首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the derivation of the convective mixing height and the characteristic convective velocity w * from profiles of w measured by sodar. The parameters were obtained by fitting an analytical profile to the observed data. Results were compared with values obtained by the meteorological preprocessor of a dispersion model and from noon radiosoundings. In addition, a Monte Carlo method was applied to study the influence of measurement errors. It turned out that it is inherently difficult to determine the depth of deep mixed layers from sodar measurements with a limited range, although the determination of w * should be possible. However, a significant underestimation of w , and thus w *, was found, which is probably due to disproportional sampling of updrafts and downdrafts.  相似文献   

2.
The Langevin equation is used to derive the Markov equation for the vertical velocity of a fluid particle moving in turbulent flow. It is shown that if the Eulerian velocity variance wE is not constant with height, there is an associated vertical pressure gradient which appears as a force-like term in the Markov equation. The correct form of the Markov equation is: w(t + t) = aw(t) + b wE + (1 – a)T L ( wE 2)/z, where w(t) is the vertical velocity at time t, a random number from a Gaussian distribution with zero mean and unit variance, T L the Lagrangian integral time scale for vertical velocity, a = exp(–t/T L), and b = (1 – a 2)1/2. This equation can be used for inhomogeneous turbulence in which the mean wind speed, wE and T L vary with height. A two-dimensional numerical simulation shows that when this equation is used, an initially uniform distribution of tracer remains uniform.  相似文献   

3.
The turbulent structure of the lake breeze penetration and subsequent development of the thermal internal boundary layer (TIBL) was observed using a kytoon-mounted ultrasonic anemometer-thermometer. The lake breeze penetrated with an upward rolling motion associated with the upward flow near the lake breeze front. After the lake breeze front passed, the behaviors of the velocity and temperature at the top of the lake breeze layer were similar to those found in convective boundary layers (CBL). Comparing gq/*, u /w * and w /w * between the present observation of TIBL development after the passage of the lake breeze front and CBL data from the literature, the /* values showed reasonable agreement; however, u /w * and w /W* had smaller values in the TIBL than in the CBL at higher altitudes. This is due to the differences in the mean velocity profiles. While the CBL has a uniform velocity profile, the TIBL has a peak at lower elevation due to the lake breeze penetration; the velocity then decreases with height.Present address: The Institute of Behavioral Science, 1-35-7 Yoyogi, Tokyo 151, Japan.  相似文献   

4.
Recent papers by Wilson et al. (1981b) and Legg and Raupach (1982) give methods for the calculation of particle trajectories in turbulence with a gradient in vertical velocity variance 2 w. However the two methods seem contradictory.This paper demonstrates that in systems in which l(d w /dz) (where / is the length scale) varies only slowly with height z, the two methods give similar predictions, and indicates why this is the case. For a particular system in which the restriction on l(d w /dz) is not satisfied, it is shown that neither method is correct but that a simple modification of the method of Wilson et al. (1981b) gives reasonable predictions.  相似文献   

5.
It is shown that the ratio of standard deviation of lateral velocity to the friction velocity, /u *, and therefore wind direction fluctuations, are sensitive to mesoscale terrain properties. Under neutral conditions, /u * is almost 40% larger in rolling terrain than over a horizontal surface. In the lee of a low mountain, the fluctuations may be 2.5 times as strong as over horizontal terrain. In contrast, vertical velocity fluctuations are little influenced by mesoscale terrain features.Now with Air Weather Service, Offutt AFB, Omaha, Nebraska.  相似文献   

