首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 321 毫秒
1.
基于长江流域142个气象站1986—2005年月降水和气温数据,评估由MPI-ESM-LR模式驱动的CCLM区域气候模式对长江流域气温和降水的模拟能力,并采用EDCDF法对气温和降水预估数据进行偏差校正。结果表明:该区域气候模式能较好地模拟出长江流域平均气温的季节变化和空间分布特征,但模拟值无论在季节还是年际尺度上均高于观测值。对降水而言,该模式不能较好地模拟出降水的季节分布特征,导致春季、冬季及年模拟值高于观测值,而夏季和秋季模拟值低于观测值。总体而言,该模式对气温的模拟效果相对较好。偏差校正后的预估结果表明:在RCP4.5情景下,长江流域未来(2016—2035年)平均气温相对于基准期(1986—2005年)将升高0.66℃,年降水量将减少2.2%。  相似文献   

2.
利用国家气候中心完成的RegCM4区域气候模式在RCP4.5和RCP8.5两种排放路径下的气候变化动力降尺度试验结果,在检验模式对基准期(1986—2005年)气温和降水模拟能力基础上,进行华北区域21世纪气候变化预估分析。结果表明:RegCM4对华北区域基准期气温和降水的模拟能力较好。未来21世纪,两种情景下华北区域气温、降水、持续干期(consecutive dry days, CDD)和强降水量(R95p)变化逐渐增大,但变化幅度在高排放的RCP8.5情景下更为显著,其中近期(2021—2035年)、中期(2046—2065年)、远期(2080—2098年)RCP8.5情景下年平均气温分别升高1.77、3.44、5.82℃,年平均降水分别增加8.1%、14%、19.3%,CDD分别减少3、3、12 d, R95p分别增加30.8%、41.9%、69.8%。空间上,未来21世纪华北区域内年、冬季、夏季平均气温将一致升高,夏季升温幅度最大;年、冬季、夏季平均降水整体以增加为主,冬季降水增加幅度最大;CDD以减少为主,但近期和中期在山西和京津冀有所增加,而R95p以增加为主,表明21世纪华北区域干旱事件逐渐减少、极端降水事件不断增加。  相似文献   

3.
黄河流域未来气候-水文变化的模拟研究   总被引:3,自引:0,他引:3  
将大尺度半分布式水文模型VIC应用到黄河上中游流域(花园口水文断面以上),并利用区域气候模式RegCM4.0单向嵌套全球气候模式BCC_CSM1.1,动力降尺度到黄河流域的模拟结果驱动VIC模型,开展在新的典型浓度路径下(RCP4.5和RCP8.5)黄河流域未来气候和水文变化的离线模拟。模拟结果显示,在RCP4.5和RCP8.5排放情景下,黄河流域21世纪平均地表气温相对于1971—2000年均呈显著上升趋势,2019—2048年上升1.2—1.5℃,2069—2098年上升2.19—3.9℃。未来年平均降水量有微弱的增大,2019—2048年增幅为6%左右,2069—2098年增幅为1.4%—5.6%。未来蒸发量增大明显,2069—2098年年平均蒸发量最大可增加9.6%。2019—2048年花园口水文站的年平均径流量增大3.4%—7.4%,2069—2098年年平均径流量转为减少,减幅为3.3%—5.3%。黄河上游地区未来气候和水文变化趋势与黄河流域基本一致,但未来年径流量变幅低于黄河流域,相对比较稳定。  相似文献   

4.
针对珠江流域,分析了在全球气候模式(BCC_CSM1.1)驱动下,区域气候模式RegCM4进行的中国区域气候变化模拟中,珠江流域在RCP4.5和RCP8.5温室气体排放情景下,未来2010—2099年的气候变化。结果表明,RegCM4对珠江流域气候特征具有很强的模拟能力。未来RCPS情景下珠江流域气温将持续增大。与参照时段(1980—1999年)相比,RCP4.5和RCP8.5情景下的年平均温度在2020s分别增加0.7 ℃和0.8 ℃,2050s分别增加1.0 ℃和1.6 ℃,2080s分别增加1.6 ℃和2.9 ℃。而未来年降水并未表现出显著的变化趋势,但不同情景、不同地区预估的降水呈现不同的变化趋势。RCP4.5情景下,流域降水2020s将减少4.3%,2050s和2080s将分别增加0.7%和0.1%;RCP8.5情景下,未来不同时段流域降水均呈减少趋势,2020s、2050s和2080s分别减少1.7%、2.9%和0.2%,表明降水预估具有更大的不确定性。两种排放情景下未来降水在东南沿海增加、西北部减少,变化率为±8%。此外,两种排放情景下未来珠江流域的日平均温度统计特征发生改变,揭示未来高温事件可能增加,同时,大雨级别以上的降水发生频率增加,可能导致洪涝事件增加。   相似文献   

