model is proposed as a valuable tool for local and regional monitoring of the cloud climatology at high latitudes. More extensive comparisons with ISCCP cloud climatologies are suggested as well as comparisons with modelled cloudiness from atmospheric general circulation models and climate models. Special studies of cloud conditions in the Polar areas are also proposed.With 14 Figures  相似文献   

4.
基于CloudSat卫星资料分析青藏高原东部夏季云的垂直结构   总被引:5,自引:1,他引:4  
张晓  段克勤  石培宏 《大气科学》2015,39(6):1073-1080
本文利用CloudSat卫星资料,对青藏高原东部2006~2010年6~8月云垂直结构的空间分布进行分析,结果表明:(1)夏季青藏高原东部云发展可达到平流层,且高原东部云在5km以下以水云存在,5~10km以液相和固相共存的混态存在,在垂直高度10km以上以冰云存在。由于CloudSat卫星资料云相的反演问题,可能会造成水云和混态云的发展上限偏低,冰云的发展下限抬升。(2)研究区整层水汽输送和云水平均路径空间分布存在一定的差异性,云水含量纬向分布表现为在26.5°~30.5°N附近存在一个明显的峰值区,经向分布表现为95°E以西云水含量低于以东。(3)研究区以单云层为主,尤其在青藏高原主体。单云层平均云层厚度4182 m,云顶高度、云厚限于水汽的输送,表现为由南向北波动下降。多层云发生频率在27°N以北明显减少,说明强烈的对流运动更容易激发多层云的产生。  相似文献   

5.
Abstract

Fog, cloud, and precipitation caused by the petrochemical plants in Edmonton, Canada, were studied on some of the coldest days of four winters. Typical morning temperatures were between –15 and –40° C. The investigation includes a comprehensive heat and vapour emission inventory, field studies of the local cloud physics, and observations of plume cloud dispersal and precipitation formation. Five field trips are discussed in detail.

The emission inventory indicated that the petrochemical plants released heat and vapour at a rate comparable to that of the city of a half million people. Thermal circulations in the industrial area were substantial but they were not strong enough to prevent some restriction of visibility when temperatures fell below –25° C, and an area‐wide restriction of visibility as deep ice fog set in at temperatures below –35°C. Widespread cloudiness caused by plant plumes was found to be caused by the combined influence of low temperatures and low wind speeds. Snowfall rates were generally very light but when meteorological conditions were right, the snowfall reduced visibility locally to 100 m and made roadways slippery.  相似文献   

6.
Summary Based on ESSA-satellite imagery for the period July 1969–June 1970, this study investigates spatial and temporal variations of East African cloudiness. The major results of this work show that the mean annual cloud amounts over East Africa are lower than those in adjacent tropical areas. One of the main reasons for this is the quasi-meridional alignement of the ITCZ over East Africa during the winter months. Within the area itself, the highest mean annual cloud amount values can generally be found in a diagonally oriented zone extending from the eastern Congo Basin to the Ethiopian Highlands. In contrast to the cloudiness north of the equator, which is dominated by oscillation periods in the range of 30–60 days, the cloudiness fluctuations encountered south of the equator show periodicities around 2 days (in the western part) and 20 days (in the eastern part), respectively. The different oscillation patterns, which are roughly separated by the Rift Valley area (longitudinally) and the equator (latitudinally), resemble the signals of the adjacent (African and Asian) monsoon regimes. However, during the winter months oscillation periods around 40 days can be found north of the equator, whereas a quasi-biweekly oscillation appears over the coastal areas in summer. Further details of the seasonal variability of East African cloudiness are discussed.With 8 Figures  相似文献   

