首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
二维海洋温盐环流碳循环模式   总被引:3,自引:1,他引:3       下载免费PDF全文
提供了由二维温盐环流动力学模式得到的定常流场驱动的海洋碳循环模式。在认为海洋生物碳循环达到动态平衡的情况下,着重研究了无机碳的循环。在给定的工业革命前的大气CO2浓度强迫下,对海洋碳循环模式积分5000年后,使其达到稳态。对于人为扰动,采用给定大气CO2浓度作为上边界条件,结果是,1980年至1989年海洋能吸收人为排放CO2的36%。通过使用CO2的工业排放源和大气及海洋的联合模式,得到1980至1989年的边际气留比为0.66。比较两种方法所得的结果,可推出在工业革命前存在着非工业源,即生物源;1940年以后,则还存在着一个未知的汇。  相似文献   

2.
海洋碳循环与全球气候变化相互反馈的研究进展   总被引:3,自引:0,他引:3  
海洋作为地球上一个主要吸收二氧化碳的汇,储存大量的二氧化碳.海-气间的二氧化碳交换,使得海洋中碳对气候产生反馈作用,从而影响着大气中CO2的浓度,甚至影响到全球气候的变化.本文主要介绍了海洋碳循环的过程,以及海洋碳循环过程对气候的反馈作用.  相似文献   

3.
<正>世界气候研究计划(WCRP)提供的耦合模式对比计划第五阶段(CMIP5)的地球系统模式(ESM)较之以前增加了较为复杂的碳循环,即在原有的全球大气耦合海洋环流模式(AOGCMs)中,把大气与陆地和海洋碳循环过程加入,这样较真实地再现碳循环和物理气候系统之间的相互作用~([1])。为了表征它们之间的相互作用以及考虑碳循环响应于未来的气候变化和CO_2的变化,经常考虑碳—浓度参数化和碳—气候反馈参数化,这是两个强的和相反的反馈。碳—浓度参数化是度量陆地和海洋碳库对大  相似文献   

4.
生物泵在海洋碳循环中的作用   总被引:11,自引:1,他引:11  
金心  石广玉 《大气科学》2001,25(5):683-688
生物过程在海洋碳的自然分布中起着重要的作用,它使海洋中碳的储量大大增加.作者用包含海洋化学过程和一个简单生物过程的三维碳循环模式模拟了生物泵在海洋碳循环中的作用.模式计算的结果表明:生物过程产生的海-气通量的量级非常大;在高纬度和赤道它的量级与因溶解度泵产生的碳的海-气通量差不多.在高纬度地区这两个通量符号相反,使组合模式中的通量大小比只有溶解度泵时的通量小,而在赤道两者的符号相同,使组合模式在赤道的通量大于只有溶解度泵时的通量.在稳态条件下生物泵对海洋吸收人为CO2的直接影响很小.  相似文献   

5.
利用一个全球海洋动力学环流模式所模拟的海洋环流场,建立了一个全面的二维海洋碳循环模式。此模式摒弃了传统箱模式的缺陷,充分考虑了诸如大气与海洋间的碳交换、光合作用和氧化分解、碳酸钙的产生和溶解、悬浮颗粒物的下沉等过程,尤其是在模式中耦合进了以往甚少考虑的海洋生物过程对碳循环的影响,引入了详尽合理的参数化方案。通过模拟发现:在稳定状态下,大气和海洋中总碳含量分布依赖于发生在海洋中的各种物理化学过程及边界条件,水平扩散系数和光合作用常数率对各化学量的分布有很大影响。  相似文献   

6.
利用一个全球海洋动力学环流模式所模拟的海洋环流场,建立了一个全面的二维海洋碳循环模式。此模式摒弃了传统箱模式的缺陷,充分考虑了诸如大气与海洋间的碳交换、光合作用和氧化分解、碳酸钙的产生和溶解、悬浮颗粒物的下沉等过程,尤其是在模式中耦合进了以往甚少考虑的海洋生物过程对碳循环的影响,引入了详尽合理的参数化方案。通过模拟发现:在稳定状态下,大气和海洋中总碳含量分布依赖于发生在海洋中的各种物理化学过程及边界条件,水平扩散系数和光合作用常数率对各化学量的分布有很大影响。  相似文献   

