首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Tendencies in climate change in the Amur River basin are generally synchronous to the global ones. During the last century, the annual mean temperature of surface air increased by 1.3°C, minimum warming being observed in the east part of the basin (0.6°C) and maximum one in the west part (1.7–2.5°C). The largest impact on the annual mean temperature growth comes from winter and spring temperature increase (2–4°C/100 years). During the last 30 years, the warming rate in the basin was 2–3 times higher than during the whole period of 1891–2004. Simultaneously with warming in the Amur River basin, annual and warm-season precipitation totals increased by 8 and 6%, respectively, during the 115-year period. The highest increase in precipitation totals occurs in cold season (29% during 115 years). During the last 30 years, together with intense warming in the Amur River basin, the annual precipitation totals are found to decrease by an average of 2.1%/10 years.  相似文献   

2.
A climate-monitoring network was implemented in a large private preserve along the southern shore of Lake Superior. The network uses a dense sampling design to assess the spatial and temporal influence of a large, cold body of water on adjacent terrestrial surfaces. Based on a 3-year record, near-shore sites are 1–2°C cooler than sites 5?km inland in spring and summer, and 1°C warmer in winter. Near the shore, winds are from the NNW most of the year, and are much stronger in winter. Inland, southwesterly flow is typical and overall wind velocity is lower and more consistent. This decoupling is attributable to the influence of the Huron Mountains, a topographic barrier that restricts the lake effect to a narrow coastal zone. A 2-year record of hourly air temperature measurements from 26–30 sites across the study area demonstrates that the mean daily temperature can differ by as much as 11°C, but the average difference is 2.5–3.0°C.  相似文献   

3.
Spatial and temporal variability in daily maximum and mean average daily temperature, monthly maximum and mean average monthly temperature for nine coastal stations during the period 1956–2009 (54 years), and annual maximum and mean average temperature for coastal and inland stations for the period 1945–2009 (65 years) across Libya are analysed. During the period 1945–2009, significant increases in maximum temperature (0.017 °C/year) and mean average temperature (0.021 °C/year) are identified at most stations. Significantly, warming in annual maximum temperature (0.038 °C/year) and mean average annual temperatures (0.049 °C/year) are observed at almost all study stations during the last 32 years (1978–2009). The results show that Libya has witnessed a significant warming since the middle of the twentieth century, which will have a considerable impact on societies and the ecology of the North Africa region, if increases continue at current rates.  相似文献   

4.
In this study, the multifractal detrended fluctuation analysis method is employed to determine the thresholds of extreme events. Subsequently, the characteristics of extreme temperatures have been analyzed over Northeast China during 1961–2009. Approximately 58 % of stations have negative interdecadal trends of ?2.2 days/10 years to 0 days/10 years in extreme low minimum temperature (ELMT) frequency. Notable positive trend of 0–2.5 days/10 years in extreme high maximum temperature (EHMT) frequency of about 94 % stations are found. Approximately 58 % of stations have decreasing trend in ELMT intensity, whereas 69 % of stations have increasing trend of EHMT intensity. The trends are the range of ?0.72 °C/10 years to 0 °C/10 years and 0–0.7 °C/10 years, respectively. We propose the extreme temperatures indices, ELMT index (ELMTI) and EHMT index (EHMTI), which combined the frequency and intensity of extreme temperatures to represent the order of severity of extreme temperatures. According to this approach, serious ELMT mainly occur in the Songliao Plain and the Sanjiang Plain, especially in the Songliao Plain. Serious EHMT distinctly occur in the Sanjing Plain, and the southwestern and northwestern regions of Northeast China in recent five decades.  相似文献   

