首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of sediments by carbonate-producing ecosystems is an important input for beach sediment budgets in coastal areas where no terrigenous input occurs. Calcifying organisms are a major source of bioclastic carbonate sediment for coastal systems. Increased levels of CO2 in the atmosphere are leading to an increase in the partial pressure of CO2 on ocean seawater, causing ocean acidification (OA), with direct consequences for the pH of ocean waters. Most studies of OA focus on its impact on marine ecosystems. The impact of OA on carbonate-producing ecosystems could be to reduce the amount of sediments supplied to temperate coastal systems. The aim of this study was to quantify the effect of the predicted OA on the long-term sediment budget of a temperate Mediterranean mixed carbonate beach and dune system. Based on projections of OA we estimated a fall of about 31% in the present bioclastic carbonate sediment deposition rate, with the biggest decreases seen in the dunes (? 46%). OA is also expected to affect the carbonate sediment reservoirs, increasing the dissolution of CaCO3and causing net sediment loss from the system (~ 50,000 t century?1). In the long-term, OA could also play a primary role in the response of these systems to sea-level rise. Indeed, the reduction in the quantity of carbonate sediments provided to the system may affect the speed with which the system is able to adapt to sea-level rise, by increasing wave run-up, and may promote erosion of dunes and subaerial beaches.  相似文献   

2.
Trees form a significant part of the urban vegetation. Their meteorological and climatological effects at all scales in urban environments make them a flexible tool for creating a landscape oriented to the needs of an urban dweller. This study aims at quantifying the spatio-temporal patterns of canopy temperature (T C) and canopy-to-air temperature difference (?T C) in relation to meteorological conditions and tree-specific (physiological) and urban site-specific characteristics. We observed T C and ?T C of 67 urban trees (18 species) using a high-resolution thermal-infrared (TIR) camera and meteorological measurements in the city of Berlin, Germany. TIR images were recorded at 1-min intervals over a period of 2?months from 1st July to 31st August 2010. The results showed that ?T C depends on tree species, leaf size and fraction of impervious surfaces. Average canopy temperature was nearly equal to air temperature. Species-specific maximum ?T C varied between 1.9?±?0.3?K (Populus nigra), 2.9?±?0.3?K (Quercus robur), 3.2?±?0.5?K (Fagus sylvatica), 3.9?±?1.0?K (Platanus acerifolia), 4.6?±?0.2?K (Acer pseudoplatanus), 5.0?±?0.5?K (A. platanoides) and 5.6?±?1.1?K (A. campestre). We analysed ?T C for a hot and dry period (A) and a warm and wet period (B). The range of species-specific ?T C at noon was nearly equal, i.e. 4.4?K for period A and 4.2?K for period B. Trees surrounded by high fraction of impervious surfaces showed consistently higher ?T C. Knowledge of species-specific canopy temperature and the impacts of urban structures are essential in order to optimise the benefits from trees in cities. However, comprehensive evaluation and optimisation should take the full range of climatological effects into account.  相似文献   

3.
The analysis of trends in hydroclimatic parameters and assessment of their statistical significance have recently received a great concern to clarify whether or not there is an obvious climate change. In the current study, parametric linear regression and nonparametric Mann?CKendall tests were applied for detecting annual and seasonal trends in the relative humidity (RH) and dew point temperature (T dew) time series at ten coastal weather stations in Iran during 1966?C2005. The serial structure of the data was considered, and the significant serial correlations were eliminated using the trend-free pre-whitening method. The results showed that annual RH increased by 1.03 and 0.28?%/decade at the northern and southern coastal regions of the country, respectively, while annual T dew increased by 0.29 and 0.15°C per decade at the northern and southern regions, respectively. The significant trends were frequent in the T dew series, but they were observed only at 2 out of the 50 RH series. The results showed that the difference between the results of the parametric and nonparametric tests was small, although the parametric test detected larger significant trends in the RH and T dew time series. Furthermore, the differences between the results of the trend tests were not related to the normality of the statistical distribution.  相似文献   