6.
The winter-time arctic atmospheric boundary layer was investigated with micrometeorological and SF6 tracer measurements collected in Prudhoe Bay, Alaska. The flat, snow-covered tundra surface at this site generates a very small (0.03 cm) surface roughness. The relatively warm maritime air mass originating over the nearby, partially frozen Beaufort Sea is cooled at the tundra surface resulting in strong (4 to 30 °C · (100 m)-1) temperature inversions with light winds and a persistent weak (1 to 2 °C · (100 m)-1) surface inversion with wind speeds up to 17 m s-1. The absence of any diurnal atmospheric stability pattern during the study was due to the very limited solar insolation. Vertical profiles were measured with a multi-level mast from 1 to 17 m and with a Doppler acoustic sounder from 60 to 450 m. With high wind speeds, stable layers below 17 m and above 300 m were typically separated by a layer of neutral stability. Turbulence statistics and spectra calculated at a height of 33 m are similar to measurements reported for non-arctic, open terrain sites and indicate that the production of turbulence is primarily due to wind shear. The distribution of wind direction recorded at 1 Hz was frequently non-Gaussian for 1-hr periods but was always Gaussian for 5-min periods. We also observed non-Gaussian hourly averaged crosswind concentration profiles and assume that they can be modeled by calculating sequential short-term concentrations, using the 5-min standard deviation of horizontal wind direction fluctuations () to estimate a horizontal dispersion coefficient ( y ), and constructing hourly concentrations by averaging the short-term results. Non-Gaussian hourly crosswind distributions are not unique to the arctic and can be observed at most field sites. A weak correlation between horizontal ( v ) and vertical ( w ) turbulence observed for both 1-hr and 5-min periods indicates that a single stability classification method is not sufficient to determine both vertical and horizontal dispersion at this site. An estimate of the vertical dispersion coefficient, z , could be based on or a stability classification parameter which includes vertical thermal and wind shear effects (e.g., Monin-Obukhov length, L).  相似文献   

7.
Past work on analyzing ground-source diffusion data in terms of surface-layer similarity theory is reviewed; these analyses assume that z /L orh/L is a function of u * x/L (where h = Q/ dy). It is argued that an alternative scaling, h */L versus x/L, is nearly as universal in that it is very weakly influenced by surface roughness, except for a modest influence in the free convective case (h * = Q/u * dy); the advantage of this scaling is that it eliminates the need to reassess as vertical diffusion progresses. The Prairie Grass data set is adjusted for the difference in source and sampling heights, and is plotted with this scaling. Simple analytic equations are suggested that fit the resultant data plots for stable and unstable conditions, and suggestions are made towards practical application of these results.On assignment from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce.  相似文献   

8.
Summary A simple parameterization for the estimation of turbulent kinetic energy (TKE) and momentum flux profiles under near-neutral stratification based on sodar measurements of the vertical velocity variance has been tested using data from the LINEX-2000 experiment. Measurements included operation of a phased-array Doppler sodar DSDPA.90 and of a sonic anemometer USA-1 mounted at a meteorological tower at a height of 90m. Good agreement has been found between the TKE and momentum flux values derived from the sonic and sodar data (with correlation coefficients r>0.90 and a slope of the regression lines of about 1.01.1) suggesting the possible use of sodar measurements of w 2 to derive turbulence parameter profiles above the tower range.  相似文献   

9.
The characteristics of a Lyman-alpha humidiometer have been carefully examined in an air-conditioned test chamber. The results confirm that when carefully used, this humidiometer is suitable for measurements of turbulent humidity fluctuations. Measurements with a Lyman-alpha humidiometer were carried out in the surface boundary layer over the ocean. The relation between turbulent intensity ( a = a ov2) and the friction humidity (a *) can be expressed as a = l.6a *. The spectrum of turbulent humidity for wind speeds larger than 3 m s –1 conforms to the similarity law in the surface boundary layer. The spectrum has two characteristic normalized frequencies, namely, a higher peak and a secondary peak (or a shoulder).  相似文献   

10.
The variations of and in the drainage flow in the Brush Creek valley of western Colorado are investigated using data from Doppler acoustic sodars and instrumented towers. The data were obtained on two experimental nights during the 1984 ASCOT field study. There is good agreement between the variations derived from low-level observations of the sodars and those derived from the towers located throughout the valley. The observed hourly average and in the nocturnal drainage flow are about 20 ° to 25 ° and 5 °, respectively; these values are much larger than those generally observed over flat terrain during nighttime stable conditions. After sunrise (about 0600 MST), as the valley warms and the flow direction changes to up-valley, these parameters increase sharply to their peak values at about 0800 MST and then decrease to their normal daytime values after about two hours.In the drainage flow, the hourly average varies inversely with wind speed according to the relation u 0.7ms-1. The vertical standard deviation is much less enhanced by complex terrain than the horizontal standard deviation. The observed values are predicted fairly well by the local similarity theory.Oak Ridge Associated Universities (ORAU) Summer Research Participant at ATDD in 1987 andOak Ridge Associated Universities (ORAU) Summer Research Participant at ATDD in 1987 and  相似文献   