5.
基于CMIP5中的5个全球气候模式统计降尺度的降水、最高和最低气温等数据,利用标准降水蒸发指数(SPEI)和强度-面积-持续时间(IAD)方法识别全球升温1.5℃与2.0℃情景下中亚地区干旱事件,结合30 m分辨率土地利用数据,探讨中亚干旱事件的演变及耕地暴露度变化。结果表明:相比基准期(1986—2005年),中亚地区的降水和潜在蒸发量均有所增加;全球升温1.5℃与2.0℃情景下,中亚地区的干旱事件频次、强度和面积均将增加,其中重旱和极旱事件的频次和影响面积大幅上升,而中旱事件的频次和影响面积持续下降;1986—2005年中亚地区年均干旱耕地暴露度约11.5万km2,全球升温1.5℃和2.0℃情景下,干旱耕地暴露度将分别上升到17.9万km2和28.6万km2,且暴露在极旱下的耕地面积增加最明显。全球升温1.5℃与2.0℃情景下,增加的干旱事件将会严重威胁当地农业生产和粮食安全,中亚地区需对干旱事件采取长期的减缓与适应措施。  相似文献   

6.
将造成经济损失的热带气旋定义为致灾气旋。基于气象观测站的逐日气压、风速和降水量数据确定致灾气旋阈值,结合区域气候模式COSMO-CLM(CCLM)在1961—2100年的输出资料,预估致灾气旋发生频数及其风速与降水量,分析全球升温1.5 ℃与2.0 ℃情景下,中国东南沿海地区致灾气旋时空变化特征。结果表明:(1) 1986—2015年,东南沿海地区致灾气旋发生频数共计180个,整体呈上升趋势,平均风速和降水量分别为8.7 m/s和129.8 mm,对浙江东部及广东东部沿海影响最严重。(2)全球升温1.5 ℃,2020—2039年致灾气旋频数将由基准期(1986—2005年)的111个上升至138个,增加区域主要位于广东省西南地区及福建省南部地区;平均风速和降水量分别上升15%和17%,至8.4 m/s和109.9 mm,以福建省沿海地区增加最明显。(3)全球升温2.0 ℃,2040—2059年致灾气旋频数较1986—2005年增加33%,将达148个;风速上升32%,以浙江省东部、福建和广东省接壤的沿海地区及广东省南部增幅最大;降水量上升35%,以福建与广东省接壤的沿海地区及广东省西南地区增加明显。(4)相比升温1.5 ℃,全球气温额外升高0.5 ℃,东南沿海地区致灾气旋频数及其风速与降水量将分别上升9%、17%和18%。努力将温升控制在1.5 ℃,对降低致灾气旋频率和强度增加所导致的影响具有重要意义。   相似文献   

7.
基于区域气候模式RegCM4东亚地区25 km分辨率气候变化试验模拟结果,在分析华北区域基准期(1986—2005年)洪涝灾害致灾危险度以及人口和GDP承灾体易损度基础上,建立区域灾害风险评估模型;应用建立的模型预估华北区域RCP4.5和RCP8.5两种情景下近期(2020—2035年)、中期(2046—2065年)和远期(2080—2098年)洪涝灾害风险的变化。结果表明:(1)RegCM4对华北区域基准期洪涝灾害危险度评估指标R20mm和Rx5day模拟能力较好,基准期洪涝灾害风险Ⅲ级及以上的区域位于北京、天津、河北南部和东部以及山西南部等地。(2)RCP4.5和RCP8.5情景下,未来三个不同时期区域大部分地区R20mm和Rx5day、洪涝致灾危险度以及风险增加,RCP8.5情景下增加更明显。风险等级Ⅲ级及以上范围在两种情景下均在中期最大。  相似文献   