5.
气候变暖将导致高山区冰冻圈加剧融化,一方面融水资源时空分布的不确定性增大;另一方面,融水洪水灾害发生的频度和强度也将发生改变。基于气象、水文数据和MODIS积雪覆盖数据,利用融雪径流模型(SRM),对1990—2012年共23年祁连山黑河札马什克控制区融雪期径流进行模拟与验证。结果表明:SRM在该流域具有较高的模拟精度(纳什系数为0.91),可用于分析和预估控制区径流强度变化。为此,采用黑河流域气温、降水降尺度数据,预估了未来气候变化背景下积雪范围变化及不同重现期洪水变化趋势。结果显示,与基准期相比,在RCP2.6、RCP4.5和RCP8.5情景下,最大积雪范围可减小3%~7%,且随着海拔升高,变化愈剧烈。RCP2.6情景下因气温和降水变化幅度较小,到21世纪末各重现期洪水强度保持在10%以内波动;RCP4.5情景下,各重现期洪水强度最高增大约20%;在RCP8.5情景下,各重现期洪水强度最高可增大超30%。相关分析结果显示,不同重现期洪水径流与气温和降水均具有较强相关性:重现期越长,洪峰与气温的相关性越大;重现期越短,洪峰与降水的相关性越大。通过预估气候变化背景下的融雪性洪水事件强度及重现期变化,有助于有效开展区域洪水风险管理、提高洪水资源的利用价值。  相似文献   

6.
Climate change in the Pacific Northwest and in particular, the Salmon River Basin (SRB), is expected to bring about 3–5 °C rise in temperatures and an 8 % increase in precipitation. In order to assess the impacts due to these changes at the basin scale, this study employed an improved version of Variable Infiltration Capacity (VIC) model, which includes a parallel version of VIC combined with a comprehensive parameter estimation technique, Shuffled Complex Evolution (SCE) to estimate the streamflow and other water balance components. Our calibration (1955–1975) and validation (1976–1999) of the model at the outlet of the basin, White Bird, resulted in an r2 value of 0.94 which was considered satisfactory. Subsequent center of timing analysis showed that a gradual advancement of snowmelt induced-peak flow advancing by about 10 days in the future. Historically, the flows have shown a general decline in the basin, and in the future while the magnitudes might not be greatly affected, decreasing runoff of about 3 % over the next 90 years could be expected and timing of peak flow would shift by approximately 10 days. Also, a significant reduction of snow water equivalent up to 25 %, increased evapotranspiration up to 14 %, and decreased soil moisture storages of about 2 % is predicted by the model. A steady decline in SWE/P from the majority of climate model projections for the basin was also evident. Thus, the earlier snowmelt, decreasing soil moisture and increased evapotranspiration collectively implied the potential to trigger drought in the basin and could affect the quality of aquatic habitats and their spawning and a detailed investigation on these impacts is warranted.  相似文献   

7.
Climate change has been receiving wide attention in the last few decades. In order to quantify the climate variability of extreme weather events and their possible impacts on weather parameters and air quality, cold surge events in the past 45 years and the difference in characteristics of air pollutants before and after frontal passage has been examined after December 1993 in Taiwan. The potential impact of climate change on air pollutant concentration and its health implication were presented and discussed. In the past 45 years, the cold surge days (about 18.7 days, or 0.42 day/year) decreased significantly and the average lowest daily temperature for winter in northern Taiwan increased nearly 3°C (0.067°C/year). Based on the definition of cold surge in Taiwan and excluding the stagnation frontal passage, 21 cold surge frontal passage (CSFP) cases and 89 common frontal passage (CFP) events in winter (December–February) were identified in the past 12 years (1993–2005). We take the frontal passage day as the baseline and the differences in air pollutant concentrations and weather-related parameters between the two days before and after the frontal passage days were examined for each case. The averages of the above-mentioned differences during CSFP were compared to the corresponding differences during CFP. During CSFP, the air temperatures after the frontal passage were nearly 4–6°C lower than before the passage at both the background windward stations and urban stations. The average wind speed was about 4–5 m/s higher at the windward stations and less than 2 m/s higher in the major urban areas in Taiwan. During CFP, there was a 2°C increase in temperature but 1 m/s decrease in wind speeds on the day after frontal passage. Because of these meteorological differences, the concentration change of air pollutants during CSFP is significantly greater than that during CFP, especially for PM10 concentration. The difference of PM10 concentration during CSFP can be as large as 20–40 μg/m3 while that during CFP is only about 10 μg/m3. The differences in the other air pollutants such as CO, SO2, and O3 during CSFP are greater than those during CFP, but the difference is insignificant. Under the warming trend, less frequent CSFP’s are expected; the impacts on deterioration of air quality and human health are noteworthy.  相似文献   

