首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
本文通过造成阿克苏地区1960——1990年88次强冰雹天气过程的影响系统分析,得出:巴尔喀什湖低涡、中亚低槽、南北槽汇合型、西西伯利亚-中亚大槽,锋区短波槽等五类是造成强冰雹天气过程的影响系统,其中造成连续性强冰雹天气过程的主要影响系统是北方路径的巴尔喀什湖低涡.本文还分析了31年来所出现的这些影响系统与天气的对应关系.  相似文献   

2.
针对2012年6月27日河西走廊东部突发性暴雨天气过程,利用Micaps常规资料、FY-2D卫星资料、NCEP再分析资料和82个区域气象站及6个自动气象站逐时降水资料,从天气特征、高低空急流、水汽条件、中尺度特征、稳定度、垂直运动等方面进行综合分析。结果表明:(1)此次暴雨的大尺度环流特征为典型的"北槽南涡",即500 h Pa贝加尔湖冷槽东移南压携带冷空气从柴达木低涡后部侵入与其汇合,冷暖空气在河西走廊中东部交汇。同时鞍型场的稳定维持,为柴达木低涡的发生发展提供背景,进一步加强了低空锋区和动力辐合,造成本地大到暴雨及暴雨天气;(2)700 h Pa中尺度低涡和地面辐合线为此次暴雨提供了抬升条件;(3)冷空气侵入700 h Pa低涡成为此次暴雨的触发机制;(4)高原中尺度对流云团发展北上与河西走廊东部新生对流云团合并加强是造成大到暴雨的直接原因;(5)高空西风急流与中低空偏南和东南急流的耦合,中层干冷、低层暖湿,环境风垂直切变以及散度"上正下负"和涡度"上负下正"的强上升运动区都为大降水提供了有利条件。  相似文献   

3.
2014年7月14日高原低涡降水过程观测分析   总被引:3,自引:0,他引:3       下载免费PDF全文
赵平  袁溢 《应用气象学报》2017,28(5):532-543
利用第三次青藏高原大气科学试验的多种雷达、雨滴谱仪以及MODIS卫星观测资料、常规气象站地面和高空观测资料,针对2014年7月14日发生在青藏高原中部那曲地区的一次降水过程,研究了降水的时空变化特征,触发不同阶段降水的天气尺度和中尺度环流系统以及相关的云降水物理特征。从降水演变特征看,这次降水过程包括3个阶段,即发生在下午的强降水阶段和夜间的两个弱降水阶段。从影响系统看,下午的降水主要由天气尺度的高原低涡发展引起,此时那曲位于低涡中心前部的中尺度辐合线上;发生在晚上的降水主要与高原低涡前部的暖湿东南气流爬越地形有关,东南气流为产生降水提供了有利的水汽、大气不稳定和浅薄的动力抬升条件。从云降水微物理特征看,高原低涡降水初期,低涡前部的上升运动深厚,对流发展明显,而后期的对流性减弱。东南气流爬坡引起的地形降水表现出层状云降水的特征,高原低涡降水的雨滴谱分布较宽(0.3~4.9 mm),而夜间降水过程的雨滴谱分布较窄(0.3~2.1 mm)。  相似文献   

4.
内蒙古大雪天气学分型研究   总被引:8,自引:5,他引:3  
应用1971—2008年气象观测资料,对内蒙古大雪天气过程进行普查,查找出大雪天气过程98次。根据700hPa环流形势特征的不同,将内蒙古大雪天气形势分为2类6型。弱冷空气类:这种类型大多和南支暖湿系统相联系而出现,以降雪天气为主,降雪量较大。根据影响系统的不同分为槽涡型、切变型、北槽南涡型。强冷空气类:这种类型大多和高空长波槽脊相联系而出现,由于冷空气主体东移,且锋区较强,因此在产生降雪的同时,有大风和降温天气出现,多为风雪寒潮天气过程。根据影响系统的不同分为蒙古低槽(涡)型、贝加尔湖低槽(涡)型、西来斜压槽型。从系统的垂直结构分析表明:弱冷空气类与强冷空气类大雪存在明显的不同,弱冷空气类整层暖湿上升运动明显,强冷空气类对流层中高层冷平流强,斜压性明显。文章最后总结了各型大雪天气的预报着眼点。  相似文献   

