首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The carbon kinetic isotope effects (KIEs) in the reactions of several unsaturated hydrocarbons with chlorine atoms were measured at room temperature and ambient pressure using gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS). All measured KIEs, defined as the ratio of the rate constants for the unlabeled and labeled hydrocarbon reaction k 12/k 13, are greater than unity or normal KIEs. The KIEs, reported in per mil according to Cl ɛ = (k 12/k 13−1) × 1000‰ with the number of experimental determinations in parenthesis, are as follows: ethene, 5.65 ± 0.34 (1); propene, 5.56 ± 0.18 (2); 1-butene, 5.93 ± 1.16 (1); 1-pentene, 4.86 ± 0.63 (1); cyclopentene, 3.75 ± 0.14 (1); toluene, 2.89 ± 0.31 (2); ethylbenzene, 2.17 ± 0.17 (2); o-xylene, 1.85 ± 0.54 (2). To our knowledge, these are the first reported KIE measurements for reactions of unsaturated NMHC with Cl atoms. Relative rate constants were determined concurrently to the KIE measurements. For the reactions of cyclopentene and ethylbenzene with Cl atoms, no rate constant has been reported in refereed literature. Our measured rate constants are: cyclopentene (7.32 ± 0.88) relative to propene (2.68 ± 0.32); ethylbenzene (1.15 ± 0.04) relative to o-xylene (1.35 ± 0.21), all × 10−10 cm3 molecule−1 s−1. The KIEs in reactions of aromatic hydrocarbons with Cl atoms are similar to previously reported KIEs in Cl-reactions of alkanes with the same numbers of carbon atoms. Unlike the KIEs for previously studied gas-phase hydrocarbon reactions, the KIEs for alkene–Cl reactions do not exhibit a simple inverse dependence on carbon number. This can be explained by competing contributions of normal and inverse isotope effects of individual steps in the reaction mechanism. Implications for the symmetries of the transition state structures in these reactions and the potential relevance of Cl-atom reactions on stable carbon isotope ratios of atmospheric NMHC are discussed.  相似文献   

2.
In this experimental study, rate constants were measured for the reactions of ozone with 13 polycyclic aromatic hydrocarbons (PAHs) adsorbed on different types of particles. Graphite and silica were chosen to model, respectively, carbonaceous and mineral atmospheric particles. The pseudo-first order rate constants were obtained from the fit of the experimental decay of particulate PAH concentrations versus time. Second order rate constants were calculated considering the ozone gaseous concentration. At room temperature, rate constants varied, in the case of graphite particles, between (1.5 ± 0.5) × 10−17 and (1.3 ± 0.7) × 10−16 cm3 molecule−1 s−1 for chrysene and dibenzo[a,l]pyrene, respectively, and, in the case of silica particles, between (1.5 ± 0.3) × 10−17 and (1.4 ± 0.3) × 10−16 cm3 molecule−1 s−1 for fluoranthene and benzo[a]pyrene, respectively. Different granulometric parameters (particle size, pore size) and different PAH concentrations were tested in the case of silica particles. Heterogeneous reactions of ozone with particulate PAHs are shown to be more rapid than those occurring in the gas-phase, and may be competitive with atmospheric photodegradation.  相似文献   

3.
Generally, it is assumed that UV-light, high temperature or reactive molecules like O3 and OH are needed to activate gas reactions in air. In consequence, the catalytic activity on natural materials such as sand and soil on the earth's surface is assumed to be insignificant. We have measured O2-dissociation rates on natural quartz sand at 40˚C and compared these with O2-dissociation rates near 500˚C on materials with well-known catalytic activity. In terms of probabilities for dissociation of impinging O2-molecules the measured rates are in the 10−12–10−4 range. We have also measured dissociation rates of H2 and N2, water-formation from H2 and O2 mixtures, exchange of N between N2, NO x and a breakdown of HNO3, NO2 and CH4 on natural quartz sand at 40˚C. The measured rates together with an effective global land area have been used to estimate the impact of thermodynamically driven reactions on the earth's surface on the global atmospheric budgets of H2, NO2 and CH4. The experimental data on natural quartz sand together with data from equilibrium calculations of air suggest that an expected increase in anthropogenic supply of air pollutants, such as NO x or other “reactive” nitrogen compounds, hydrogen and methane, will be counter-acted by catalysis on the earth's surface. On the other hand, at Polar Regions and boreal forests where the “reactive” nitrogen concentration is below equilibrium, the same catalytic effect activates formation of bio-available nitrogen compounds from N2, O2 and H2O.  相似文献   

