首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
闪电宽带电场三维定位及其回波特征   总被引:4,自引:2,他引:2       下载免费PDF全文
利用自制闪电宽带电场三维定位系统, 分析了山东地区一次雷暴过程闪电三维时空结构。结果表明, 在云内击穿放电整个时间序列中, 辐射源空间分布(对应强电场区分布)呈现明显的三极性分层电荷结构, 并分布在3个高度层次: 6~8 km为上部正电荷区, 4~6 km为中部负电荷, 2.5~4 km为下部次正电荷区。云内放电首先出现在中部负电荷区, 然后产生向上发展的负流光进入上部正电荷区传输, 形成向上发展的云闪; 随着雷暴发展, 产生向下发展的负流光进入下部次正电荷区, 形成向下发展的云闪, 且能维持到雷暴发展后期。结合雷达回波分析表明, 雷达回波的强度影响着闪电活动, 强回波区的增加会使得强电场区域增加, 但是强电场区域并不与最强回波区域对应, 除下部正电荷区的底部会有部分辐射源出现在回波强度为40~50 dBz的区域中以外, 大多数的辐射源出现在25~35 dBz的中等回波区范围内, 强回波区域中通常较少出现击穿放电。  相似文献   

2.
利用快电场变化脉冲定位进行云闪初始放电过程的研究   总被引:4,自引:0,他引:4  
利用高时间精度GPS同步的雷电快天线电场变化测量仪等设备,在2004年夏季对甘肃中川地区雷暴的闪电放电特征进行了7站同步观测.在此基础上,发展了一种基于到达时间差的快天线电场变化脉冲定位方法,对8月20日一次强雷暴过程的5次云闪初始阶段产牛的快天线电场变化脉冲进行了三维定佗分析.结果表明:基于辐射源到达不同测站的时间差,能够对云闪产生的辐射源进行较好的定位,闪电的放电区域与雷暴的不同发展阶段密切相关.在雷暴发展的比较旺盛阶段,闪电的放电区域相对较高,对应的离地高度为3.3-6.4 km(此时对应的雷达回波顶高约9 km,回波强度在35 dBz以卜的回波顶高约7 km);在雷暴处于减弱和消敞阶段,闪电的放电高度降低,所分析的该阶段的其中1个云闪对应的离地高度为1.1-3.0 km(此时对应的雷达回波顶高约6 km,回波强度在35 dBz以上的回波顶高约3 km).与雷达同波的对比分析发现,云闪初始阶段的辐射脉冲源位置与强回波区具有较好的空间一致性,辐射脉冲源位置分别与25-50 dBz的回波区域相对成.这不仅在一定程度上表明了定化结果的可靠性,而且说明利用快天线电场变化测量仪组网观测对闪电进行定位跟踪有可能反映雷暴强中心的发展变化过程,同时也表明了利用快天线电场变化测量仪组网观测在强对流的监测和预臀中有一定的应用潜力.另外,定位误差的模拟试验表明,当雷电距观测网络较近时,定位误差较小,雷电距观测网络中心越远,定位误差越大.5次云闪的实际定他误差对比表明,模拟试验的定位结果在很大程度上能够有效地反映实际定位误差.这说明了该定位系统对位于探测网络上空或附近的雷电可以进行云内放电过程的较好的三维定位.  相似文献   

3.
两次雷暴过程的地闪及回波特征   总被引:3,自引:0,他引:3  
利用闪电定位系统、多普勒天气雷达、探空和降雨量资料,对南通地区2009年两次雷暴过程的地闪、降雨量和雷达特征进行了详细分析。结果表明:闪电主要集中在较强回波区域,40dBz及以上回波区域地闪尤为密集,但也有部分地闪尤其是正闪,发生在强回波边缘或回波弱的地方;40dBz回波高度突破-10℃温度层结高度的时间提前于第1次地闪,与地闪频数的变化一致性高;雷暴云发展过程中40dBz及以上雷达回波面积和地闪频数跳变较为一致,但出现连续降水时回波面积虽大,地闪频数反而减少;逐时降雨量和观测站周围20km范围内的地闪频数与时均40dBz及以上回波面积的相关性非常好。  相似文献   