7.
海洋碳循环模式中常使用放射性同位素^14C来检验该模式的物理模型是否较好地反映了海洋中的大尺度变化的过程。本工作使用的物理模型是包括太平洋、大西洋和南大洋在内的二维温盐环流模式,在给定的年平均海表强迫下积分4000年后,环流达到准稳态,其定常流场用来驱动^14C模式。对^14C模式积分5000年以上,可得到^14C稳态的分布。使用不同的二氧化碳海气交换系数和垂直湍流扩散系数值进行了7个实验,发现使  相似文献   

8.
二维温盐环流模式研究14C在海洋中的分布   总被引:2,自引:0,他引:2       下载免费PDF全文
海洋碳循环模式中常使用放射性同位素14C来检验该模式的物理模型是否较好地反映了海洋中的大尺度变化的过程。本工作使用的物理模型是包括太平洋、大西洋和南大洋在内的二维温盐环流模式,在给定的年平均海表强迫下积分4000年后,环流达到准稳态,其定常流场用来驱动14C模式。对14C模式积分5000年以上,可得到14C稳态的分布。使用不同的二氧化碳海气交换系数和垂直湍流扩散系数值进行了7个实验,发现使用Broecker等的交换系数方程和扩散系数值依深度从0.6增加到1.45 cm2/s,模拟的结果较好。使用观测到的大气中14C含量,进一步研究了工业革命后及核试验后的14C在海洋中的穿透,模拟结果与现有的一些资料进行了比较,总体上给出了合理的结果。  相似文献   

9.
热带太平洋表面水中CO2对El Niño事件响应的数值模拟   总被引:3,自引:0,他引:3  
邢如楠  王彰贵 《气象学报》2001,59(3):308-317
文中用一个带生物泵的三维全球海洋碳循环模式模拟了热带太平洋表面水中CO2总量(TCO2)在ElNi  相似文献   

10.
二维的大气CO2——大西洋碳循环模式   总被引:5,自引:1,他引:5  
本文描述了一个二维(纬度×深度)的大西洋碳循环模式,模拟了大气和海洋间CO2的交换以及碳在海洋中的输送过程。模式在运行时使用了一个12层的三维动力学模拟的海洋环流的结果。大西洋被划分成397个网格箱,每个箱子中各种形式的碳的含量、总碱度、溶解的无机营养物和溶解氧的浓度以及几种14C(碳14)同位素的值分别得到求解。模式稳定状态的计算采用解大型稀疏线性方程组的直接解法。计算结果与“地球化学的海洋研究(GEOSECS)”的实际观测数据对比,表明模式较好地再现了实际大西洋中几种化学量的分布。  相似文献   

11.
海洋对人为CO2吸收的三维模式研究   总被引:1,自引:0,他引:1  
文中用包含海洋化学过程和一个简单生物过程的三维碳循环模式模拟了海洋对大气CO2的吸收,并分析了碳吸收的纬度分布。模拟工业革命以来海洋对大气CO2的吸收表明:海洋碳吸收再加上大气CO2的增加只占由化石燃料燃烧、森林砍伐和土地利用的变化而释放到大气中的CO2的2/3。1980~1989年期间海洋年平均吸收2.05GtC。海洋人为CO2的吸收有明显的纬度特征。模式计算的海洋CO2的吸收在总量与纬度分布上与观测结果比较相符。  相似文献   

12.
A three-dimensional ocean carbon cycle model which is a general circulation model coupled with simple biogeochemical processes is used to simulate CO2 uptake by the ocean.The OGCM used is a modified version of the Geophysical Fluid Dynamics Laboratory modular ocean model(MOM2).The ocean chemistry and a simple ocean biota model are included.Principal variablesare total CO2,alkalinity and phosphate.The vertical profile of POC flux observed by sediment traps is adopted,the rain ratio,a ratio of production rate of calcite against that of POC,and the bio-production efficiency should be 0.06 and 2 per year,separately.The uptake of anthropogenic CO2 by the ocean is studied.Calculated oceanic uptake of anthropogenic CO2 during the 1980s is 2.05×1015g(Pg)per year.The regional distributions of global oceanic CO2 are discussed.  相似文献   