4.
The uptake of water vapor on MgCl2×6H2O and NaCl salt dry solid films was studied over the temperature range 240 to 340 K and at 1 Torr pressure of helium using a flow reactor coupled to a modulated molecular beam mass spectrometer. The H2O to salt uptake data were obtained from the kinetics of H2O loss on salt coated Pyrex rods. The following Arrhenius expression was obtained for the initial uptake coefficient of H2O on MgCl2×6H2O films: γ 0 (MgCl2) = (6.5 ± 1.0) × 10−6 exp[(470 ± 40)/T] (calculated with specific BET surface area, quoted uncertainties are 1σ statistical). The rate of H2O adsorption on NaCl was found to be much lower than on MgCl2×6H2O, and only an upper limit was determined for the corresponding uptake coefficient: γ (NaCl) ≤ 5.6 × 10−6 at T = 300 K. The results show that the rate of H2O adsorption to salt surfaces is drastically dependent on the salt sample composition.  相似文献   

5.
It is essential to quantify the background reactivity of smog-chambers, since this might be the major limitation of experiments carried out at low pollutant concentrations typical of the polluted atmosphere. Detailed investigation of three chamber experiments at zero-NO x in the European Photoreactor (EUPHORE) were carried out by means of rate-of-production analysis and two uncertainty analysis tools: local uncertainty analysis and Monte Carlo simulations with Latin hypercube sampling. The chemical mechanism employed was that for methane plus the inorganic subset of the Master Chemical Mechanism (MCMv3.1). Newly installed instruments in EUPHORE allowed the measurement of nitrous acid and formaldehyde at sub-ppb concentrations with high sensitivity. The presence of HONO and HCHO during the experiments could be explained only by processes taking place on the FEP Teflon walls. The HONO production rate can be described by the empirical equation W(HONO)EUPHORE dry = a × j NO 2× exp (− T 0/T) in the low relative humidity region (RH < 2%, a = 7.3×1021 cm−3, T 0 = 8945K), and by the equation W(HONO)EUPHORE humid = W(HONO)EUPHORE dry+ j NO 2× b × RH q in the higher relative humidity region (2% < RH < 15%, b = 5.8×108 cm−3 and q = 0.36, and RH is the relative humidity in percentages). For HCHO the expression W(HCHO)EUPHORE = c × j NO 2exp (− T0/T) is applicable (c = 3.1×1017 cm−3 and T0 = 5686 K). In the 0–15% relative humidity range OH production from HONO generated at the wall is about a factor of two higher than that from the photolysis of 100 ppb ozone. Effect of added NO2 was found to be consistent with the dark HONO formation rate coefficient of MCMv3.1.  相似文献   

6.
基于典型城市站太原站2018年3月—2019年2月的大气CO2在线观测资料,利用筛分法(Meteorological filtering method, MET)和黑碳示踪法(Black Carbon tracer, BC)进行本底/非本底的筛分,得到了本底浓度的变化特征。结果表明,太原大气CO2浓度季均值冬季最高,夏季最低;不同季节呈“单峰型”日变化特征,日振幅均在26.0×10-6以上;4个季节CO2浓度与地面风速存在显著负相关关系;CO2浓度抬升区域主要受当地工业布局的影响,最大抬升幅度在秋季达17.4×10-6;使用气象筛分法(MET)得到年均本底浓度为(431.4±19.9)×10-6,人为排放等对其影响为23.5×10-6,年振幅比同纬度其它本底站大,为34.5×10-6;黑碳示踪法(BC)得到冬季季均本底浓度为(445.0±22.9)×10-6,比MET筛...  相似文献   