4.
周非非  周毓荃  王俊  何正梅 《气象》2010,36(4):43-50
对主要用FY-2C/D卫星并融合其他观测资料反演的云顶高度与多普勒雷达回波顶高的关系作了初步探讨。通过对20个主要由积层混合云和层状云造成的降水个例总数万个样本的统计分析表明,卫星反演云顶高与SA型号雷达回波顶高存在较好的正相关关系,两者的关系对组合反射率因子的大小不敏感。卫星反演云顶高与小于18 dBz反射率因子对应的回波顶高比与18 dBz回波顶高更接近,这主要是由于FY-2C/D卫星和SA型号雷达探测和反演的原理不同造成,卫星云顶高反映的是积层混合云和层状云顶部云粒子的辐射特性,而回波顶高体现的主要是云中下部较大降水粒子对雷达电磁波的衰减。  相似文献   

5.
利用ERA5逐小时再分析资料、常规观测资料、FY-2G卫星资料、闪电定位资料及雷达资料对2019年11月2—3日发生在山东的强雷暴过程进行诊断分析。结果表明:(1)此次强雷暴过程是高空槽东移,中高层干冷空气入侵和地面辐合线抬升触发低层不稳定能量释放造成的,这种上干下湿的大气层结特征,有利于雷暴发生发展。(2)850 hPa和500 hPa温差是秋季强雷暴生成的一个重要条件,当T_(850)-T_(500)≥26℃时,对雷暴发生十分有利;θse水平分布中高能舌的位置跟强雷暴发生的区域对应较好。(3)秋季强对流发生时对流云团高度较夏季偏低,TBB值较夏季偏高,此次雷暴过程发生时云顶温度TBB在-22~-32℃,强雷暴主要位于冷云盖前方TBB梯度大值区域内。(4)雷达回波中心反射率因子在45 dBz以上,1.5~5 km存在非常强的垂直风切变,对秋季雷暴预报有很好的指示作用。  相似文献   

6.
利用2019-2020年风云四号气象卫星A星(FY-4A)多通道扫描成像辐射计(AGRI)提供的云顶数据和地基全球闪电定位网(WWLLN)提供的闪电数据,结合MICAPS气象观测站和海洋浮标记录的极大风数据,研究南海区域(5°~30°N,105°~125°E)71次雷暴大风过程的时空分布及其闪电和对流活动特征。结果表明:观测站记录的雷暴大风主要分布在南海北部;雷暴大风主要发生在5-9月,峰值出现在8月,3月发生次数最少;雷暴大风主要发生在07:00-12:00(北京时,下同),10:00频次最高,午后频次减少。雷暴大风闪电密度的极大值分布在广东南部近海区域,且闪电集中发生在距离观测站40~80 km半径范围内;孤立雷暴大风过程首次闪电跃变的发生时刻相对大风峰值时刻超前30 min至2 min。在对流特征方面,在雷暴大风风速峰值时刻,观测站处的云顶亮温为200~220 K,云顶高度为12.5~15 km。孤立雷暴大风云团云顶亮温最低值(即最强对流发生位置)与大风观测站点的距离平均为77.2 km,云顶亮温平均相差2.6 K。  相似文献   

7.
云南一次秋季雷暴过程的闪电特征及形成条件分析   总被引:3,自引:0,他引:3  
张腾飞  张杰  尹丽云 《高原气象》2013,32(1):268-277
利用NCEP/NCAR资料、雷达回波、卫星云图和闪电定位系统等新一代探测资料对2010年9月21-23日的云南雷暴过程进行了分析.结果表明,西移的热带低压“凡亚比”为这次雷暴云团发展提供了热带偏东风辐合及低层暖(300~302 K)、中层湿(相对湿度≥80%)等有利环流背景条件.中尺度雷暴云团负闪电占主导地位,发展阶段云顶亮温下降,均为负闪电,负闪电频数高达1 245次·(30min)-1;从成熟阶段到消散阶段,云顶亮温逐渐上升,负闪电逐渐减少,有少量的正闪电出现并逐渐增加.另外,雷暴云团结构和闪电空间分布不均匀,具有前部为主对流区而后部为云砧或高云的结构特征,云顶亮温前部较后部低且梯度大.密集负闪电主要出现在云顶亮温≤-60℃附近和前部大的云顶亮温梯度区,稀疏正闪电分散在密集负闪电后部和云团中部.多普勒天气雷达显示,雷暴云团前部云区表现为具有不均匀结构的中尺度带状回波,后部云区属于无回波区;密集负闪电主要出现在带状回波上强度≥40 dBz和顶高≥10 km的强回波区内及中尺度不均匀风场附近,且回波强度越强、顶高越高,负闪电越密集;发展后期稀疏的正闪电分散在强回波的后部边缘或者后部弱的对流回波和层状云回波上.  相似文献   