11.
The structure of atmospheric turbulence in the surface layer over the open ocean is examined under conditions of local free convection. The raw data consist of profile and fluctuation measurements of wind and temperature as obtained from a meteorological buoy. For near neutral conditions and for waves running approximately along the wind direction, wave-induced wind fluctuations can be described by a simplified linear theory based on Miles (1957). In this case, the spectrum of wind velocity is given as the sum of two parts; for the turbulent part, the parameterization as obtained by Kaimal et al. (1972) applies, while the wave-induced part is parameterized using a simplification of Miles' linear theory. For cases of local free convection, the measurements of the vertical component of the wind velocity are well described by similarity theory; as expected, w /(-uw)1/2 is proportional to (- z/L)1/3. In order to scale the longitudinal wind velocity component, it seems to be reasonable to extend the list of relevant parameters by the height of the mixed layer z i. We obtain u /(- uw)1/2 (z/z i)1/3(- z/L)1/3 with only a poor correlation coefficient of r = 0.6. Overall, the results of local free convection scaling obtained from direct measurements show good agreement with those obtained from profile measurements. A comparison between direct and indirect determination of turbulent fluxes of momentum shows an unexplained difference of about 20%. This discrepancy is mainly due to a gap in the uw-cospectrum at the swell frequency.  相似文献   

12.
Further laboratory studies of emission by O(1 S) and by O2 A 3 u + ,A3 u andc 1 u in the oxygen afterglow lead to the conclusion that Barth's mechanism for the excitation of the auroral green line O 2 * +O(3P=O2+O(1S)–(1) is correct and that levelsv=6 and 7 of O2 A 3 u + are Barth precursors. The value ofk 1=7×10–11 cm3 s–1 deduced for these levels is shown to be in fair agreement with atmospheric measurements.  相似文献   

13.
Lagrangian integral time scales were calculated from crosswind concentration distributions of oil-fog smoke released from a continuous point source over the ocean during stable atmospheric conditions assuming an exponential correlation function. Variance of the lateral velocity fluctuations, v 2, and the energy dissipation rate, , were obtained from simultaneous Eulerian measurements at the beach. An Eulerian energy dissipation scale defined as v 2/ was then computed. The ratio of the Lagrangian integral scale to the Eulerian energy dissipation scale was found to be close to 1. This ratio was also estimated to be 1 based on physical and dimensional considerations regarding the cascade of energy. Length scales for longitudinal, lateral and vertical directions were interpreted with a model based on similarity considerations applicable for over-water atmospheric flows.Authored under contract EY-76-C-02-0016 with the U.S. Department of Energy. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.  相似文献   