7.
A high-sensitive technique to detect O(1S) atoms using vacuum ultraviolet laser-induced fluorescence (VUV-LIF) spectroscopy has been applied to study the O(1S) production process from the UV photodissociation of O3, N2O, and H2O2. The quantum yields for O(1S) formation from O3 photolysis at 215 and 220 nm are determined to be (1.4 ± 0.4) × 10−4 and (5 ± 3) × 10−5, respectively. Based on thermochemical considerations, the O(1S) formation from O3 photolysis at 215 and 220 nm is attributed to a spin-forbidden process of O(1S)+O2(X3Σg ). Analysis of the Doppler profile of O(1S) produced from O3 photolysis at 193 nm also indicates that the O(1S) atoms are produced from the spin-forbidden process. In the photolysis of N2O and H2O2 at 193 nm, no discernible signal of O(1S) atoms has been detected. The upper limit values of the quantum yields for O(1S) production from N2O and H2O2 photolysis at 193 nm are estimated to be 8 × 10−5 and 3 × 10−5, respectively. Using the experimental results, the impact of the O(1S) formation from O3 photolysis on the atmospheric OH radical formation through the reaction of O(1S)+H2O has been estimated. The calculated results show that the contribution of the O(1S)+H2O reaction to the OH production rate is ∼2% of that of the O(1D)+H2O reaction at 30 km altitude in mid-latitude. Implications of the present laboratory experimental results for the terrestrial airglow of O(1S) at 557.7 nm have also been discussed.  相似文献   

8.
Increased precipitation during the vegetation periods was observed in and further predicted for Inner Mongolia. The changes in the associated soil moisture may affect the biosphere-atmosphere exchange of greenhouse gases. Therefore, we set up an irrigation experiment with one watered (W) and one unwatered plot (UW) at a winter-grazed Leymus chinensis-steppe site in the Xilin River catchment, Inner Mongolia. UW only received the natural precipitation of 2005 (129 mm), whereas W was additionally watered after the precipitation data of 1998 (in total 427 mm). In the 3-hour resolution, we determined nitrous oxide (N20), methane (CH4) and carbon dioxide (CO2) fluxes at both plots between May and September 2005, using a fully automated, chamber-based measuring system. N20 fluxes in the steppe were very low, with mean emissions (±s.e.) of 0.9-4-0.5 and 0.7-4-0.5 μg N m^-2 h^-1 at W and UW, respectively. The steppe soil always served as a CH4 sink, with mean fluxes of -24.1-4-3.9 and -31.1-4- 5.3 μg C m^-2 h^-1 at W and UW. Nighttime mean CO2 emissions were 82.6±8.7 and 26.3±1.7 mg C m^-2 h^-1 at W and UW, respectively, coinciding with an almost doubled aboveground plant biomass at W. Our results indicate that the ecosystem CO2 respiration responded sensitively to increased water input during the vegetation period, whereas the effects on CH4 and N2O fluxes were weak, most likely due to the high evapotranspiration and the lack of substrate for N2O producing processes. Based on our results, we hypothesize that with the gradual increase of summertime precipitation in Inner Mongolia, ecosystem CO2 respiration will be enhanced and CH4 uptake by the steppe soils will be lightly inhibited.  相似文献   