8.
利用三维强风暴动力一电藕合数值模式, 结合闪电定位仪资料、雷达回波资料及降水资料,分析了吉林地区一次雷暴云个例在发生第一次闪电前云内电场的发展情况及微物理变化过程,并与青藏高原一次典型雷暴过程进行了对比.结果表明:云发展成熟时,云中呈现上正下负及云下部次正的三极性分布,主负电荷区稳定在-10℃层附近,次正电荷区浓度较大;上升气流穿过-15℃层之上开始强起电;云中最大电场出现在上升速度达到最大值后回落的阶段;闪电频数与云发展的高度及回波强度有关,回波强度>45 dBz时,云发展越高,闪电频数越大,云顶高度<6 km时,闪电发生较少;青藏高原雷暴具有与我国北方雷暴明显不同的特征.  相似文献   

9.
北京地区雷暴的雷达回波特征与闪电活动的相关关系   总被引:3,自引:0,他引:3  
石玉恒  张义军  郑栋  孟青  姚雯  刘恒毅 《气象》2012,38(1):66-71
基于雷达资料以及SFAIR 3000闪电定位资料分析了北京地区14次雷暴过程,研究了闪电活动与雷暴的雷达回波反射率体积的相关性。结果表明:反射率体积与总闪频次有着较好的相关性,其中-15℃层以上超过30 dBz的反射率体积与总闪频次的相关系数为0.89,其指数拟合优度为0.83。北京地区雷暴的单个闪电表征回波体积(VPF)在闪电活动开始时期有较高的水平,但在闪电活动结束时期较小。VPF还可作为闪电活动消亡的指示因子。  相似文献   

10.
基于南京地区雷达资料的雷电识别指标初探   总被引:1,自引:1,他引:0  
不同地区因地理环境、天气条件等因素的不同,闪电活动的特征也有很大的差别,相应的雷电识别指标也有所不同。本文利用多普勒天气雷达资料,结合探空、闪电定位仪资料,通过对9个不同识别指标的对比分析,并用南京2008年4月8日、5月27日的雷达体扫资料和以雷达为中心、240km内的闪电定位仪资料对识别指标进行叠加检验,得到南京地区这两次雷暴天气过程的雷电识别最佳指标为:40dBz回波达到-10℃层结高度,回波水平梯度≥4dBz/km。检验过程中还发现,该指标识别负云地闪效果明显好于正云地闪。  相似文献   

11.
对2011年3次短历时强降水天气过程的闪电特征分析结果表明:①3次短时强降水都以负闪为主,负闪占总闪电的比例都在92﹪以上;②小时闪电频数峰值超前降雨峰值1h或同相;③5min闪电频数超前雨量峰值5~60min;④负闪电密集区主要发生在40dBZ以上的回波区,偶尔发生的正闪一般在较弱回波处;闪电大部分发生在回波顶高大于5km以上的区域;多分布在速度不均匀场附近;闪电密集区与VIL大值区对应关系不太好;⑤不同云体,闪电特征不尽相同,闪电频数高峰有的发生在强回波阶段,有的并不是回波最强阶段,而是减弱阶段。强回波前沿出现闪电密集区或前方无回波处发生闪电,预示未来强回波移动的方向;有的云体发展、成熟阶段闪电分布密集,负闪电主要集中在强回波中心附近,云体减弱阶段闪电分散,集中在单体的不同部位。  相似文献   