8.
The Californian Mono Lake Basin (MLB) is a fragile ecosystem, for which a 1983 ruling carefully balanced water diversions with ecological needs without the consideration of global climate change. The hydroclimatologic response to the impact of projected climatic changes in the MLB has not been comprehensively assessed and is the focus of this study. Downscaled temperature and precipitation projections from 16 Global Climate Models (GCMs), using two emission scenarios (B1 and A2), were used to drive a calibrated Soil and Water Assessment Tool (SWAT) hydrologic model to assess the effects on streamflow on the two significant inflows to the MLB, Lee Vining and Rush Creeks. For the MLB, the GCM ensemble output suggests significant increases in annual temperature, averaging 2.5 and 4.1 °C for the B1 and A2 emission scenarios, respectively, with concurrent small (1–3 %) decreases in annual precipitation by the end of the century. Annual total evapotranspiration is projected to increase by 10 mm by the end of the century for both emission scenarios. SWAT modeling results suggest a significant hydrologic response in the MLB by the end of the century that includes a) decreases in annual streamflow by 15 % compared to historical conditions b) an advance of the peak snowmelt runoff to 1 month earlier (June to May), c) a decreased (10–15 %) occurrence of ‘wet’ hydrologic years, and d) and more frequent (7–22 %) drought conditions. Ecosystem health and water diversions may be affected by reduced water availability in the MLB by the end of the century.  相似文献   

9.
The paper focuses on exceptionally hot summers (EHS) as a manifestation of contemporary climate warming. The study identifies EHS occurrences in Central and Eastern Europe and describes the characteristic features of the region’s thermal conditions. Average air temperatures in June, July and August were considered, as well as the number of days with maximum temperatures exceeding 25, 30 and 35 °C, and with a minimum temperature greater than >20 °C, as recorded at 59 weather stations in 1951–2010. Extremely hot summers are defined as having an average temperature equal to or greater than the long-term average plus 2 SD. A calendar of EHSs was compiled and their spatial extent identified. The region experienced 12 EHSs, which occurred in a given year at 5 % or more stations (1972, 1981, 1988, 1992, 1997, 1998, 1999, 2002, 2003, 2006, 2007 and 2010). The EHS frequency of occurrence was found to be clearly on an increase. Indeed, only one EHS occurred during the first 30 years, but these occurred five times during the last 10 years of the study period. Their geographical extent varied both in terms of location and size. EHSs were observed at 57 out of the total of 59 weather stations in the study (the exceptions were Pecora and Cluj). The average air temperature of EHSs tended to exceed the relevant long-term average by 2–4 °C. The summer of 2010 was among the hottest (temperature anomaly 5.5–6 °C) and spatially largest.  相似文献   

10.
This paper addresses the contribution of urban land use change to near-surface air temperature during the summer extreme heat events of the early twenty-first century in the Beijing–Tianjin–Hebei metropolitan area. This study uses the Weather Research Forecasting model with a single urban canopy model and the newest actual urban cover datasets. The results show that urban land use characteristics that have evolved over the past ~20 years in the Beijing–Tianjin–Hebei metropolitan area have had a significant impact on the extreme temperatures occurring during extreme heat events. Simulations show that new urban development has caused an intensification and expansion of the areas experiencing extreme heat waves with an average increase in temperature of approximately 0.60 °C. This change is most obvious at night with an increase up to 0.95 °C, for which the total contribution of anthropogenic heat is 34 %. We also simulate the effects of geo-engineering strategies increasing the albedo of urban roofs, an effective way of reducing urban heat island, which can reduce the urban mean temperature by approximately 0.51 °C and counter approximately 80 % of the heat wave results from urban sprawl during the last 20 years.  相似文献   