9.
Using a single drop experiment, the uptake of NO3 radicals on aqueous solutions of the dye Alizarin Red S and NaCl was measured at 293 K. Uptake coefficients in the range (1.7–3.1) ⋅ 10− 3 were measured on Alizarin Red S solutions. The uptake coefficients measured on NaCl solutions were in the range of (1.1–2.0) ⋅ 10−3 depending on the salt concentration. Both experiments lead to a consistent result for the mass accommodation coefficient of αNO3 = (4.2− 1.7+2.2)⋅ 10−3. The product H(Dl kClII)0.5 for the NO3 radical was determined to be (1.9 ± 0.2) M atm− 1 cm s−0.5 M−0.5 s−0.5 by fitting the uptake data for the NaCl solutions to the so-called resistance model. The yield of the chemical NO3 radical source was characterized using UV-VIS and FT-IR spectroscopy. The amount of gas-phase NO3 radicals measured at elevated humidities was less than expected. Instead, a rise of the gas-phase HNO3 concentration was found indicating a conversion of gas-phase NO3 radicals to gas-phase HNO3 on the moist reactor walls.  相似文献   

10.
The reaction kinetics of S(IV) autoxidation catalyzed by Mn(II) in the pH range 3–5 typical for atmospheric liquid water, was investigated. For reactions with pH maintained constant during the reaction course, the predictions obtained by a simple integral approach cover kinetic results only for concentrations of HSO 3 up to 0.2 mM at pH 4.5. Thus, a generalized simple kinetic model, which can be used for predicting the reaction kinetics in wider concentration, pH and temperature ranges, was derived. This model is based on the assumption that the reaction rate is proportional to the concentration of a transient manganese-sulfito complex formed in the initial step of a radical chain mechanism. In the proposed power law rate equation
the concentration of complex is calculated from the stability constant K and concentrations of reactants at a specific reaction time. This rate equation adequately predicts the reaction kinetics in the pH range 3–5, in the concentration ranges 0.1 ≤ [HSO 3 ] ≤ 0.4 mM and 2 ≤ [Mn(II)] ≤ 14.6 μM. For the temperature range 15–35 °C, the estimated value for activation energy is 92.0 ± 0.1 kJ mol−1 and the Gibbs free energy of formation of the manganese-sulfito complex is −20.4 ± 0.3 kJ mol−1. Furthermore, the kinetics for catalytic reactions with pH maintained constant during the reaction course as well as with initial pH adjusted only at the start of the reaction, is described satisfactorily by the present model.  相似文献   

11.
Both aerosol and rainwater samples were collected and analyzed for ionic species at a coastal site in Southeast Asia over a period of 9 months (January–September 2006) covering different monsoons. In general, the occurrence and distribution of ionic species showed a distinct seasonal variation in response to changes in air mass origins. Real-time physical characterization of aerosol particles during rain events showed changes in particle number distributions which were used to assess particle removal processes associated with precipitation, or scavenging. The mean scavenging coefficients for particles in the range 10–500 nm and 500–10 μm were 7.0 × 10−5 ± 2.8 × 10−5 s−1 and 1.9 × 10−4 ± 1.6 × 10−5 s−1, respectively. A critical analysis of the scavenging coefficients obtained from this study suggested that the wet removal of aerosol particles was greatly influenced by rain intensity, and was particle size-dependent as well. The scavenging ratios, another parameter used to characterize particle removal processes by precipitation, for NH4 +, Cl, SO4 2−, and NO3 were found to be higher than those of Na+, K+, and Ca2+ of oceanic and crustal origins. This enrichment implied that gaseous species NH3, HCl, and HNO3 could also be washed out readily. These additional sources of ions in precipitation presumably counter-balanced the dilution effect caused by high total precipitation volume in the marine and tropical area.  相似文献   