5.
北京地区酸雨的天气影响因素及降水化学特征分析   总被引:7,自引:3,他引:4  
对北京市2003-2009年的全市性酸雨过程进行研究,分析了影响北京地区酸雨的主要天气系统,并结合气流后向轨迹分析和上甸子站酸雨离子成分浓度分析,得到如下结论:影响北京地区酸雨的天气系统主要为低涡低槽型、西来槽型和副高边缘型天气系统.3种天气系统对应的降水平均pH值均小于4.5,达到强酸雨水平.降水前北京地区受持续的偏南风影响、上升运动的强度较强且维持时间较长,降水前出现逆温现象,都是导致北京地区出现强酸雨的重要因素.对北京大气污染有影响的气流轨迹在低涡低槽、西来槽和副高边缘型天气系统的比例分别为59%、74%和66%.西来槽型天气系统的电导率K值与水溶性离子浓度明显高于低涡低槽型和副高边缘型.  相似文献   

6.
陶亦为  张芳华  胡宁  胡艺  刘珺  柳春 《气象》2024,50(3):318-330
基于2019—2021年1月1日至3月15日北京冬奥会延庆赛区(以下简称海陀山)降水观测资料和ERA5再分析资料,对期间34次降水过程进行天气分型,并对各天气型下不同海拔的降水实况特征开展统计分析。研究结果表明:冬季海陀山降水根据天气系统及地形影响可分为偏北气流型、偏东气流型、低涡低槽型、回流低涡低槽型四种天气型。不同天气型下海陀山地形高度以下主要气流方向和强度、水汽垂直分布等条件,以及与地形相互作用使得不同海拔之间降水量、持续时间等呈现显著差异。偏北气流型受500 hPa槽后整层强偏北气流控制,形成越山气流,降水集中在高海拔地区;偏东气流型受低层偏东气流影响,降水集中在低海拔地区,以上两种天气型无天气尺度系统配合,由地形强迫作用主导,降水量不大、持续时间相对较短。低涡低槽型受高空东移低涡低槽作用,配合低层西南气流,高海拔降水量更多,同时该型也是海陀山冬季最主要的降水天气型;回流低涡低槽型受高空东移低涡低槽影响,配合降水前东风回流对低层增湿并起到冷垫作用,低海拔降水量更多,以上两种天气型均存在天气尺度系统,并叠加海陀山地形作用,降水量显著且持续时间长,会对赛事运行造成较大影响。上述特征统计结果在2022年北京冬奥会期间一次强降雪预报服务中得到验证和应用,证明上述结果可以在冬季海陀山复杂地形降水预报中发挥作用。  相似文献   

7.
利用2000-2016年常规观测、台站降水资料和NCEP的1°×1°再分析资料,对影响东北的北上温带气旋暴雪进行了统计研究。根据500 hPa环流形势分为低涡型、浅槽型和深槽型暴雪,并对这三种类型暴雪的气旋路径、强度变化、降水分布、水汽输送和热动力特征进行了详细分析。结果表明:低涡型和深槽型暴雪气旋路径为东北路,浅槽型暴雪气旋路径偏东,各类暴雪的气旋强度变化和降水分布因路径不同而有所差异;降雪最强时,低涡型和深槽型暴雪700和850 hPa都有低涡,浅槽型暴雪700 hPa为低槽。低涡型和深槽型暴雪中水汽通量散度辐合区与低层低涡气旋性闭合环流引起的辐合密切相关。浅槽型暴雪的水汽辐合源于槽前辐合;低涡型和深槽型暴雪发生在假相当位温暖舌中,浅槽型暴雪发生在较平直的假相当位温场中,深槽型和浅槽型暴雪的锋区要强于低涡型暴雪。降雪最强时,低涡型暴雪有1支高空急流,深槽型暴雪有2支高空急流,浅槽型暴雪高空急流有1支或2支。三类暴雪中心都位于北支高空急流入口区右侧或南支高空急流出口区左侧的位置。综合统计结果提出影响东北的北上温带气旋暴雪概念模型。  相似文献   