11.
Changes over the twentieth century in seasonal mean potential predictability (PP) of global precipitation, 200 hPa height and land surface temperature are examined by using 100-member ensemble. The ensemble simulations have been conducted by using an intermediate complexity atmospheric general circulation model of the International Center for Theoretical Physics, Italy. Using the Hadley Centre sea surface temperature (SST) dataset on a 1° grid, two 31 year periods of 1920–1950 and 1970–2000 are separated to distinguish the periods of low and high SST variability, respectively. The standard deviation values averaged for the (“Niño-3.4”; 5°S–5°N, 170°W–120°W) region are 0.71 and 1.15 °C, for the periods of low and high SST variability, respectively, with a percentage change of 62 % during December–January–February (DJF). The leading eigenvector and the associated principal component time series, also indicate that the amplitude of SST variations have positive trend since 1920s to recent years, particularly over the El Niño Southern Oscillation (ENSO) region. Our hypothesis states that the increase in SST variability has increased the PP for precipitation, 200 hPa height and land surface temperature during the DJF. The analysis of signal and noise shows that the signal-to-noise (S/N) ratio is much increased over most of the globe, particularly over the tropics and subtropics for DJF precipitation. This occurs because of a larger increase in the signal and at the same time a reduction in the noise, over most of the tropical areas. For 200 hPa height, the S/N ratio over the Pacific North American (PNA) region is increasing more than that for the other extratropical regions, because of a larger percentage increase in the signal and only a small increase in noise. It is also found that the increase in seasonal mean transient signal over the PNA region is 50 %, while increase in the noise is only 12 %, during the high SST variability period, which indicates that the increase in signal is more than the noise. For DJF land surface temperature, the perfect model notion is utilized to confirm the changes in PP during the low and high SST variability periods. The correlation between the perfect model and the other members clearly reveal that the seasonal mean PP changed. In particular, the PP for the 31 years period of 1970–2000 is higher than that for the 31 years period of 1920–1950. The land surface temperature PP is increased in northern and southern Africa, central Europe, southern South America, eastern United States and over Canada. The increase of the signal and hence the seasonal mean PP is coincides with an increase in tropical Pacific SST variability, particularly in the ENSO region.  相似文献   

12.
江淮流域旱涝年夏季E-P通量特征分析   总被引:2,自引:0,他引:2  
姚文清  徐祥德  冉令坤 《气象》2004,30(4):11-14
利用 1 958~ 1 997年NCAR/NCEP全球再分析资料和 1 951~ 1 998年全国 1 6 0站月降水资料研究了江淮流域旱涝年夏季E P通量的分布状况 ,旱年E P通量在4 0°N附近呈强辐合特征 ,涝年在 30°N附近呈强辐合特征 ,其分布形式与降水的对应关系显著。旱涝年E P通量不同的分布形式促使江淮流域旱年 4 0°N附近的高空西风急流得到加强 ,涝年 30°N附近的高空西风急流得到加强 ,使得相应地区的风场高层辐散、低层辐合得到加强 ,形成了有利于降水生成的动力条件 ,是江淮流域及中国区域不同形式的降水分布形成的重要因素。  相似文献   

13.
New oceanographic observations are used for studying the Kamchatka Current and the Alaskan Stream and its Aleutian eddies in 1990–2017. The Aleutian eddies are mesoscale anticyclonic eddies that are formed within the Alaskan Stream southward of the Aleutian Islands be tween 170° and 180° E and are moving to the southwest. The rapid freshening of the upper layer and the increase in tem-perature and salinity in the Kamchatka Current halocline are detected. In the upper layer of the Kamchatka Current, salinity decreased by 0.2 psu per 27 years. The most rapid variations in salinity and temperature have been observed in recent years. In the halocline (at the isopycnic of 26.75σθ) temperature rose by 1.4°C and salinity in creased by 0.15 psu. The maximum temperature of the warm intermediate layer in the Kamchatka Current exceeded 4°C for the first time. The most likely reason for the temperature and salinity increase in the halocline is the transport of warm and salt water by the Aleu-tian eddies.  相似文献   