7.
The temporal and spatial variability of winter total cloud cover in southern Europe and the Mediterranean region and its connection to the synoptic-scale features of the general atmospheric circulation are examined for the period 1950–2005, by using the diagnostic and intrinsic NCEP/NCAR Reanalysis data sets. At first, S-mode factor analysis is applied to the time series of winter cloud cover, revealing five factors that correspond to the main modes of inter-annual variability of cloudiness. The linkage between each of the five factors and the atmospheric circulation is examined by constructing the 500 hPa and 1,000 hPa geopotential height anomaly patterns that correspond to the highest/lowest factor scores. Then, k-means cluster analysis is applied to the factor scores time series, classifying the 56 years into six distinct clusters that describe the main modes of spatial distribution of cloudiness. Eventually, canonical correlation analysis is applied to the factor scores time series of: (1) 500 and 1,000 hPa geopotential heights over Europe and the North Atlantic Ocean and (2) total cloud cover over southern Europe and the Mediterranean, in order to define the main centers of action in the middle and the lower troposphere that control winter cloudiness variability in the various sub-regions of the area under study. Three statistically significant canonical pairs are revealed, defining the main modes of atmospheric circulation forcing on cloudiness variability. North Atlantic oscillation and European blocking activity modulate the highest percentage of cloudiness variability. A statistically significant negative trend of winter cloudiness is found for central and southern Europe and the Mediterranean region. This negative trend is associated with the corresponding positive trends in NAO and European blocking activity.  相似文献   

8.
采用NCEP分析场,选取2010年梅雨期长江流域的一次降水过程,分别基于Slingo方案、NCAR方案和钱氏方案,利用相对湿度计算云量,并以LAPS(Local Analysis and Prediction System)系统输出的云量分析场作为观测值,分别在高层(400 h Pa)与低层(850 h Pa),从宏观比较与统计分析的角度,与计算结果进行云量大小与区域分布的对比分析。结果表明,三个云量计算方案对云量中心位置的把握均较为准确,但对云量值的计算存在大小不等的误差。NCAR方案计算结果和LAPS输出场最为吻合,能够体现出云量大值区,但区域一般偏大;Slingo方案相较NCAR方案来说略差,但也能较好地描述云带分布;此外,钱氏方案计算出的云量值始终偏小,但其能够较好地描述云带轮廓与云量的分布特征。综合对比结果,NCAR云量计算方案比其余两者更优,且在低层(850 h Pa)表现尤为明显。  相似文献   

9.
用卫星OLR资料估算中国大陆月降水量   总被引:2,自引:1,他引:1       下载免费PDF全文
吴晓 《气象》2011,37(1):99-102
利用国家卫星气象中心处理的NOAA下午轨道卫星的OLR资料,用Xie等在1998年的文章中提出的月降水量计算模式,计算了1991-2008年地理范围在10°~60°N、75°~150°E、分辨率为0.5°×0.5°的中国大陆月降水量,得出:用OLR月距平资料可以计算出月降水量,模式估算出的降水量通过与NCEP提供的18年月降水量陆地观测数据对比,精度为:冬季相对误差49.14%、绝对误差7.97 mm;春季相对误差37.60%、绝对误差14.97 mm;夏季相对误差27.37%、绝对误差31.61mm;秋季相对误差37.99%、绝对误差16.95 mm,可见精度效果并不是太好,造成误差的主要原因是降水机制不一,层状云降水特别是逆温层状云和连续阴天不下雨,以及月平均OLR不能完整地反映月内降水云和降水量是造成用OLR月距平估算月降水量的主要误差来源.通过对FY-2C卫星云分类产品的图像分析,得出中国南方冬季主要是层状云降水,OLR月距平值较高,用全球的A、B系数估算出的降水量偏低于实况,因此对中国大陆进行分区、分季节统计A、B系数,是解决OLR月距平估算月降水量精度问题的途径.  相似文献   

10.
This paper describes results of the fluxes of momentum , sensible heat and latent heat for the West Pacific Tropical Ocean Area ( 127 ° E - 150 ° E , 5 ° N -3 ° S ). The data were collected by the small tethered balloon sounding system over this ocean area including 6 continuous stations (140 ° E. 0 ° ; 145 ° E, 0 ° ; 150 ° E, 0 ° ; 140° E, 5 ° N; 145 ° E, 5° N and 150 ° E, 5 ° N) from 11 October to 15 December, 1986 . These fluxes were calculated by the semiempirical flux-profile relationships of Monin-Obukhov similarity theory using these observed data. The results show that for this tropical ocean area the drag coefficient CD is equal to (1.53 ± 0.25) × 10 3 and the daily mean latent flux Hl is greater than its daily mean sensible flux HV by a factor of about 9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号