14.
This paper considers the ground area which affects the properties of fluid parcels observed at a given spot in the Planetary Boundary Layer (PBL). We examine two source-area functions; the footprint, giving the source area for a measurement of vertical flux: and the distribution of contact distance, the distance since a particle observed aloft last made contact with the surface. We explain why the distribution of contact distance extends vastly farther upwind than the footprint, and suggest for the extent of the footprint the inequalities: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr% 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyvam% aalaaabaGaamiAaaqaaiabeo8aZnaaBaaaleaacaWGxbaabeaakiaa% cIcacaWGObGaaiykaaaacqGH8aapcaWG4bGaeyipaWJaamyvaKazaa% iadaGabaqaamaaDaaajqwaacqaaiaadIgacaGGVaGabmOEayaacaGa% aiilaiaabccacaGGVbGaaiiDaiaacIgacaGGLbGaaiOCaiaacEhaca% GGPbGaai4CaiaacwgaaeaacaWGubWaaSbaaKazcaiabaGaamitaaqa% baqcKfaGaiaacIcacaWGObGaaiykaiaabYcacaqGGaGaaeiAaiaabc% cacaGGHbGaaiOyaiaac+gacaGG2bGaaiyzaiaabccacaGGZbGaaiyD% aiaackhacaGGMbGaaiyyaiaacogacaGGLbGaeyOeI0IaaiiBaiaacg% gacaGG5bGaaiyzaiaackhaaaaajqgaacGaay5EaaaakeaaaeaacaGG% 8bGaamyEaiaacYhacqGH8aapcqaHdpWCdaWgaaWcbaGaamODaaqaba% GccaGGOaGaamiAaiaacMcadaWcaaqaaiaadIhaaeaacaWGvbaaaaaa% aa!7877!\[\begin{array}{l} U\frac{h}{{\sigma _W (h)}} < x < U\left\{ {_{h/\dot z,{\rm{ }}otherwise}^{T_L (h){\rm{, h }}above{\rm{ }}surface - layer} } \right. \\ \\ |y| < \sigma _v (h)\frac{x}{U} \\ \end{array}\] where U is the mean streamwise (x) velocity, h is the observation height, L is the Lagrangian timescale, v and w are the standard deviations of the cross-stream horizontal (y) and vertical (z) velocity fluctuations, and is the Lagrangian Similarity prediction for the rate of rise of the centre of gravity of a puff released at ground.Simple analytical solutions for the contact-time and the footprint are derived, by treating the PBL as consisting of two sub-layers. The contact-time solutions agree very well with the predictions of a Lagrangian stochastic model, which we adopt in the absence of measurements as our best estimate of reality, but the footprint solution offers no improvement over the above inequality.  相似文献   

15.
A random-walk model for dispersion of heavy particles in turbulent air flow   总被引:1,自引:0,他引:1  
A random-walk model is presented for calculating the dispersion of heavy particles in a turbulent air flow when only air turbulence statistics and the drag characteristics of the particle are known. Algebraic expressions for the modification of air velocity variance 2 and Lagrangian autocorrelation tune-scale T L,due to particle inertia effects, are derived. These expressions introduce only a very small computational overhead on the random-walk models for inertia-less particles of Wilson et al. (1983). Measurements of T Land by Snyder and Lumley (1971) for four different particles are used to determine constants in the heavy-particle model. It is shown that the agreement between the model, for a single set of constants, and the dispersion measurements is good for the 47 m hollow glass, 87 m glass, and 47 m copper particles. The predictions for the 87 m corn pollen particles show less satisfactory agreement by underestimating dispersion measurements by 15% after 0.4s. Finally, some aspects of the model's application to spray dispersion in and above a crop canopy are considered.  相似文献   

16.
An equation is derived for the components of the horizontal (turbulent) frictional force in the -coordinate system with special attention to mesometeorological flow models. The starting point is the horizontal equation of motion in its flux-form in the -system in which we replace (following Reynolds' procedure) the velocity components u,v and % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbai % aaaaa!37B8! \[ \dot \sigma \] aswell as other relevant quantities by terms of the form u = + u,..., = ± + % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbai % Gbauaaaaa!37C3! \[ \dot \sigma ' \] , etc. ( = time average of u; u = fluctuating part of u.) Next, the equation is averaged with respect to time and terms which we believe are small in mesometeorological flows, are neglected. On expressing by an appropriate expression that involves w, the result shows the appearance of two new terms which, have not been considered previously in the published literature. While the expression earlier used in the literature involved the -derivative of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG1bGbauaaceWG3bGbauaaaaaaaa!380B!\[\overline {u'w'} \] alone, the new terms add the -derivatives of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG1bGbauaadaahaaWcbeqaaiaaikdaaaaaaaaa!37EC!\[\overline {u'^2 } \] and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG1bGbauaaceWG2bGbauaaaaaaaa!380A!\[\overline {u'v'} \] for the x-component of the force, and the -derivatives of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG2bGbauaadaahaaWcbeqaaiaaikdaaaaaaaaa!37ED!\[\overline {v'^2 } \]} and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG1bGbauaaceWG2bGbauaaaaaaaa!380A!\[\overline {u'v'} \] for the y-component, where and are the slopes of the -surfaces in the x- and y-directions, respectively. Further, a few numerical simulations of the sea-breeze over topography are carried out with and without the correction terms. It is shown that when corrections terms are not included the effective smoothing is stronger above the sloping regions and may amount to as high as 50 percent of the convergence with slopes of ~.04. The ìnclusìon of the new terms does not lead to any special computational difficulties and for that reason there is no compelling reason to neglect them, all the more so because, as is shown, the addition of the new terms results in a consistent apportioning of the degree of horizontal diffusion.On leave from CIMMS, Norman, OK.Now visiting Dept. of Met., Helsinki, Finland.  相似文献   