14.
An overview of mainland China temperature change research   总被引:4,自引:2,他引:2       下载免费PDF全文
There has been significant effort devoted to investigating long-term trends in land surface air temperature over mainland China by Chinese scientists over the past 50 years, and much progress has been made in understanding dynamics of the changes. This review highlights research conducted by early Chinese climatologists, and particularly Professor Shaowu Wang from Peking University, with special focus on systematic work that has been conducted since the mid to late 1970s. We also discuss major issues that remain unresolved in past and current studies. The most recent analyses indicate that the country-average annual mean surface air temperature rose by 1.12°C over the past 115 years (1901–2015), with a rate of increase of about 0.10°C decade–1. Temperatures have risen more rapidly since the 1950s, with the rate of increase of more than 0.25°C decade-1. However, the recent increase in temperatures is in large part due to contamination by systematically biased data. These data are influenced by unprecedented urbanization in China, with a contribution of urbanization to the overall increase of annual mean temperatures in mainland China of about one third over the past half a century. If the bias is corrected, the rate of increase for the country-average annual mean surface air temperature is 0.17°C decade–1 over the last 50–60 years, which is approximately the same as global and Northern Hemispheric averages in recent decades. Future efforts should be focused towards the recovery and digitization of early-year observational records, the homogenization of observational data, the evaluation and adjustment of urbanization bias in temperature data series from urban stations, the analysis of extreme temperatures over longer periods including the first half of the 20th century, and the investigation of the observed surface air temperature change mechanisms in mainland China.  相似文献   

15.
M.Lal 《大气科学进展》1994,11(2):239-246
The global mean surface temperature may rise by about 0.3oC per decade during the next Few decades as a result of anthropogenic greenhouse gas emissions in the earth’s atmosphere. The data generated in the greenhouse warming simulations (Business-as-Usual scenario of IPCC) with the climate models developed at Max Planck Institute for Meteorology, Hamburg have been used to assess future plausible hydrological scenario for the South Asian region. The model results indicate enhanced surface warming (2.7oC for summer and 3.6oC for winter) over the land regions of South Asia during the next hundred years. While there is no significant change in the precipitation over most of the land regions during winter, substantial increase in precipitation is likely to occur during summer. As a result, an increase in soil moisture is likely over central India, Bangladesh and South China during summer but a statistically sig-nificant decline in soil moisture is expected over central China in winter. A moderate decrease in surface runoff may occur over large areas of central China during winter while the flood prone areas of NE-India. Bangladesh and South China are likely to have an increase in surface runoff during summer by the end of next century.  相似文献   

16.
Daily minimum temperature (Tmin) and maximum temperature (Tmax) data of Huairou station in Beijing from 1960 to 2008 are examined and adjusted for inhomogeneities by applying the data of two nearby reference stations. Urban effects on the linear trends of the original and adjusted temperature series are estimated and compared. Results show that relocations of station cause obvious discontinuities in the data series, and one of the discontinuities for Tmin are highly significant when the station was moved from downtown to suburb in 1996. The daily Tmin and Tmax data are adjusted for the inhomogeneities. The mean annual Tmin and Tmax at Huairou station drop by 1.377°C and 0.271°C respectively after homogenization. The adjustments for Tmin are larger than those for Tmax, especially in winter, and the seasonal differences of the adjustments are generally more obvious for Tmin than for Tmax. Urban effects on annual mean Tmin and Tmax trends are ?0.004°C/10 year and ?0.035°C/10 year respectively for the original data, but they increase to 0.388°C/10 year and 0.096°C/10 year respectively for the adjusted data. The increase is more significant for the annual mean Tmin series. Urban contributions to the overall trends of annual mean Tmin and Tmax reach 100% and 28.8% respectively for the adjusted data. Our analysis shows that data homogenization for the stations moved from downtowns to suburbs can lead to a significant overestimate of rising trends of surface air temperature, and this necessitates a careful evaluation and adjustment for urban biases before the data are applied in analyses of local and regional climate change.  相似文献   