8.
西风槽与副高相互作用的暴雨过程动热力场结构特征分析   总被引:2,自引:2,他引:0  
侯淑梅  郭俊建  张磊  郑怡  孙兴池 《气象》2017,43(2):151-165
利用常规气象观测、自动气象站加密观测、NCEP/NCAR(1°×1°,逐6 h)再分析以及FY 2C卫星云图等资料,分析了2007年8月15—18日发生在山东的一次暴雨过程中,西风槽与副热带高压(以下简称副高)相互作用三个阶段的热力、动力场结构特征。结果表明:整个过程先后经历了副高西进切变线缓慢西移、横槽南压副高减弱和横槽转竖副高南撤三个阶段,三个阶段的共同特征是中低层有切变线和θ_(se)锋区;700 hPa有低空急流;产生暴雨的对流云团具有后向传播特征,生命史中多次发生合并。三个阶段的不同点是:(1)副高西进过程中,锋区随高度向北倾斜,坡度小,切变线和θ_(se)锋区均为后倾,为典型的暖锋降水。暴雨区范围大,强度均匀,位于850 hPaθ_(se)锋区与暖脊的交界处的水汽辐合中心附近。饱和区宽广,伸展高度高。低层气旋性辐合、切变线辐合、锋面抬升是触发暴雨的动力机制,低空急流是暴雨增强机制。(2)副高减弱过程中,干冷空气分别从低层和中层侵入θ_(se)暖脊,θ_(se)锋区随高度先向北后向南,呈交错倾斜现象,坡度大,为典型的强对流降水,上升运动最为激烈。暴雨区范围小,强度大,分布不均,位于θ_(se)暖脊垂直方向轴线附近。饱和区狭窄,伸展高度高。锋面抬升运动是触发对流性强降水的主要动力机制,对流层中层干冷空气入侵是强降水的增强机制。(3)副高南撤过程中,θ_(se)锋区随高度向南倾斜,坡度大,呈前倾特征,为典型的高空槽降水。暴雨区狭长分散,强度弱,位于850 hPa切变线上、θ_(se)暖舌靠近锋区一侧。饱和区狭窄,伸展高度低。低层切变线辐合抬升是触发强降水动力机制,中层干侵入是降水增强机制。  相似文献   

9.
华北南部一次回流暴雪天气的诊断分析   总被引:1,自引:0,他引:1  
利用常规观测资料和NCEP再分析资料,对发生在华北南部的一次回流暴雪天气过程进行了动力、热力等诊断分析。结果表明:该回流暴雪天气属于华北回流中的两槽一脊型,导致这次强降雪的影响系统是高空急流、西来槽、低涡切变和低空急流,东北冷空气起到了触发作用。最大降水出现在南北风转换阶段,当东北风完全控制低层,降水结束。高空辐散和低层辐合相叠置及高空正涡度的下传,有强降水的产生,但上升运动中心较低。降雪前的增暖增湿与低层冷空气的楔入使华北南部位于θse能量锋区和水汽辐合区内,有利于强降雪的产生。回流天气的水汽主要来自于南方,低层东北冷空气也有间接输送水汽作用。  相似文献   