12.
利用中国气象局雷电野外科学试验基地(CMA_FEBLS)三维闪电观测数据,结合广州双偏振雷达观测数据,分析了2017年5月7日广东一次暖云强降水对流单体的闪电活动及其与云降水结构的关系。该单体在4 h内产生1250个闪电,地闪比例约24%。绝大多数闪电出现在4~12 km高度,对应温度层为0℃至-40℃;闪电放电活动的峰值高度出现在8.5 km,对应环境温度约-19℃。分析的强降水单体宏观上呈现上正、中负、下正的三极性电荷结构,中部负电荷核心区约为-8℃至-15℃。在闪电活动区域中,由干雪粒子主导区域占比约82%,霰粒子主导区域占比约11%,且大部分与闪电活动关联的霰粒子主要位于4~8 km高度。总闪频数与30 dBZ雷达回波顶高、-20℃温度层上大于20 dBZ的回波体积具有较好的相关性。闪电活动的平均位置高度与20 dBZ雷达回波顶高和-20℃温度层上大于30 dBZ的回波体积具有较好的相关关系。闪电活动与最大降水强度之间具有较好的时序对应关系,单个闪电表征降水量的值为107 kg/fl量级。  相似文献   

13.
利用陈明理等提出的场地误差优化模式,对2001年甘肃省地形起伏较大的平凉地区地闪定位资料进行了优化处理,并选取雷达回波强度大于35 dBz、回波顶高超过7 km的区域作为优化效果验证参考。结果表明,未经场地误差优化的闪电位置远离对应雷达回波数十公里,而优化后对应的闪电位置进入或接近雷达的强回波区,显然更接近于真实情况,优化以后的方位探测器测向角平均偏差可达05°左右。场地误差优化模式能有效地优化闪电定位资料,这对进一步提高雷电临近预警具有积极的意义。  相似文献   

14.
沿海地区一次中尺度对流系统闪电活动及降水结构   总被引:4,自引:4,他引:0  
利用TRMM卫星的测雨雷达,微波成像仪,闪电成像仪等探测数据,研究了2010年8月5日发生在江苏北部一次中尺度对流系统(MCS)的降水结构和闪电活动之间的关系.结果表明:MCS在发展阶段,对流云降水面积与层状云降水区相当;在减弱阶段,层状云降水区面积远大于对流云降水区.MCS的生命史中,大部分闪电发生在对流云区,仅有少数闪电发生在层状云区,在减弱阶段闪电多发生在对流云和层云的过渡区中.发生闪电的层云和对流云降水垂直廓线表明:在MCS的发展成熟和减弱中在4 km高度,层云降水率都达到最大值;在对流云降水区中发生闪电主要与对流云上空含丰富的冰相粒子和对流云发展厚度(顶高达17 km)有关.研究还表明闪电数目最大值一般回波强度在35~45 dBz之间,并非回波越强闪电越多.闪电主要发生在40~50 dBz之间,且明显向强回波区趋近,这对我们利用雷达回波预警闪电落区具有一定的参考意义.  相似文献   

15.
北京城区相继多次降雹的一次强雷暴的闪电特征   总被引:2,自引:1,他引:1  
受东北冷涡和低层暖湿气流影响,2016年6月10日北京午后爆发了相继5次降冰雹的一次强雷暴天气过程。利用国家“973”项目“雷电重大灾害天气系统的动力—微物理—电过程和成灾机理(雷暴973)”2016年夏季协同观测期间获得的闪电全闪三维定位和多普勒天气雷达等资料,详细分析了此次雹暴的闪电活动和雷达回波特征。此次雹暴过程包括三个孤立的单体相继发展、并合,所分析的4次降雹过程中,总闪电频数在降雹期间都有明显增多,最高可达179 flashes min?1。云闪占全部闪电的80%以上,其中3次降雹前出现正地闪突增,其比例升高,占全部地闪的比例最高达58%。降雹时雷达回波>45 dBZ的面积增大,顶高超过13 km。整个雹暴过程,闪电辐射源主要分布在6~10 km的高度区域,与强回波具有一致性。所分析的4次降雹过程均出现明显的总闪频数跃增,并通过2σ阈值检验,其中3次提前时间为8~18 min,说明总闪频数对于降雹过程有一定的预警能力。  相似文献   

