首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 573 毫秒
1.
夏半年青藏高原东部大气热源时间变化特征   总被引:8,自引:0,他引:8  
罗会邦  陈蓉 《气象科学》1995,15(4):84-93
本文利用1983-1992年夏半年逐日控空资料,计算了青藏高原东部大气热源和水汽汇,讨论了高原东部热源平均值的日变化,季节内变化,季节变化和年际变化。结果表明,热源和水汽汇铅直廓线存在明显的日变化,夏半年平均热源日变化振幅为1-2℃/Day,水汽汇为1-1.5℃/Day,热源铅直积分显示准双周振动特征,各半夏半年热源滤波曲线表明,7,8月份准双周振动较弱,5,6和9月份较强。  相似文献   

2.
大气季节内振荡:其全球同步性及其与ENSO的关系   总被引:9,自引:0,他引:9  
利用美国国家环境预报中心和大气研究中心的大气再分析资料,分析研究了大气季节内振荡的年际变化及其与ENSO的关系。揭示了全球不同纬度带之间存在着的大气季节内振荡年际变化的同步性,以及大气季节内振荡与海温和大气向外长波辐射之关系的复杂性。我们还发现大气季节内振荡与Nino3指数的关系存在年代际尺度的变化,即,这种关系有时强时弱的现象。  相似文献   

3.
热带大气季节内振荡激发El Nino的机制   总被引:15,自引:1,他引:15  
资料分析了表明,热带大气季节内振荡同El Nino发生有密切的关系。在El Nino事件发生之前,热带大气(尤其是赤道西太平洋地区)季节内振荡异常加强;伴随着El Nino的发生,热带大气季节内振荡动能明显增加。简单海-气耦合模式的分析表明,只有在年陵时间尺度大气外强迫作用下,海-气系统才可以产生类似ENSO模的耦合波。资料和理论模式分析和结果相结合,说明热带大气季节内振荡激发El Nino的机制  相似文献   

4.
拉萨夏季大气热源10~20 d的振荡特征   总被引:1,自引:1,他引:0       下载免费PDF全文
利用逐日大气热源资料分析1950-2006年拉萨夏季大气热源的气候及其异常特征。结果表明:1)拉萨夏季大气热源的气候平均值为88 W·m-2,明显低于亚洲季风槽区夏季热源的气候平均值,是一般强度的大气热源区。20世纪90年代中期拉萨夏季大气热源趋于减弱,21世纪初其值接近于0。2)拉萨夏季57 a大气热源10~20 d振荡强度约为季节内振荡平均强度的2倍,显著年数(33 a)占总年数的57.6%,因此10~20 d振荡是拉萨夏季大气热源季节内振荡的重要分量。3)拉萨夏季大气热源10~20 d振荡强度存在明显的季节内变化(7月上旬前后振荡最强)和明显的年代际差异(20世纪50年代末-60年代中、80-90年代前期是两个强振荡阶段)。  相似文献   

5.
夏半年青藏高原东部大气热源异常对环流和降水的影响   总被引:21,自引:2,他引:21  
罗会邦  陈蓉 《气象科学》1995,15(4):94-102
本文利用高原23个测站探空资料,经客观分析求得的1983-1992年夏半年逐月青藏高原东部大气热源和水汽汇积分值,讨论了高原东部大气热源对北半球大气环流以及对我国降水的影响。月距平均资料显示,高原东部大气热源在ENSO年一般有所加强,与此相应,500hPa高度场从高原到淮河流域为一低值区,蒙古一带为高压区,100hPa高度场高原上空为高压区,我国东北,朝鲜和日本一带为低值区。  相似文献   

6.
用ECMWF1980-1983年资料探讨了亚洲季风区水汽汇季节内变化的标准差分布、空间型及传播,并讨论了水汽汇与热源(本文第I部分)季节内变化特点的异同。结果表明:一方面,季节内时间尺度上水汽汇的变化特征与热源比较一致(尤其是在夏季),变化显著区主要位于季风活跃区及其附近地区,与季风雨带的位置极为接近,且夏季陆地上清楚,冬季海洋上明显;EOF分析的主要空间型反映了印缅地区、中国东部及沿海、西太平洋  相似文献   