10.
不同降水天气系统自然降水特征及火箭人工增雨潜力分析   总被引:4,自引:1,他引:4  
统计分析了1981~2000年20年中15种降水天气系统影响下河北地区自然降水特征,并对火箭人工增雨的潜力进行了初步分析。统计分析表明:西来槽类、高空低涡类、冷锋、切变线和副高后部等天气系统是影响河北地区的主要降水系统,其降雨量和降雨日数占到了90%以上;不同的天气系统在不同季节对降水的贡献有所不同,其中西来槽类的降雨量和降雨日数均居首位,开展人工增雨催化作业机会最多;夏季降水系统最强,云水资源最为丰富,人工增雨潜力很大,是开展火箭人工增雨催化作业的最佳季节,春秋两季增雨潜力明显比夏季小,冬季最小;倒槽、副高后部、台风低压、高空低涡类和气旋类等系统最强,日降雨量和单位面积降雨量明显比其它系统大,尤其对蓄水型火箭增雨作业十分有利。  相似文献   

11.
湖北省集中暴雨特征分析   总被引:1,自引:3,他引:1  
定义了湖北省集中暴雨的标准。对1954年以来发生在湖北省的符合标准的12个集中暴雨过程作了详尽的分析,发现集中暴雨为3场以上的暴雨组成:第1场为冷锋暴雨,即东亚大槽建立形成的暴雨,强度较弱;第2场为高原涡(槽)叠在切变线和露点锋上形成的暴雨,强度较强,常常为特大暴雨,或有较弱暴雨夹在其中;第3场为低槽形成的暴雨,强度较弱。归纳出了集中暴雨的环境条件,大中尺度天气学特征,得出了一些有用的结论,对湖北集中暴雨的预报有参考价值。  相似文献   

12.
利用NCEP1°×1°再分析资料、卫星云图TBB资料和逐小时地面降水资料对2012年7月12~13日发生在湖北东部地区一次大暴雨过程进行了分析,结果表明:(1)在华北横槽转竖带动冷空气南下的过程中,中低层有中尺度低涡的发生发展,中尺度低涡的稳定维持与副高外围西南暖湿气流共同作用,导致了这次强降雨的发生。(2)鄂东强降水主要由两个中尺度暴雨云团影响,前一个暴雨云团为MCC,受副高外围西南气流向偏东方向移动,后一个暴雨云团受冷空气影响向东南方向移动。(3)低层露点锋与本次强降水天气过程的发生发展有较好的对应,锋区北侧偏北气流穿越露点锋,使得低层气旋式涡度增大、辐合加强。(4)本次过程干湿空气的相互作用形成能量锋区,锋区的维持和加强导致了强降水的发生。   相似文献   

13.
江西一次暴雨过程的诊断分析   总被引:3,自引:0,他引:3  
利用NCEP 1°×1°再分析资料、地面与探空资料、卫星资料等,对2012年5月12日发生在江西省中部的一次暴雨过程进行诊断分析。结果表明:本次暴雨过程发生在冷锋南侧地面倒槽区,由高层西风槽、低层低空急流及切变线、低涡共同影响所致。中低层西南气流的加强,一方面使暴雨区有充足的水汽输送,同时也使该区对流不稳定度加大,加强了暴雨区上空的对流上升运动。中尺度辐合线是强对流暴雨的触发机制,而冷锋影响使地面东风气流加强,冷空气入侵致中尺度辐合线演变为中尺度低压,中尺度低压是江西短时强降水长时间持续的机制;500hPa高空槽东移,槽前正涡度平流向江西上空输送,利于低层低涡生成和维持、上升运动加强,从而导致降水增强。冷空气影响初始阶段,〉10mm·h-1 的中尺度雨团产生在中尺度辐合线及其所演变成低压的1、2象限即中尺度辐合线或中尺度低压偏北一侧,随着冷空气的进一步入侵,中尺度雨团产生于中尺度低压的偏南一侧。  相似文献   