17.
The Peace–Athabasca Delta in northern Alberta, Canada, is a dynamic wetland ecosystem. Climatic, hydrologic, biological, and historical data are synthesized to elucidate how the ecosystem has changed over the past 300 years. Annual temperature is now higher than it has been in the past 300 years. For much of the 1700s, the Delta was colder in winter and had a lower flood frequency than that of the last 30 years. The 1800s were characterized by long and cold winters, 4–12 year-long episodes of high or low water, and repeated human epidemics. The early twentieth century was relatively moist and cool. Since mid-twentieth century the Delta has experienced periods of both intense warmth and cold, desiccation and recharge. Since the mid-1960s, local and regional mean annual temperatures have increased 0.30°C to 0.48°C per decade while winter temperatures have increased 0.68°C to 0.92°C per decade; annual snowfall has decreased 12 to 41 cm per decade while winter snowfall has decreased 12 to 34 cm per decade. Major events in the past 45 years include climatic changes favoring a warmer, drier ecosystem; cultural and socioeconomic changes; building of the Bennett Dam; prevention of the Athabasca River mainstem avulsion in 1972; the Cree Creek avulsion of 1982; large fluctuations in water, vegetation, and wildlife; and the development of the Alberta Tar Sands. Increased rates of basin desiccation and wildfire activity and upstream land disturbances may combine to alter the Delta’s biotic composition. There appears to be no relevant historical analogue of the present Delta.  相似文献   

18.
Records of hydrologic parameters, especially those parameters that are directly linked to air temperature, were analyzed to find indicators of recent climate warming in Minnesota, USA. Minnesota is projected to be vulnerable to climate change because of its location in the northern temperate zone of the globe. Ice-out and ice-in dates on lakes, spring (snowmelt) runoff timing, spring discharge values in streams, and stream water temperatures recorded up to the year 2002 were selected for study. The analysis was conducted by inspection of 10-year moving averages, linear regression on complete and on partial records, and by ranking and sorting of events. Moving averages were used for illustrative purposes only. All statistics were computed on annual data. All parameters examined show trends, and sometimes quite variable trends, over different periods of the record. With the exception of spring stream flow rates the trends of all parameters examined point toward a warming climate in Minnesota over the last two or three decades. Although hidden among strong variability from year to year, ice-out dates on 73 lakes have been shifting to an earlier date at a rate of −0.13 days/year from 1965 to 2002, while ice-in dates on 34 lakes have been delayed by 0.75 days/year from 1979 to 2002. From 1990 to 2002 the rates of change increased to −0.25 days/year for ice-out and 1.44 days/year for ice-in. Trend analyses also show that spring runoff at 21 stream gaging sites examined occurs earlier. From 1964 to 2002 the first spring runoff (due to snowmelt) has occurred −0.30 days/year earlier and the first spring peak runoff −0.23 days/year earlier. The stream water temperature records from 15 sites in the Minneapolis/St Paul metropolitan area shows warming by 0.11C/year, on the average, from 1977 to 2002. Urban development may have had a strong influence. The analysis of spring stream flow rates was inconclusive, probably because runoff is linked as much to precipitation and land use as to air temperature. Ranking and sorting of annual data shows that a disproportionately large number of early lake ice-out dates has occurred after 1985, but also between 1940 and 1950; similarly late lake ice-in has occurred more frequently since about 1990. Ranking and sorting of first spring runoff dates also gave evidence of earlier occurrences, i.e. climate warming in late winter. A relationship of changes in hydrologic parameters with trends in air temperature records was demonstrated. Ice-out dates were shown to correlate most strongly with average March air temperatures shifting by −2.0 days for a 1°C increase in March air temperature. Spring runoff dates also show a relationship with March air temperatures; spring runoff dates shift at a rate of −2.5 days/1°C minimum March air temperature change. Water temperatures at seven river sites in the Minneapolis/St Paul metropolitan area show an average rise of 0.46°C in river temperature/1°C mean annual air temperature change, but this rate of change probably includes effects of urban development. In conclusion, records of five hydrologic parameters that are closely linked to air temperature show a trend that suggests recent climate warming in Minnesota, and especially from 1990 to 2002. The recent rates of change calculated from the records are very noteworthy, but must not be used to project future parameter values, since trends cannot continue indefinitely, and trend reversals can be seen in some of the long-term records.  相似文献   