4.
Field data for the unstable, baroclinic, atmospheric boundary layer over land and over the sea are considered in the context of a general similarity theory of vertical heat transfer. The dependence of δθ/θ* upon logarithmic functions of h c z T and stability (through the similarity function C) is clearly demonstrated in the data. The combined data support the conventional formulation for the heat transfer coefficient δθ/θ* when,
  1. the surface scaling length is z T (« z 0), the height at which the surface temperature over land is obtained by extrapolation of the temperature profile
  2. the height scale is taken as the depth of convective mixing h c
  3. the temperature profile equivalent of the von Karman constant is taken as 0.41
  4. areal average, rather than single point, values of δθ are employed in strongly baroclinic conditions. No significant effect of baroclinity or the height scale ratio as proposed in the general theory is found. Variations in C about a linear regression relation against stability are most probably due to uncertainties in the areal surface temperature and to experimental errors in general temperature measurements.
  相似文献   

5.
Observations show that the surface diurnal temperature range (DTR) has decreased since 1950s over most global land areas due to a smaller warming in maximum temperatures (T max) than in minimum temperatures (T min). This paper analyzes the trends and variability in T max, T min, and DTR over land in observations and 48 simulations from 12 global coupled atmosphere-ocean general circulation models for the later half of the 20th century. It uses the modeled changes in surface downward solar and longwave radiation to interpret the modeled temperature changes. When anthropogenic and natural forcings are included, the models generally reproduce observed major features of the warming of T max and T min and the reduction of DTR. As expected the greenhouse gases enhanced surface downward longwave radiation (DLW) explains most of the warming of T max and T min while decreased surface downward shortwave radiation (DSW) due to increasing aerosols and water vapor contributes most to the decreases in DTR in the models. When only natural forcings are used, none of the observed trends are simulated. The simulated DTR decreases are much smaller than the observed (mainly due to the small simulated T min trend) but still outside the range of natural internal variability estimated from the models. The much larger observed decrease in DTR suggests the possibility of additional regional effects of anthropogenic forcing that the models can not realistically simulate, likely connected to changes in cloud cover, precipitation, and soil moisture. The small magnitude of the simulated DTR trends may be attributed to the lack of an increasing trend in cloud cover and deficiencies in charactering aerosols and important surface and boundary-layer processes in the models.  相似文献   

6.
The difference between the transferred wind speed to 10-m height based on the equivalent neutral wind approach (U n) and the logarithmic approach (U log) is studied using in situ observations from the Indian, Pacific, and Atlantic Oceans, with special emphasis given to the North Indian Ocean. The study included U n ? U log variations with pressure, relative humidity, wind speed, air temperature, and sea surface temperature (SST). U n ? U log variation with respect to air temperature (T a) reveals that U n ? U log is out of phase with air temperature. Further analysis found that U n ? U log is in phase with SST (T s) ? T a and varies between ?1.0 and 1.0 m/s over the North Indian Ocean, while for the rest of the Oceans, it is between ?0.3 and 0.8 m/s. This higher magnitude of U n ? U log over the North Indian Ocean is due to the higher range of T s ? T a (?4 to 6 °C) in the North Indian Ocean. Associated physical processes suggested that the roughness length and friction velocity dependence on the air–sea temperature difference contributes to the U n ? U log difference. The study is further extended to evaluate the behavior of U n ? U log under cyclonic conditions (winds between 15 and 30 m/s), and it was found that the magnitude of Un ? U log varies 0.5–1.5 m/s under the cyclonic wind conditions. The increasing difference with the wind speed is due to the increase in the momentum transfer coefficient with wind speed, which modifies the friction velocity significantly, resulting in U n higher than U log. Thus, under higher wind conditions, U n ? U log can contribute up to half the retrieval error (5 % of the wind speed magnitude) to the satellite validation exercise.  相似文献   

7.
Vertical wind shear fundamentally influences changes in tropical cyclone (TC) intensity. The effects of vertical wind shear on tropical cyclogenesis and evolution in the western North Pacific basin are not well understood. We present a new statistical study of all named TCs in this region during the period 2000-2006 using a second-generation partial least squares (PLS) regression technique. The results show that the lower-layer (between 850 hPa and 10 m above the sea surface) wind shear is more important than the commonly analyzed deep-layer shear (between 200 and 850 hPa) for changes in TC intensity during the TC intensification period. This relationship is particularly strong for westerly low-level shear. Downdrafts induced by the lower-layer shear bring low θ e air into the boundary layer from above, significantly reducing values of θ e in the TC inflow layer and weakening the TC. Large values of deep-layer shear over the ocean to the east of the Philippine Islands inhibit TC formation, while large values of lower-layer shear over the central and western North Pacific inhibit TC intensification. The critical value of deep-layer shear for TC formation is approximately 10 ms-1 , and the critical value of lower-layer shear for TC intensification is approximately ±1.5 ms-1 .  相似文献   