14.
鲁南一次锋面附近局地特大暴雨成因分析   总被引:3,自引:3,他引:0  
周雪松 《气象科技》2008,36(4):420-424
利用美国新一代中尺度数值模式WRF对2005年9月2日发生在鲁南的一次局地特大暴雨过程进行了数值模拟,着重对此次暴雨的产生机制进行了分析.研究表明,台风倒槽顶部的高湿区是暴雨主要水汽来源;对流层低层辐合线在暴雨发生发展过程中起重要作用;锋面附近的小尺度扰动是造成暴雨的直接系统;对流层低层地形造成的绕流是暴雨重要的触发机制;南北两系统的相互对峙是造成特大暴雨的重要原因.  相似文献   

15.
利用自动气象观测站降水资料、常规地面与高空观测资料及卫星云图资料,对2012—2017年6—10月金沙江乌东德水电站坝区18次暴雨个例的大尺度环流背景及卫星云图演变特征进行统计分析,结果表明,切变冷锋型、两高辐合型、西南涡型、孟加拉湾风暴型、切变线型和高空槽型是金沙江乌东德水电站坝区的六类暴雨概念模型。总结归纳出对应的六类典型云型:切变线云带前界处的对流云团8次(占44.4%)、两高辐合云区内部的对流云团4次(占22.2%)、西南涡西南或东南象限的对流云团2次(占11.1%)、孟加拉湾风暴涡旋云系中分离出来的对流云团或对流云系2次(占11.1%)、切变线云带内部的对流云团1次(占5.6%)、高空槽前盾状卷云区南端的对流云系1次(占5.6%)。  相似文献   

16.
对乌东德水电站开建以来坝区暴雨及伴随的短时强降水时空分布进行统计研究,并划分出暴雨天气概念模型。结果表明:乌东德水电站开建以来坝区共出现18个暴雨日,平均3.0个/a,暴雨自6月上旬开始出现,到10月上旬结束,出现暴雨最多的季节是夏季,多为范围小的局地性暴雨出现。暴雨日数、年平均降水量、20~30mm h-1及≥20mm h-1的短时强降水的空间分布均呈现“西北多东南少”的特征。20~30mm h-1的短时强降水发生频次最多(占63.6%),其次为30~40mmh-1(占27.3%),40~50mm h-1最少(仅占9.1%)。短时强降水及不同等级短时强降水均表现为夜间高发、白天低发的日变化特征。总结归纳出切变冷锋型8次(占44.4%)、两高辐合型4次(占22.2%)、西南涡型2次(占11.1%)、孟加拉湾风暴型2次(占11.1%)、切变线型1次(占5.6%)和高空槽型1次(占5.6%)六类暴雨天气概念模型。   相似文献   

17.
利用常规气象观测资料、自动站观测资料和探空资料等,对所选取的2004—2013年共78例降水过程进行分析,将中部区域春秋季降水过程分为3个类型:低槽/切变线冷锋型、低涡(西南涡/西北涡)气旋型、低槽/切变线冷高压型。统计结果表明,中部区域春秋季降水出现概率最多的类型依次为切变线冷锋型、低槽冷锋型和西南涡类型,各天气类型的雨区移动方向均以自西向东为主,低层700 h Pa和850 h Pa多存在西南或偏南急流,水汽主要来自于孟加拉湾。分析中部区域3种主要降水类型特征及其增雨潜力区位置发现:1)低槽冷锋类型降水一般出现在500 h Pa和700 h Pa低槽前部、地面冷锋后部,多为连续性降水;其增雨潜力区主要位于500 h Pa低槽前部、700h Pa槽前和西南急流出口区的左侧,以及地面冷锋后部或锋线附近区域。2)切变线冷锋类型降水多出现在地面冷锋后部、低层切变线两侧附近;其增雨潜力区主要位于700 h Pa和850 h Pa两切变线之间且较靠近700 h Pa切变线一侧、急流出口左侧的带状区域。3)西南涡波动类型降水一般出现在低涡中心及700 h Pa暖式切变线两侧附近,降水持续时间较长;其增雨潜力区主要位于700 h Pa和850 h Pa低涡中心附近及暖式切变线北侧区域。  相似文献   