12.
For the measurement of atmospheric NO2 vertical column density (VCD), Kitt Peak Solar Flux Atlas can be substituted as an extraterrestrial solar radiation. Compared with differential analysis method, the Taylor expansion of integrated transfer equation underestimates the VCD. This underestimation is as large as 35% when the amount of NO2 is 1 × 1017 cm-2 and observation is conducted with an air mass factor of 10. Even when the VCD is 2 × 1016 cm-2 and the air mass factor is 4, the relative error of the retrieved VCD is still no less than 3%. If the observation is restricted under the small air mass factor condition (≤4), with Kitt Peak Solar spectrum as an extraterrestrial solar radiation, only an atmospheric layer of 2 km thick from ground can be studied, which will make the absorption too weak to be detected by normal instruments.The VCD in winter Tokyo area was observed and analyzed by differential method, which shows a good precision even when the absorption is as low as 3%. The largest average VCD was about 1.3 × 1017 cm-2, and the lowest was about 1.3 × 1016 cm-2. The trend of its variation was almost the same as the ground level observation by Saltzman reagent method.  相似文献   

13.
The kinetics of the reaction of nitrous acid (HONO) with nitric acid (HNO3), nitrate radicals (NO3) and dinitrogen pentoxide (N2O5) have been studied using Fourier transform infrared spectroscopy. Experiments were performed at 700 torr total pressure using synthetic air or argon as diluents. From the observed decay of HONO in the presence of HNO3 a rate constant of k<7×10-19 cm3 molecule-1 s-1 was derived for the reaction of HONO with HNO3. From the observed decay of HONO in the presence of mixtures of N2O5 and NO2 we have also derived upper limits for the rate constants of the reactions of HONO with NO3 and N2O5 of 2×10-15 and 7×10-19 cm3 molecule-1 s-1, respectively. These results are discussed with respect to previous studies and to the atmospheric chemistry of HONO.  相似文献   

14.
The kinetics of heterogeneous reactions of NO2 with 17 polycyclic aromatic hydrocarbons (PAHs) adsorbed on laboratory generated kerosene soot surface was studied over the temperature range (255–330) K in a low pressure flow reactor combined with an electron-impact mass spectrometer. The kinetics of soot-bound PAH consumption due to their desorption and reaction with NO2 were monitored using off-line HPLC measurements of their concentrations in soot samples as a function of reaction time, NO2 concentrations in the gas phase being analyzed by mass spectrometer. No measurable decay of PAHs due to the reaction with NO2 was observed under experimental conditions of the study (maximum NO2 concentration of 5.5 × 1014 molecule cm−3 and reaction time of 45 min), which allowed to determine the upper limits of the first-order rate constants for the heterogeneous reactions of 17 soot-bound PAHs with NO2: k < 5.0 × 10−5 s−1 (for most PAHs studied). Comparison of these results to previous studies carried on different carbonaceous substrates, showed that heterogeneous reactivity of PAHs towards NO2 is, probably, dependent on the substrate nature even for resembling, although different carbonaceous materials. Results show that particulate PAHs degradation by NO2 alone is of minor importance in the atmosphere  相似文献   

15.
A coupled atmosphere-ocean model developed at the Institute for Space Studies at NASA Goddard Space Flight Center (Russell et al., 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat flux Q to air / sea temperature difference △T by a relaxation coefficient k. The model was initiated from the National Centers for Environmental Prediction (NCEP) atmospheric observations for 1 December 1977, and from the National Ocean Data Center (NODC) global climatological mean December temperature and salinity fields at 1° ×1° resolution. The time step is 7.5 minutes. We integrated the model for 450 days and obtained a complete model-generated global data set of daily mean downward net surface flux Q, surface air temperature TA,and sea surface temperature To. Then, we calculated the cross-correlation coefficients (CCC) between Q and △T. The ensemble mean CCC fields show (a) no correlation between Q and △T in the equatorial regions, and (b) evident correlation (CCC≥ 0.7) between Q and △T in the middle and high latitudes.Additionally, we did the variance analysis and found that when k= 120 W m-2K-1, the two standard deviations, σQ and σk△T, are quite close in the middle and high latitudes. These results agree quite well with a previous research (Chu et al., 1998) on analyzing the NCEP re-analyzed surface data, except that a smaller value of k (80 W m-2K-1) was found in the previous study.  相似文献   