8.
王晓欣  姜大膀  郎咸梅 《大气科学》2019,43(5):1158-1170
本文使用国际耦合模式比较计划第五阶段(CMIP5)中39个全球气候模式的试验数据,预估了相对于工业革命前期全球1.5℃升温背景下中国气温和降水变化。根据多模式中位数预估结果,在不同典型浓度路径(RCPs)情景下,相对于工业革命前期全球1.5℃升温分别发生在2034年(RCP2.6)、2033年(RCP4.5)和2029年(RCP8.5)。全球升温1.5℃时,中国年和季节气温平均上升1.8℃和1.6~2.1℃,其中冬季最强。增温总体上由南向北加强,青藏高原为高值中心。年和各季节增温均超过其自然内部变率,区域平均的信噪比分别为3.4和1.6~2.7。年和季节降水整体上在中国北方增加、华南减少;区域平均的年降水增加1.4%,季节降水增加0.1%~5.1%,冬季增幅最大。年和季节降水变化要远小于其自然内部变率,区域平均的信噪比仅为0.1和0.01~0.2。总体上,模式对气温预估的不确定性较小,对降水的偏大,其中对季节尺度预估的不确定性要高于年平均结果。  相似文献   

9.
利用区域气候模式RegCM4的逐日气温和降水资料,预估1.5℃和2.0℃升温情景下,东北地区平均气候和极端气候事件的变化。结果表明:RCP4.5排放情景下,模式预计在2030年和2044年左右稳定达到1.5℃和2.0℃升温;两种升温情景下,东北地区气温、积温、生长季长度均呈增加趋势,且增幅随着升温阈值的升高而增加;1.5℃升温情景下,年平均气温增幅为1.19℃,年平均降水距平百分率增幅为5.78%,积温增加247.1℃·d,生长季长度延长7.0 d;2.0℃升温情景下气温、积温、生长季长度增幅较1.5℃升温情景下显著,但是年和四季降水普遍减少,年降水距平百分率减小1.96%。两种升温情景下,极端高温事件显著增加,极端低温事件显著减少,极端降水事件普遍增加。霜冻日数、结冰日数均呈显著减少趋势,热浪持续指数呈显著增加趋势;未来东北地区降水极端性增强,不仅单次降水过程的量级增大,极端降水过程的量级也明显增大,随着升温阈值的增大,极端降水的强度也逐渐增大。  相似文献   

10.
采用第五次耦合模式比较计划(Coupled Model Intercomparison Project Phase 5,CMIP5)高分辨率全球统计降尺度预估数据集,针对近期(2020—2039年)、中期(2040—2059年)和长期(2080—2099年),以及全球1.5℃和2℃温升阈值,预估了青藏高原地区平均气温和降水、极端气温和极端降水的变化,定量估算了预估结果的不确定性来源。结果表明:(1)在RCP4.5和RCP8.5情景下,21世纪青藏高原地区平均气温和降水、极端气温和极端降水强度均显著增加,最长连续干旱天气减少。高原气候变化幅度超全球平均,至21世纪末,模式集合预估的气候变化幅度介于全球平均的1.5~3倍。(2)青藏高原地区受0.5℃额外增温的显著影响,年均气温、极端高温和极端低温均显著升高,平均及极端强降水均显著增加。(3)排放情景的选择对近期气候预估影响小,但对长期影响大。在相同排放情景下,内部变率主导了近期高原平均气温预估的不确定性,但至长期其贡献降至10%以下。模式和内部变率的不确定性对降水预估均有贡献,且都随时间减小,最大不确定性中心位于西部和北部边缘,噪声与信号比大于6。  相似文献   