8.
The variability of sea surface Total Alkalinity (TA) and sea surface Total Inorganic Carbon (CT) is examined using all available data in the western tropical Atlantic (WTA: 20°S-20°N, 60°W-20°W). Lowest TA and CT are observed for the region located between 0°N-15°N/60°W-50°W and are explained by the influence of the Amazon plume during boreal summer. In the southern part of the area, 20°S-10°S/40°W-60°W, the highest values of TA and CT are linked to the CO2–rich waters due to the equatorial upwelling, which are transported by the South Equatorial Current (SEC) flowing from the African coast to the Brazilian shore. An increase of CT of 0.9 ± 0.3 μmol kg−1yr−1 has been observed in the SEC region and is consistent with previous published estimates. A revised CT-Sea Surface Salinity (SSS) relationship is proposed for the WTA to take into account the variability of CT at low salinities. This new CT-SSS relationship together with a published TA-SSS relationship allow to calculate pCO2 values that compare well with observed pCO2 (R2 = 0.90).  相似文献   

9.
High temperature accompanied with high humidity may result in unbearable and oppressive weather. In this study, future changes of extreme high temperature and heat stress in mainland China are examined based on daily maximum temperature (Tx) and daily maximum wet-bulb globe temperature (Tw). Tw has integrated the effects of both temperature and humidity. Future climate projections are derived from the bias-corrected climate data of five general circulation models under the Representative Concentration Pathways (RCPs) 2.6 and 8.5 scenarios. Changes of hot days and heat waves in July and August in the future (particularly for 2020–50 and 2070–99), relative to the baseline period (1981–2010), are estimated and analyzed. The results show that the future Tx and Tw of entire China will increase by 1.5–5°C on average around 2085 under different RCPs. Future increases in Tx and Tw exhibit high spatial heterogeneity, ranging from 1.2 to 6°C across different regions and RCPs. By around 2085, the mean duration of heat waves will increase by 5 days per annum under RCP8.5. According to Tx, heat waves will mostly occur in Northwest and Southeast China, whereas based on Tw estimates, heat waves will mostly occur over Southeast China and the mean heat wave duration will be much longer than those from Tx. The total extreme hot days (Tx or Tw > 35°C) will increase by 10–30 days. Southeast China will experience the severest heat stress in the near future as extreme high temperature and heat waves will occur more often in this region, which is particularly true when heat waves are assessed based on Tw. In comparison to those purely temperature-based indices, the index Tw provides a new perspective for heat stress assessment in China.  相似文献   

10.
Abstract

Three arrays of current‐meter moorings were deployed under landfast sea ice in southeast Hudson Bay for eight weeks in spring 1986. Spectral analysis shows low‐frequency signals with periods of 3 to 11 days. These signals are interpreted as being due to coastal‐trapped waves propagating cyclonically in Hudson Bay; their theoretical dispersion relations and corresponding modal structures are presented for winter stratification and are compared with observations. At a period of 3 days both the modified external Kelvin wave and higher mode continental shelf waves may be important in describing the observed low‐frequency variability, whereas at a period of 10 days the Kelvin wave appears to be the dominant mode. The generation mechanisms for these coastal trapped waves are also investigated. Two sources have been studied: the longshore atmospheric pressure gradient and the average atmospheric pressure over the ice cover in Hudson Bay. Coherence and phase analyses performed with time series of longshore current and atmospheric forcing data reveal that both the average atmospheric pressure and the longshore atmospheric pressure gradient are important in explaining the observed low‐frequency variability, without indicating which one is the most important.  相似文献   

11.
Directional dependence of horizontal wind direction fluctuations (Σθ) is studied at the coastal site of Madras Atomic Power Project, Kalpakkam with significant inhomogeneity in roughness element distribution around the location of measurement. Σθ is measured by a potentiometric wind vane mounted on a 30 m meteorological tower. Values of Σθ showed as high as threefold variation for the same atmospheric stability depending on the effective roughness length of the upwind sector. Average Σθ values separated for sea- and land-breeze conditions, when correlated with Pasquill stability categories showed a monotonic decrease with increasing stability for land breeze but was found to increase for change from D to F category during sea breezes presumably due to the influence of an internal boundary-layer development.  相似文献   