16.
The concentrations of PM10, PM2.5 and their water-soluble ionic species were determined for the samples collected during January to December, 2007 at New Delhi (28.63° N, 77.18° E), India. The annual mean PM10 and PM2.5 concentrations (± standard deviation) were about 219 (± 84) and 97 (±56) μgm−3 respectively, about twice the prescribed Indian National Ambient Air Quality Standards values. The monthly average ratio of PM2.5/PM10 varied between 0.18 (June) and 0.86 (February) with an annual mean of ∼0.48 (±0.2), suggesting the dominance of coarser in summer and fine size particles in winter. The difference between the concentrations of PM10 and PM2.5, is deemed as the contribution of the coarse fraction (PM10−2.5). The analyzed coarse fractions mainly composed of secondary inorganic aerosols species (16.0 μgm−3, 13.07%), mineral matter (12.32 μgm−3, 10.06%) and salt particles (4.92 μgm−3, 4.02%). PM2.5 are mainly made up of undetermined fractions (39.46 μgm−3, 40.9%), secondary inorganic aerosols (26.15 μgm−3, 27.1%), salt aerosols (22.48 μgm−3, 23.3%) and mineral matter (8.41 μgm−3, 8.7%). The black carbon aerosols concentrations measured at a nearby (∼300 m) location to aerosol sampling site, registered an annual mean of ∼14 (±12) μgm−3, which is significantly large compared to those observed at other locations in India. The source identifications are made for the ionic species in PM10 and PM2.5. The results are discussed by way of correlations and factor analyses. The significant correlations of Cl, SO42−, K+, Na+, Ca2+, NO3 and Mg2+ with PM2.5 on one hand and Mg2+ with PM10 on the other suggest the dominance of anthropogenic and soil origin aerosols in Delhi.  相似文献   

17.
Simulations of polar ozone losses were performed using the three-dimensional high-resolution (1 × 1) chemical transport model MIMOSA-CHIM. Three Arctic winters 1999–2000, 2001–2002, 2002–2003 and three Antarctic winters 2001, 2002, and 2003 were considered for the study. The cumulative ozone loss in the Arctic winter 2002–2003 reached around 35% at 475 K inside the vortex, as compared to more than 60% in 1999–2000. During 1999–2000, denitrification induces a maximum of about 23% extra ozone loss at 475 K as compared to 17% in 2002–2003. Unlike these two colder Arctic winters, the 2001–2002 Arctic was warmer and did not experience much ozone loss. Sensitivity tests showed that the chosen resolution of 1 × 1 provides a better evaluation of ozone loss at the edge of the polar vortex in high solar zenith angle conditions. The simulation results for ozone, ClO, HNO3, N2O, and NO y for winters 1999–2000 and 2002–2003 were compared with measurements on board ER-2 and Geophysica aircraft respectively. Sensitivity tests showed that increasing heating rates calculated by the model by 50% and doubling the PSC (Polar Stratospheric Clouds) particle density (from 5 × 10−3 to 10−2 cm−3) refines the agreement with in situ ozone, N2O and NO y levels. In this configuration, simulated ClO levels are increased and are in better agreement with observations in January but are overestimated by about 20% in March. The use of the Burkholder et al. (1990) Cl2O2 absorption cross-sections slightly increases further ClO levels especially in high solar zenith angle conditions. Comparisons of the modelled ozone values with ozonesonde measurement in the Antarctic winter 2003 and with Polar Ozone and Aerosol Measurement III (POAM III) measurements in the Antarctic winters 2001 and 2002, shows that the simulations underestimate the ozone loss rate at the end of the ozone destruction period. A slightly better agreement is obtained with the use of Burkholder et al. (1990) Cl2O2 absorption cross-sections.  相似文献   