7.
热带大气季节内振荡的进一步分析   总被引:2,自引:1,他引:1  
利用ECMWF的格点资料对热带大气季节内振荡作了进一步分析研究,表明热带大气季节内振荡既有Kelvin波型扰动,也有Rossby波型扰动;影响热带大气季节内振荡移动的主要因素有扰动波型和积云对流活动的异常;伴随ElNino事件的发生,热带大气季节内振荡的动能急剧减小,而准定常扰动动能急剧增大,既反映了热带大气季节内振荡对ElNino的激发作用,也说明了在ElNino期间热带大气季节内振荡偏弱的原因。  相似文献   

8.
热带大气季节内振荡的几个基本问题   总被引:22,自引:5,他引:22  
在一系列资料分析、数值模拟试验和理论研究的基础上,对热带大气季节内(30-60天)振荡的几个基本问题进行系统的综合讨论,包括热带大气季节内振荡的地域特征、空间尺度特征、水平传播特征、与中高纬度大气季节内振荡的联系、同E1Nino间的相互作用以及热带大气季节内振荡的动力学机制。通过讨论和分析,对热带大气季节内振荡得到一个更全面和更系统的认识。  相似文献   

9.
强弱南海夏季风活动及大气季节内振荡   总被引:26,自引:0,他引:26  
应用NCEP再分析资料和中国降水资料,分析研究了对应南海强、弱夏季风的环流形势及其与之相应的中国东部的降水异常。其结果表明,由强、弱夏季风所引起的中国气候异常是完全不同(甚至反相)的。分析大气季节内振荡(ISO)的活动还表明,对应大气强(弱)南海夏季风,南海地区 850 hPa也有强(弱)大气 ISO;而强、弱南海夏季风环流(200 hPa和 850 hPa)主要由异常的大气ISO所激发。本研究还揭示了南海地区大气ISO的变化往往与江淮地区大气ISO的变化反相,例如南海地区的强(弱)大气ISO常与江淮流域的弱(强)大气ISO相对应。对于大气ISO的强度,一般多表现出局地激发特征,经向传播相对较弱。  相似文献   

10.
在简单回顾大气季节内振荡(MJO)的特征、热带和中高纬MJO的联系及其在半球间相互作用的基础上,较系统地总结了近年来关于MJO的研究进展,涉及MJO和ElNino的关系、MJO的动力学机制及其季节变化和年际异常,并简单讨论了MJO研究中存在的问题及未来的研究前景。  相似文献   

11.
The interannual variations of atmospheric heat sources and moisture sinks over the Equatorial Pacific and their relations with the SST anomalies are studied using ECMWF reanalysis data from 1979 to 1993. It is found by singular value decomposition (SVD)…  相似文献   

12.
西太平洋暖池和北京地区大气水特征的地基遥感测量   总被引:1,自引:0,他引:1  
近十多年来,用地基双波长(0.85、1.35 cm)微波辐射计(和雨强计)分别在西太平洋暖池和北京地区对大气水做了多次高时间分辨率长时间连续监测,本文是这些资料的分析总结.文中定量给出了大气水汽(和云液水)的日、季节内、季、年、年际的变化和变化的地理差异;定量给出了大气三水(水汽、云液水和雨水)的季节统计分布特征和地理差异;得到了大气三水之间的定量比例,并得到了降水概率、降水效率和云中水循环次数等与降水过程有关的参量与多种大气水参量之间的统计关系,在一定程度上揭示了大气水循环特征.  相似文献   