18.
2020年6月1—2日,贵州西部发生了1次局地性的对流性暴雨过程,预报员和各数值模式对此次过程的预报量级显著偏小,对暴雨范围的低估,造成了特大暴雨、大暴雨的漏报。该文利用常规地面、高空资料,加密自动站观测资料,多普勒天气雷达资料,卫星资料及业务中常用的数值预报产品等对此次暴雨漏报案例进行剖析,结果表明:在弱天气尺度强迫背景下,高温高湿的环境中,未能准确判断对流的触发条件,未分析出露点锋、偏西风和偏南风的辐合、冷池和地面辐合线等的存在及其对强降水的影响,加之难以在短时间内对风场的发展演变进行精细分析,导致此次暴雨过程漏报;对于发生在暖湿气团中的对流性降水的预报,需考虑高温高湿环境下露点锋、辐合区、冷池、地面辐合线的相互作用触发对流并使其组织化发展,从而导致局地性、对流性强降水的产生;基于地面加密自动站资料和雷达资料等的短时临近预报可以帮助捕捉中小尺度系统,从而提高对此类暴雨的预报准确率。  相似文献   

19.
应用常规观测资料、NCEP再分析资料和卫星云图产品,对2011年7月31日黑龙江省西部暴雨天气成因进行诊断分析。讨论了产生暴雨的天气系统特征,大气不稳定条件及产生暴雨的水汽条件和动力触发机制。结果表明:暴雨是由低涡、低涡槽前暖湿气流与冷空气的共同影响产生的。低层强盛的偏南气流建立起水汽通道,将水汽源源不断地向暴雨区输送。低层增温增湿使得大气层结不稳定。低层较强的西北气流与强盛的东南暖湿气流汇合,产生强切变,辐合上升运动增强,为暴雨的产生提供了动力条件,有利于不稳定能量释放。高层辐散与低层辐合相配合,有利于上升运动发展和维持。地面中尺度低压和中尺度辐合线为中尺度云团的发展和维持提供了条件;中尺度云团在暴雨区旋转停留近21 h,这是暴雨发生的主要原因。  相似文献   

20.
切变线冷区和暖区暴雨落区分析   总被引:5,自引:1,他引:4  
利用常规、自动气象站、NCEP/NCAR再分析资料(1°×1°,逐6h)和WRF模式逐小时资料,对2010年6月30日—7月2日山东省暴雨过程的落区进行了分析.结果表明:本次暴雨过程具有暖区暴雨和冷区暴雨两种特征.暖区暴雨强度强、范围广、落区集中,位于925 hPa经向切变线右侧或者低涡的东南象限“人”字型切变线内、暖温度脊后部、地面低压前部南风区内;冷区暴雨区强度弱、范围小、落区分散,位于925 hPa经向切变线左侧、冷温度槽前、地面低压后部北风区内.冷区和暖区暴雨均位于大气可降水量大于70 kg/m^2的区域、低空急流顶端的左侧.低空急流与强降水同时开始或者低空急流提前1h开始,降水强度最大时段出现在850 hPa风速跃增后1~3h.只有冷区暴雨时,冷空气较弱,冷锋伸展高度较低,暴雨区位于冷锋后部θse锋区前沿、θse暖脊脊线顶点、强上升运动中心.冷区与暖区暴雨共存时,冷暖空气势力均比只有冷区暴雨时强,冷锋伸展高度较高,冷区与暖区暴雨均位于强上升运动中心南侧1个纬距内风速辐合处.只有暖区暴雨时,冷空气较强,冷锋伸展高度较高,暴雨区位于冷锋前1个纬距内、θse暖脊脊线与地面交点、上升运动中心.低层向北倾斜锋区的南北跨度与中层向南倾斜锋区的南北跨度的差值大小,直接影响上升运动的强度和暴雨区的分布.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号