17.
In this paper we analyse diabatic wind profiles observed at the 213 m meteorological tower at Cabauw, the Netherlands. It is shown that the wind speed profiles agree with the well-known similarity functions of the atmospheric surface layer, when we substitute an effective roughness length. For very unstable conditions, the agreement is good up to at least 200 m or z/L–7(z is height, L is Obukhov length scale). For stable conditions, the agreement is good up to z/L1. For stronger stability, a semi-empirical extension is given of the log-linear profile, which gives acceptable estimates up to ~ 100 m. A scheme is used for the derivation of the Obukhov length scale from single wind speed, total cloud cover and air temperature. With the latter scheme and the similarity functions, wind speed profiles can be estimated from near-surface weather data only. The results for wind speed depend on height and stability. Up to 80 m, the rms difference with observations is on average 1.1 m s–1. At 200 m, 0.8 m s–1 for very unstable conditions increasing to 2.1 m s–1 for very stable conditions. The proposed methods simulate the diurnal variation of the 80 m wind speed very well. Also the simulated frequency distribution of the 80 m wind speed agrees well with the observed one. It is concluded that the proposed methods are applicable up to at least 100 m in generally level terrain.  相似文献   

18.
Sensible heat (H) and latent heat (LE) fluxes and turbulence statistics in St. Louis, Missouri and the surrounding region are presented. The urban-scale analyses were derived from a series of aircraft transects at 150 m above ground across the metropolitan area during the afternoon convective period. The results revealed that H varied by a factor of two to four in the region; the largest values were associated with the urban heat island. LE varied across the urban area by about a factor of four, but low values of LE overlaid the urban heat island. Consequently, the Bowen ratio (H/LE) exhibited large spatial variability, with a maximum value greater than 1.5 over the city and values less than 0.2 in nonurban areas. The areas along the Mississippi River and adjacent low lying marshland northeast of the downtown area displayed significantly smaller H and Bowen ratio. The derived surface heat storage term (G) for this area as well as for the urban area exceeded either H or LE.The spatial patterns for the standard deviations of the three velocity components ( u,v,w ), temperature ( T ), and absolute humidity ( q ), are also presented. The patterns of u,v,w were similar to the pattern of H. the highest values associated with the urban heat island. The correlation coefficient between the vertical velocity and temperature fluctuations was highest over the city, and a noteworthy minimum was observed in the upwind area over the river and marshland in association with low H. The convective similarity relationships for u,v,w appeared to be approximately valid spatially, as variations were typically less than 10% from theory over the urban area and nonurban region, except for a 40% anomaly in the lowland around the river northeast of the city.Measurements of H from 30-m towers within various land-use areas were contrasted with the aircraft data. Land-use differences in H at the surface were at least as large as those observed at 150 m across the city. This was primarily because of the measurement requirement that the minimum resolvable fetch increases with measurement height.  相似文献   

19.
The development of an airborne instrument for the in-situ measurement of carbon monoxide is described. The technique is resonance-fluorescence of the (A 1 X 1) transition of CO in the VUV. The instrument achieves a detection limit of 1 ppb for an interaction time of 10 s from ground level up to an altitude of 34 km. Interferences from other stratospheric trace gases are negligible.  相似文献   

20.
Big eddies in the outer part of the atmospheric boundary layer contribute to the variance of the horizontal velocity fluctuations near the surface. Because of the slow adjustment of these eddies to new boundary conditions, they carry the roughness characteristics of a large upstream terrain. A scaling relation is proposed that accounts for the memory effects in the big eddies. It is concluded that the standard deviation of the horizontal wind ( u ) measured at a given height is representative for the shear stress at greater height. This gives at least qualitative support to existing work where u is used for exposure correction of mean wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号