13.
We have evaluated the simulation of Indian summer monsoon and its intraseasonal oscillations in the National Centers for Environmental Prediction climate forecast system model version 2 (CFSv2). The dry bias over the Indian landmass in the mean monsoon rainfall is one of the major concerns. In spite of this dry bias, CFSv2 shows a reasonable northward propagation of convection at intraseasonal (30–60 day) time scale. In order to document and understand this dry bias over the Indian landmass in CFSv2 simulations, a two pronged investigation is carried out on the two major facets of Indian summer monsoon: one, the air–sea interactions and two, the large scale vertical heating structure in the model. Our analysis shows a possible bias in the co-evolution of convection and sea surface temperature in CFSv2 over the equatorial Indian Ocean. It is also found that the simulated large scale vertical heat source (Q1) and moisture sink (Q2) over the Indian region are biased relative to observational estimates. Finally, this study provides a possible explanation for the dry precipitation bias over the Indian landmass in the simulated mean monsoon on the basis of the biases associated with the simulated ocean–atmospheric processes and the vertical heating structure. This study also throws some light on the puzzle of CFSv2 exhibiting a reasonable northward propagation at the intraseasonal time scale (30–60 day) despite a drier monsoon over the Indian land mass.  相似文献   

14.
中国地表热源的气候学特征   总被引:3,自引:1,他引:3  
利用研制的地表热量平衡各分量的气候计算方法,结合全国6个热平衡站资料,计算并讨论了地表热源在全国的分布特征,分析了地面对大气加热的特点以及地表热源的参数化问题。指出季风气候背景、纬度、地形和地表湿润状况是决定地表热源特征的重要因素。就全年来说,在我国湿润、半湿润地区,潜热是地面加热大气的主要形式,西北干燥区则以感热加热为主。  相似文献   

15.
Satellite observations reveal a much stronger intraseasonal sea surface temperature (SST) variability in the southern Indian Ocean along 5-10oS in boreal winter than in boreal summer. The cause of this seasonal dependence is studied using a 2?-layer ocean model forced by ERA-40 reanalysis products during 1987-2001. The simulated winter-summer asymmetry of the SST variability is consistent with the observed. A mixed-layer heat budget is analyzed. Mean surface westerlies along the ITCZ (5-10oS) in December-January-February (DJF) leads to an increased (decreased) evaporation in the westerly (easterly) phase of the intraseasonal oscillation (ISO), during which convection is also enhanced (suppressed). Thus the anomalous shortwave radiation, latent heat flux and entrainment effects are all in phase and produce strong SST signals. During June-July-August (JJA), mean easterlies prevail south of the equator. Anomalies of the shortwave radiation tend to be out of phase to those of the latent heat flux and ocean entrainment. This mutual cancellation leads to a weak SST response in boreal summer. The resultant SST tendency is further diminished by a deeper mixed layer in JJA compared to that in DJF. The strong intraseasonal SST response in boreal winter may exert a delayed feedback to the subsequent opposite phase of ISO, implying a two-way air-sea interaction scenario on the intraseasonal timescale. Citation: Li, T., F. Tam, X. Fu, et al., 2008: Causes of the intraseasonal SST variability in the tropical Indian ocean, Atmos. Oceanic Sci. Lett., 1, 18-23  相似文献   

16.
Gilles Bellon 《Climate Dynamics》2011,37(5-6):1081-1096
A simple coupled model is used in a zonally-symmetric configuration to investigate the effect of land?Catmosphere coupling on the Asian monsoon intraseasonal oscillation. The atmospheric model is a version of the Quasi-equilibrium Tropical Circulation Model with a prognostic atmospheric boundary layer, as well as two free-tropospheric modes in momentum, and one each in moisture and temperature. The land model is the simple one-layer model SLand. The complete nonlinear version and a linear version of the model are used to understand how land?Catmosphere interaction influences the northward-propagating intraseasonal oscillation that has been documented in the atmospheric model (Bellon and Sobel in J Geophys Res 113, 2008a, J Atmos Sci 65:470?C489, 2008b). Our results show that this interaction damps the intraseasonal variability in most cases. The small heat capacity of land surfaces is the main factor that intervenes directly in the dynamics of the intraseasonal oscillation and explains the damping of intraseasonal variability. But in a few peculiar cases, the small heat capacity of land can also cause a strong interaction between the intraseasonal oscillation and the mean state via the nonlinearity of precipitation, that enhances the monsoon intraseasonal variability. High land albedo indirectly influences the intraseasonal variability by setting the seasonal mean circulation to conditions unfavorable for the monsoon intraseasonal oscillation.  相似文献   