16.
华北一次强对流天气系统的地闪时空演变特征分析   总被引:8,自引:3,他引:5  
利用地面雷电探测网,多普勒天气雷达和常规天气资料,分析了2005年8月1日发生在山东北部的一次具有前部对流线,后部大范围层状云降水(LLTS)的典型中尺度对流系统(MCS)的闪电活动演变特征。结果表明:整个过程中负地闪占主导地位,最高频数达到260次/5min;与负地闪比较,正地闪呈现不活跃状态。负地闪主要落在>40 dBz的强回波区内部及其边缘区域,而正地闪则分布在前部云砧和后部层状云降水区内。对地闪位置与回波强度的进一步对比分析发现,45~55 dBz的回波是最有利于地闪发生的区域,回波强度低于这一区域,随着回波强度的增大,地闪活动呈递增趋势,地闪频数在50~55 dBz的回波区域内达到峰值,>55 dBz的回波区域内地闪频数明显降低。  相似文献   

17.
江西省地闪气候特征及其活动强弱评价方法探讨   总被引:1,自引:0,他引:1  
为科学评价雷电活动强弱和为雷电预报的效果检验提供参考依据,基于2003—2010年江西省闪电监测定位系统资料,分析了逐小时的闪电频数变化,发现0.01°×0.01°经/纬度分辨率格点上的地闪频数最大值出现在2004年9月18日17:00—18:00,为64次/h;相较其他时段而言,16:00—17:00闪电活动最强。基于地闪观测资料、探空及多普勒雷达资料,分析了雷达回波强度与地闪数的相关性统计特征发现,在0.1°×0.1°经纬度网格点上,0℃层以上最大回波强度大值与相应时段内的地闪频数大值常不一一对应,但地闪频数大值多出现在强回波附近。格点上的12 min内的地闪数大都≤60个,以1—20个为最多;地闪数≥40个的格点数则明显减少;对应的0℃层以上最大回波强度集中于35—60 dBz,回波强度≤35 dBz或≥60 dBz的格点数则明显偏少。回波强度介于45—55 dBz的格点数明显大于回波强度>55 dBz以及<45 dBz的格点数,表明这个区间内的闪电活动最强。因此,借助0℃以上最大回波强度可简单地区分闪电活动强弱。  相似文献   

18.
孙哲  魏鸣 《大气科学学报》2016,39(2):260-269
利用NCEP再分析资料、探空资料、闪电定位资料和南京、常州多普勒雷达资料,通过对比分析南京2012年2月22日春季雷暴和2011年8月10日夏季雷暴两次过程,研究不同季节影响雷暴发生的大气结构以及强弱雷暴地闪特征的差异。结果表明:风矢位温(V-3θ)图揭示的大气动力热力水汽特征能够为雷暴的潜势预报提供先兆信息。两者相较而言,春季雷暴的动力抬升作用明显;夏季雷暴主要由热对流引起,对流层上层的动力抽吸作用不明显。春季弱雷暴正地闪在总地闪中所占比例较高。无论春季弱雷暴还是夏季强雷暴,地闪落点与辐合区对应关系明显,且地闪的落点也与雷达反射率因子有较好的对应关系:地闪主要分布在强回波区(大于40 d Bz)及其外围区域。但在较强雷暴云的发展阶段,地闪多发生在风暴体伸展方向的一侧,具有引导雷达回波移动的作用,夏季强雷暴地闪簇集在垂直风切变区域。  相似文献   

19.
Based on the CINRAD Doppler radar data in Guangzhou and the lightning data in 2004 by power suppliers of Guangdong, statistical study is done by overlaying lightning’s position on radar’s echo. The result shows the followings. The concentrated period in which more negative lightning occurred at the middle levels (2 – 14 km), where radar echo was moderate (12 – 45 dBz), rather than at the low levels with the weakest echoes or at high levels with the strongest echoes. At levels 3 – 11 km, where the radar echo was between 10 dBz and 35 dBz, the area of negative lightning was much larger in central Guangdong than in the rest of the province. At levels 0.5 – 7 km where the radar echoes were between 44 dBz and 51 dBz, the probability for a point to have negative lightning varies from 0.4 to 0.7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号