18.
Measurements of the photodissociation constant for nitrous acid (j HONO) were made at an urban site in Toronto, Canada, during the months of May–July 2005, using an optically thin actinometer. Operating details of the j HONO monitor are reported, along with laboratory tests. Measurements of j HONO were obtained for solar zenith angles ranging from 20–75, under clear and cloudy skies. Maximum error estimates on j HONO under clear skies range from 11% at sunrise, to 4% at solar noon, with a minimum detection limit of 5.7 × 10−4/sec for our actinometer. Measured clear-sky values of j HONO were compared with values calculated by a four-stream discrete ordinate radiative transfer (RT) model (ACD TUV version 4.1), and were found to be within better than 10% agreement for solar zenith angles < 65. For conditions of scattered cloud, enhancement and suppression of the j HONO values occurred by as much as 16%–70%, and 59%–80%, respectively. The integrated band area of the nπ transition for gas-phase nitrous acid yields an oscillator strength, f = (1.06 ± 0.044)×10−3 (based on clear-sky data), 19.1% higher than the value reported by Bongartz et al. (1991).  相似文献   

19.
Aerosol dispersion in the area surrounding an existing biological treatment facility is investigated using large-eddy simulation, with the objective to investigate the applicability of computational fluid dynamics to complex real-life problems. The aerosol sources consist of two large aeration ponds that slowly diffuse aerosols into the atmosphere. These sources are modelled as dilute concentrations of a non-buoyant non-reacting pollutant diffusing from two horizontal surfaces. The time frame of the aerosol release is restricted to the order of minutes, justifying a statistically steady inlet boundary condition. The numerical results are compared to wind-tunnel experiments for validation. The wind-tunnel flow characteristics resemble neutral atmospheric conditions with a Reynolds number, based on the boundary-layer thickness, of Re δ ≈ 2 × 105. The numerical inflow conditions are based upon the wind-tunnel flow field. The predicted decay of both the mean and root-mean-square concentrations are in good agreement with experimental data; at 3 m from the ground, the plume mean concentration 200 m downwind of the source is approximately 2% of the source strength. The numerical data in the near-surface layer (0–50 m from the ground) correspond particularly well with the wind-tunnel data. Tentative deposition simulations suggest that there seems to be little difference in the deposition rates of large (1.8 × 10−5 m) and small (3 × 10−6 m) particles in the near-field under the flow conditions considered.  相似文献   

20.
A time series of microwave radiometric profiles over Arctic Canada’s Cape Bathurst (70°N, 124.5°W) flaw lead polynya region from 1 January to 30 June, 2008 was examined to determine the general characteristics of the atmospheric boundary layer in winter and spring. A surface based or elevated inversion was present on 97% of winter (January–March) days, and on 77% of spring (April–June) days. The inversion was the deepest in the first week of March (≈1100 m), and the shallowest in June (≈250 m). The mean temperature and absolute humidity from the surface to the top of the inversion averaged 250.1 K (−23.1°C), and 0.56 × 10−3 kg m−3 in winter, and in spring averaged 267.5 K (−5.6°C), and 2.77 × 10−3 kg m−3. The median winter atmospheric boundary-layer (ABL) potential temperature profile provided evidence of a shallow, weakly stable internal boundary layer (surface to 350 m) topped by an inversion (350–1,000 m). The median spring profile showed a shallow, near-neutral internal boundary layer (surface to 350 m) under an elevated inversion (600–800 m). The median ABL absolute humidity profiles were weakly positive in winter and negative in spring. Estimates of the convergence of sensible heat and water vapour from the surface that could have produced the turbulent internal boundary layers of the median profiles were 0.67 MJ m−2 and 13.1 × 10−3 kg m−2 for the winter season, and 0.66 MJ m−2 and 33.4 × 10−3 kg m−2 for the spring season. With fetches of 10–100 km, these accumulations may have resulted from a surface sensible heat flux of 15–185 W m−2, plus a surface moisture flux of 0.001–0.013 mm h−1 (or a latent heat flux of 0.7–8.8 W m−2) in winter, and 0.003–0.033 mm h−1 (or a latent heat flux of 2–22 W m−2) in spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号