11.
本文基于耦合模式比较计划第5阶段(CMIP5)的17个全球气候模式,确定了1.5℃温升(相对于1861-1880年)的发生时间,预估了全球升温1.5℃时,北半球冻土和积雪的变化,并对预估结果的不确定性进行了讨论。结果表明,全球平均地表温度在3种排放情景下(RCP2.6,RCP4.5,RCP8.5)分别于2027、2026、2023年达到1.5℃阈值。当全球升温1.5℃,北半球多年冻土南界北移1°~3.5°,冻土退化主要发生在中西伯利亚南部。多年冻土面积在全球升温1.5℃时,在RCP2.6、RCP4.5和RCP8.5排放情景下较1986-2005年分别减少约3.43×106 km2(21.12%)、3.91×106 km2(24.10%)和4.15×106 km2(25.55%);北半球超过一半以上的区域雪水当量减少,只在中西伯利亚地区略微增加;北美洲中部、欧洲西部以及俄罗斯西北部减少较显著,减少约40%以上。青藏高原多年冻土面积在RCP2.6、RCP4.5以及RCP8.5排放情景下分别减少0.15×106 km2(7.28%)、0.18×106 km2(8.74%)和0.17×106 km2(8.25%)。青藏高原冬、春季雪水当量分别减少约14.9%和13.8%。  相似文献   

12.
基于区域气候模式COSMO-CLM(CCLM)模拟的1960-2100年逐日最低气温数据及2000年中国土地利用数据,采用强度-面积-持续时间(Intensity-Area-Duration,IAD)方法,以全球升温1.5℃(RCP 2.6情景)和2.0℃(RCP 4.5情景)为目标,研究不同持续时间中国极端低温事件变化特征、最强极端低温事件强度与面积关系和最强中心空间分布,分析极端低温事件下耕地面积暴露度的变化规律。研究发现:(1)全球升温1.5℃情景下,持续1至9 d的极端低温事件频次相对于基准期(1986-2005年)下降30%-54%,强度变化-1%-8.8%,影响面积下降7%-21%;升温2.0℃,频次下降48%-80%,强度上升6%-11.5%,影响面积则在-14%-19%变化。(2)全球不同升温情景有可能发生强度和面积超过基准期最强事件的极端低温。全球升温1.5-2.0℃时,同等面积上的最强极端低温事件强度明显下降,但最强极端低温事件中心由西北和西南转移到华中和华南等地。(3)不同升温情景下,暴露于极端低温事件的中国耕地面积明显少于基准期,且升温幅度越高下降程度越大。最强极端低温事件的耕地暴露度则随温度的升高而增大。升温1.5℃时,华东、华北与华中等地暴露在最强极端低温事件的耕地面积相对于基准期有所增大,升温2.0℃时,华东与华北等地有大幅度上升。全球不同升温情景下,极端低温事件频次与影响面积持续下降,但强度上升;随着升温幅度的增大,这种差异变化特征越来越明显;特别应注意的是,随着温度上升,发生强度和面积超过当前记录到的最强极端低温事件的可能性增大;应加强极端事件的预警、预报和监测,减缓经济社会的损失。   相似文献   

13.
1.5和2℃升温阈值下中国温度和降水变化的预估   总被引:1,自引:0,他引:1       下载免费PDF全文
基于CMIP5耦合气候模式模拟结果对1.5和2℃升温阈值时中国温度和降水变化的分析表明,1.5℃升温阈值时,中国年平均升温由南向北加强且在青藏高原地区有所放大,季节尺度上升温的空间分布与其类似,就区域平均而言,RCP2.6、RCP4.5和RCP8.5情景下中国年平均气温分别升高1.83、1.75和1.88℃,气温的季节变幅以冬季升高最为显著;除华南和西南地区外中国大部分地区年平均降水量增多,降水的季节差异明显,以夏季降水的分布模态与年平均降水量的分布最为相似,区域平均的年降水量分别增加5.03%、2.82%和3.27%,季节尺度上以冬季降水增幅最大。2℃升温阈值时,RCP4.5和RCP8.5情景下中国年平均温度的空间分布与1.5℃升温阈值基本一致,中国年平均气温分别升高2.49和2.54℃,季节尺度上气温的变化以秋、冬季增幅最大;中国范围内年平均降水量基本表现为增多趋势,其中,西北和长江中下游部分地区表现为明显的季节差异,区域平均的年降水量分别增加6.26%和5.86%。与1.5℃升温阈值相比较,2℃升温阈值时中国年平均温度在RCP4.5和RCP8.5情景下分别升高0.74和0.76℃,降水则分别增加3.44%和2.59%,空间上温度升高以东北、西北和青藏高原最为显著,降水则在东北、华北、青藏高原和华南地区增加最为明显。   相似文献   