17.
The performances of four Chinese AGCMs participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in the simulation of the boreal summer intraseasonal oscillation (BSISO) are assessed. The authors focus on the major characteristics of BSISO: the intensity, significant period, and propagation. The results show that the four AGCMs can reproduce boreal summer intraseasonal signals of precipitation; however their limitations are also evident. Compared with the Climate Prediction Center Merged Analysis of Precipitation (CMAP) data, the models underestimate the strength of the intraseasonal oscillation (ISO) over the eastern equatorial Indian Ocean (IO) during the boreal summer (May to October), but overestimate the intraseasonal variability over the western Pacific (WP). In the model results, the westward propagation dominates, whereas the eastward propagation dominates in the CMAP data. The northward propagation in these models is tilted southwest-northeast, which is also different from the CMAP result. Thus, there is not a northeast-southwest tilted rain belt revolution off the equator during the BSISO's eastward journey in the models. The biases of the BSISO are consistent with the summer mean state, especially the vertical shear. Analysis also shows that there is a positive feedback between the intraseasonal precipitation and the summer mean precipitation. The positive feedback processes may amplify the models' biases in the BSISO simulation.  相似文献   

18.
基于南海夏季风季节内振荡的降水延伸预报试验   总被引:3,自引:2,他引:1       下载免费PDF全文
利用代表南海夏季风季节内振荡特征的850 hPa纬向风EOF分解的前两个主成分,定义南海夏季风季节内振荡指数,并利用美国国家环境预测中心第2代气候预报系统 (NCEP Climate Forecast System Version 2, NCEP/CFSv2) 提供的1982—2009年逐日回算预报场计算了南海夏季风季节内振荡指数的预报值,用于我国南方地区持续性强降水的预报试验。试验结果表明:利用南海夏季风季节内振荡实时监测指数与模式直接预报降水量相结合的统计动力延伸预报方法,能够有效提高季节内降水分量的预报效果。同时,该方法能够避免末端数据损失,修正了对模式预报降水直接进行带通滤波而导致的负相关现象,并起到消除模式系统误差的作用。  相似文献   

19.
孙淑清  马淑杰 《气象学报》2001,59(6):719-729
文中结合 1 998年长江流域的洪涝过程研究了太平洋的活动特征 ,探讨了副热带高压活动与海温的关系 ,以及视热源、水汽汇的特征与副高活动的关系等。首先描述了 1 998年太平洋副热带高压的基本特征 ,给出了它异常的季节位置、强度和形态 ,及其与长江流域降水异常的关系。SVD分析表明 ,1 997至 1 998年的 El Nino过程的演变特征所对应的太平洋副热带高压的最佳耦合模态是 :主体强而位置偏南 ,特别是其西部。赤道辐合带也偏弱 ;1 998年夏季副热带高压的基本特征正符合该模态的特征。热带地区东西向的垂直环流明显地出现东太平洋的异常上升气流与西太平洋的下沉距平气流。视热源、水汽汇的分布能很好地描写副热带高压区的季节位置和强度。副热带高压区为明显的 Q1<0的辐射冷却区和 Q2 <0的变干区。这种特征也有助于副热带高压区的维持。同样 ,视热源、水汽汇的分布也能很好地解释副热带高压区的季节内异常活动。在长江流域持续暴雨期和间隙期 ,Q1,Q2 所指示的副热带高压与雨带的相对位置有很大的差异。不同的热力结构能较好地解释副热带高压区的迅速南落 ,由此造成长江流域的二度梅  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号