13.
 The interannual variability over the tropical Pacific and a possible link with the mean state or the seasonal cycle is examined in four coupled ocean-atmosphere general circulation models (GCM). Each model is composed of a high-resolution ocean GCM of either the tropical Pacific or near-global oceans coupled to a moderate-resolution atmospheric GCM, without using flux correction. The oceanic subsurface is considered to describe the mean state or the seasonal cycle through the analytical formulations of some potential coupled processes. These coupled processes characterise the zonal gradient of sea surface temperature (hereafter SST), the oceanic vertical gradient of temperature and the equatorial upwelling. The simulated SST patterns of the mean state and the interannual signals are generally too narrow. The grid of the oceanic model could control the structure of the SST interannual signals while the behaviour of the atmospheric model could be important in the link between the oceanic surface and the subsurface. The first SST EOFs are different between the coupled models, however, the second SST EOFs are quite similar and could correspond to the return to the normal state while that of the observations (COADS) could favour the initial anomaly. All the models seem to simulate a similar equatorial wave-like dynamics to return to the normal state. The more the basic state is unstable from the coupled processes point of view, the more the interannual signal are high. It seems that the basic state could control the intensity of the interannual variability. Two models, which have a significant seasonal variation of the interannual variance, also have a significant seasonal variation of the instability with a few months lag. The potential seasonal phase locking of the interannual fluctuations need to be examined in more models to confirm its existence in current tropical GCMs. Received: 30 July 1999 / Accepted: 25 April 2000  相似文献   

14.
Using a global carbon cycle model (GLOCO) that considers seven terrestrial biomes, surface and deep ocean layers based on the HILDA model and a single mixed atmosphere, we analyzed the response of atmospheric CO2 concentration and oceanic DIC and DOC depth profiles to additions of carbon to the atmosphere and ocean. The rate of transport of carbon to the deepest oceanic layers is rather insensitive to the atmosphereic-ocean surface gas exchange coefficient over a wide range, hence discrepancies between researchers on the precise global average value of this coefficient do not significantly affect predictions of atmospheric response to anthropogenic inputs. Upwelling velocity, on the other hand, amplifies oceanic response by increasing primary production in the upper ocean layers, resulting in a larger flux into DOC and sediments and increased carbon storage; experiments to reduce the uncertainty in this parameter would be valuable.The location of the carbon addition, whether it is released in the atmosphere or in the middle of the oceanic thermocline, has a significant impact on the maximum atmospheric CO2 concentration (pCO2) subsequently reached, suggesting that oceanic burial of a significant fraction of carbon emissions (e.g. via clathrate hydrides) may be an important management option for limiting pCO2 buildup. Our analysis indicates that the effectiveness of ocean burial decreases asymptotically below about 1000 m depth. With a constant emissions scenario (at 1990 levels), pCO2 at year 2100 is reduced from 501 ppmv considering all emissions go to the atmosphere, to 422 ppmv with ocean burial at a depth of 1000 m of 50% of the fossil fuel emissions. An alternative scenario looks at stabilizing pCO2 at 450 ppmv; with no ocean burial of fossil fuel emissions, the rate of emissions has to be cut drastically after the year 2010, whereas oceanic burial of 2 GtC/yr allows for a smoother transition to alternative energy sources.  相似文献   

15.
赵珊珊  杨修群 《气象科学》2000,21(3):389-399
本文利用中科院大气所两层全球大气环流模式和十四层热带太平洋模式的耦合环流模式100年积分中的后30年的月平均输出资料,通过分析海表面温度、上层海洋热容量和海表面高度异常的年际变化,揭示了模式ENSO循环(包括其产生、发展、成熟和消亡过程)的特征及其控制机理。结果表明,控制本文耦合环流模式中ENSO循环的机理是“时滞振子”模态,这和由中间复杂程度耦合模式得到的ENSO控制机理是一致的。反映了“时滞振  相似文献   