19.
Precipitation from the Eastern Sierra Nevada watersheds of Owens Lake and Mono Lake is one of the main water sources for Los Angeles’ over 4 million people, and plays a major role in the ecology of Mono Lake and of these watersheds. We use the Variable Infiltration Capacity (VIC) hydrologic model at daily time scale, forced by climate projections from 16 global climate models under greenhouse gas emissions scenarios B1 and A2, to evaluate likely hydrologic responses in these watersheds for 1950–2099. Comparing climate in the latter half of the 20th Century to projections for 2070–2099, we find that all projections indicate continued temperature increases, by 2–5 °C, but differ on precipitation changes, ranging from ?24 % to +56 %. As a result, the fraction of precipitation falling as rain is projected to increase, from a historical 0.19 to a range of 0.26–0.52 (depending on the GCM and emission scenario), leading to earlier timing of the annual hydrograph’s center, by a range of 9–37 days. Snowpack accumulation depends on temperature and even more strongly on precipitation due to the high elevation of these watersheds (reaching 4,000 m), and projected changes for April 1 snow water equivalent range from ?67 % to +9 %. We characterize the watershed’s hydrologic response using variables integrated in space over the entire simulated area and aggregated in time over 30-year periods. We show that from the complex dynamics acting at fine time scales (seasonal and sub-seasonal) simple dynamics emerge at this multi-year time scale. Of particular interest are the dynamic effects of temperature. Warming anticipates hydrograph timing, by raising the fraction of precipitation falling as rain, reducing the volume of snowmelt, and initiating snowmelt earlier. This timing shift results in the depletion of soil moisture in summer, when potential evapotranspiration is highest. Summer evapotranspiration losses are limited by soil moisture availability, and as a result the watershed’s water balance at the annual and longer scales is insensitive to warming. Mean annual runoff changes at base-of-mountain stations are thus strongly determined by precipitation changes.  相似文献   

20.
With the surface air temperature (SAT) data at 37 stations on Central Yunnan Plateau (CYP) for 1961–2010 and the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data, the temporal-spatial patterns of the SAT trends are detected using Sen’s Nonparametric Estimator of Slope approach and MK test, and the impact of urbanization on surface warming is analyzed by comparing the differences between the air temperature change trends of urban stations and their corresponding rural stations. Results indicated that annual mean air temperature showed a significant warming trend, which is equivalent to a rate of 0.17 °C/decade during the past 50 years. Seasonal mean air temperature presents a rising trend, and the trend was more significant in winter (0.31 °C/decade) than in other seasons. Annual/seasonal mean air temperature tends to increase in most areas, and higher warming trend appeared in urban areas, notably in Kunming city. The regional mean air temperature series was significantly impacted by urban warming, and the urbanization-induced warming contributed to approximately 32.3–62.9 % of the total regional warming during the past 50 years. Meantime, the urbanization-induced warming trend in winter and spring was more significant than that in summer and autumn. Since 1985, the urban heat island (UHI) intensity has gradually increased. And the urban temperatures always rise faster than rural temperatures on the CYP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号