14.
采用部门间影响模式比较计划(ISI-MIP)的气候模式,确定全球升温1.5℃和2.0℃出现的时间,并结合农业技术转移决策支持系统(DSSAT)模型模拟小麦的产量,最终选取4套数据对比研究中国小麦区温度和降水变化特征以及各区域小麦产量变化趋势,综合评价了不同升温情景对中国小麦产量的影响。结果表明:(1)在全球升温1.5℃和2.0℃背景下,我国小麦生育期内温度相对于工业革命前分别升高1.17℃和1.81℃。两种升温情景下我国春麦区升温幅度大于冬麦区升温幅度。春麦区中新疆春麦区升温幅度最大,西北春麦区升温幅度最小;冬麦区中温度变化最大和最小的麦区分别为西南冬麦区和黄淮冬麦区。(2)在全球升温1.5℃和2.0℃情景下,我国小麦生育期内降水相对于历史时段(1986—2005年)分别增加9.1%和11.3%。从各麦区来看,两种升温情景下春麦区降水增加幅度略大于冬麦区的增加幅度。所有麦区中只有新疆春麦区降水低于历史时段降水。春麦区降水增加幅度最大的麦区为北部春麦区。冬麦区中降水增加较大的麦区为北部冬麦区和黄淮冬麦区,降水增加较小的麦区为华南冬麦区和西南冬麦区。(3)两种升温情景下,我国小麦单产相对于历史时段(1986—2005年)平均减产分别为5.2%和4.6%,两种升温情景对中国小麦产量并没有显著的差异。在全球升温大背景下我国春小麦主要呈现增产趋势,冬小麦主要呈现减产趋势。减产幅度较大的麦区为华南冬麦区和青藏春麦区,增产幅度最大的麦区为西北春麦区。从各麦区产量减产面积比例上看,我国各麦区减产面积所占比例趋势为从北向南由多变少再变多,其中华南冬麦区减产面积所占比例最大,北部冬麦区最小。  相似文献   

15.
CMIP5模式对我国西南地区干湿季降水的模拟和预估   总被引:6,自引:1,他引:5  
利用降水观测资料, 评估了参加国际耦合模式比较计划第五阶段(CMIP5)的34个全球模式对1986~2005年我国西南地区干湿季降水的模拟能力。结果表明, 34个CMIP5模式中分别有30和25个模式模拟的干季和湿季降水偏多。34个模式对我国西南地区干湿季降水的模拟能力差异较大, 大约半数模式的模拟值与观测值的空间相关系数通过了99%的信度检验, 且标准差之比小于2。利用两个技巧评分标准, 分别挑选出了对干湿季降水模拟最优的9个模式。最优模式集合平均结果要优于34个模式的集合平均, 更要优于大多数单个模式。进一步利用最优的9个模式的集合平均对RCP4.5和RCP8.5两种典型浓度路径下我国西南地区干湿季降水的变化进行了预估。相对于1986~2005年气候平均态, 在21世纪初期(2016~2035年), 我国西南地区干季降水变化表现为川西高原降水增多, 而四川盆地及攀西地区、重庆、贵州和云南的大部分地区降水减少;湿季降水变化表现为川西高原、贵州和广西大部分地区降水增多, 而四川盆地及攀西地区和云南降水减少。在21世纪中期(2046~2065年)和末期(2080~2099年), 西南地区干湿季降水普遍增多。在RCP8.5情景下, 降水的变化幅度要强于RCP4.5情景。  相似文献   

16.
华中地区2030年前气温和降水量变化预估   总被引:3,自引:0,他引:3  
 根据区域气候模式对华中地区1961-1990年和2001-2030年的逐月平均气温和降水量的模拟值(0.5°×0.5°经纬度格点,A2情景),以1961-1990年为基准,计算并分析了该区域未来30 a(2001-2030年)的年、季平均气温和降水量的变化趋势。对气温变化而言,未来30 a华中地区年平均气温呈上升趋势,平均升温0.3℃,东部增温大于西部;春、夏季平均气温上升,分别为0.1~1.3℃、0.8~2.2℃;秋季北部地区气温下降,南部地区气温升高;冬季平均气温下降0.0~1.0℃。就降水而言,未来30 a华中地区年平均降水量大部分地区呈减少趋势,空间分布有南增北减的特点;春、夏、冬季平均降水量大部分地区减少,冬季平均降水量的减幅要大于春、夏季;秋季大部分地区平均降水量增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号