16.
We discuss the potential variations of the biological pump that can be expected from a change in the oceanic circulation in the ongoing global warming. The biogeochemical model is based on the assumption of a perfect stoichiometric composition (Redfield ratios) of organic material. Upwelling nutrients are transformed into organic particles that sink to the deep ocean according to observed profiles. The physical circulation model is driven by the warming pattern as derived from scenario computations of a fully coupled ocean-atmosphere model. The amplitude of the warming is determined from the varying concentration of atmospheric CO2. The model predicts a pronounced weakening of the thermohaline overturning. This is connected with a reduction of the transient uptake capacity of the ocean. It yields also a more effective removal of organic material from the surface which partly compensates the physical effects of solubility. Both effects are rather marginal for the evolution of atmospheric pCO2. Running climate models and carbon cycle models separately seems to be justified. Received: 9 August 1995 / Accepted: 22 April 1996  相似文献   

17.
Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric ??target?? concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the projected concentration pathways of aerosol in the next decades control the evolution of surface ocean biogeochemistry in the second half of this century more than the specific pathways of atmospheric CO2 concentrations.  相似文献   

18.
Ocean-circulation model of the carbon cycle   总被引:8,自引:0,他引:8  
A three-dimensional model of the natural carbon cycle in the oceans is described. The model is an extension of the inorganic ocean-circulation carbon cycle model of Maier-Reimer and Hasselmann (1987) to include the effect of the ocean biota. It is based on a dynamic, general circulation model of the world oceans. Chemical species important to the carbon cycle are advected by the current field of the general circulation model. Mixing occurs through numerical diffusivity (related to finite box size), a small explicit horizontal diffusivity, and a convective adjustment. An atmospheric box exchanges CO2 with the surface ocean. There is no land biota provided in the present version of the model. The effect of the ocean biota on ocean chemistry is represented in a simple way and model distributions of chemical species are compared with distributions observed during the GEOSECS and other expeditions. Offprint requests to: R Bacastow  相似文献   

19.
海洋对人为CO2吸收的三维模式研究   总被引:4,自引:0,他引:4  
文中用包含海洋化学过程和一个简单生物过程的三维碳循环模式模拟了海洋对大气CO2 的吸收 ,并分析了碳吸收的纬度分布。模拟工业革命以来海洋对大气 CO2 的吸收表明 :海洋碳吸收再加上大气 CO2 的增加只占由化石燃料燃烧、森林砍伐和土地利用的变化而释放到大气中的 CO2 的 2 /3。1 980~ 1 989年期间海洋年平均吸收 2 .0 5Gt C。海洋人为 CO2 的吸收有明显的纬度特征。模式计算的海洋 CO2 的吸收在总量与纬度分布上与观测结果比较相符。  相似文献   

20.
An ocean carbon cycle model driven by a constant flow field produced by a two-dimensional thermohaline circu-lation model is developed. Assuming that the biogenic carbon in the oceans is in a dynamic equilibrium, the inorganic carbon cycle is investigated. Before the oceanic uptake of CO2 is carried out, the investigation of 14C distributions in the oceans, including natural and bomb-produced 14C, is conducted by using different values of the exchange coefficient of CO2 for different flow fields (different vertical diffusivities) to test the performance of the model. The suitable values of the exchange coefficient and vertical diffusivities are chosen for the carbon cycle model. Under the forcing of given preindustrial atmospheric CO2 concentration of 280 ppmv, the carbon cycle model is integrated for seven thousand years to reach a steady state. For the human perturbation, two methods including the prescribed at-mospheric pCO2 and prescribed industrial emissions are used in this work. The results from the prescribed atmospher-ic pCO2 show that the oceans take up 36% of carbon dioxide released by human activities for the period of 1980-1989, while the results from the prescribed industrial emission rates show that the oceans take up 34% of car-bon dioxide emitted by industrial sources for the same period. By using the simple method of subtracting industrial emission rate from the total atmosphere+ocean accumulating rate, it can be deduced that before industrial revolution a non-industrial source exists, while after 1940 an extra sink is needed, and that a total non-industrial source of 45 GtC is obtained for the period of 1790-1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号