12.
Soil temperature (T S) strongly influences a wide range of biotic and abiotic processes. As an alternative to direct measurement, indirect determination of T S from meteorological parameters has been the focus of attention of environmental researchers. The main purpose of this study was to estimate daily T S at six depths (5, 10, 20, 30, 50 and 100?cm) by using a multilayer perceptron (MLP) artificial neural network (ANN) model and a multivariate linear regression (MLR) method in an arid region of Iran. Mean daily meteorological parameters including air temperature (T a), solar radiation (R S), relative humidity (RH) and precipitation (P) were used as input data to the ANN and MLR models. The model results of the MLR model were compared to those of ANN. The accuracy of the predictions was evaluated by the correlation coefficient (r), the root mean-square error (RMSE) and the mean absolute error (MAE) between the measured and predicted T S values. The results showed that the ANN method forecasts were superior to the corresponding values obtained by the MLR model. The regression analysis indicated that T a, RH, R S and P were reasonably correlated with T S at various depths, but the most effective parameters influencing T S at different depths were T a and RH.  相似文献   

13.
We identify and remove the main natural perturbations (e.g. volcanic activity, ENSOs) from the global mean lower tropospheric temperatures (T LT ) over January 1979 - June 2017 to estimate the underlying, potentially human-forced trend. The unaltered value is +0.155 K dec?1 while the adjusted trend is +0.096 K dec?1, related primarily to the removal of volcanic cooling in the early part of the record. This is essentially the same value we determined in 1994 (+0.09 K dec?1, Christy and McNider, 1994) using only 15 years of data. If the warming rate of +0.096 K dec?1 represents the net T LT response to increasing greenhouse radiative forcings, this implies that the T LT tropospheric transient climate response (ΔT LT at the time CO2 doubles) is +1.10 ± 0.26 K which is about half of the average of the IPCC AR5 climate models of 2.31 ± 0.20 K. Assuming that the net remaining unknown internal and external natural forcing over this period is near zero, the mismatch since 1979 between observations and CMIP-5 model values suggests that excessive sensitivity to enhanced radiative forcing in the models can be appreciable. The tropical region is mainly responsible for this discrepancy suggesting processes that are the likely sources of the extra sensitivity are (a) the parameterized hydrology of the deep atmosphere, (b) the parameterized heat-partitioning at the oceanatmosphere interface and/or (c) unknown natural variations.  相似文献   

14.
A land surface processes experiment (LASPEX) was conducted in the semi-arid region of Northwest India during January 1997–February 1998. Analysis of turbulent components of wind and air temperature collected in the surface layer (SL) at Anand (22°35′N, 72°55′E) during the Indian summer monsoon season from June to September 1997 is presented. Turbulent fluctuation of wind components and air temperature observed at Anand varied as a function of terrain features and stability of the surface layer. Under neutral conditions, the standard deviation of vertical velocity (σ w ) and temperature (σ T ) were normalized using respective surface layer scaling parameter u * and T * which fitted the expressions σ w /u * = 1.25 and σ T /T * ≈ 4. Micrometeorological spectrum of wind and temperature at 5 m above ground level (AGL) at Anand showed peaks at time scale of 1–3 min at the low-frequency end. The inertial sub-range characteristics (?2/3 slope) of the spectrum are exhibited mostly. However, in some occasions, slope of ?1 denoting brown noise was depicted by the wind and temperature spectrum, which indicated anisotropy in turbulence.  相似文献   

15.
The annual variation in Planetary Boundary Layer (PBL) height is determined from the profiles of conserved thermodynamic variables, i.e. virtual potential temperature θv, equivalent potential temperature θe and saturated equivalent potential temperature θes, using radiosonde data at Anand (23°35′N, 72°55′E, 45.1 m a.s.l.), India. Out of all the variables, the θv profile seems to provide the most reasonable estimate of the PBL height. This has been supplemented by T–Phi gram analysis for specific days. The analysis has been done for 00, 03, 06, 09 and 12 GMT for the 14th and 15th day of each month in the year 1997 based on LASPEX-97 data. In winters the height of boundary layer is very low due to subsidence and radiation cooling while heights in pre-monsoon months exhibit large variations.  相似文献   

16.
The potential for using the ensemble square root filter data assimilation technique to estimate soil moisture profiles, surface heat fluxes, and the state of the planetary boundary layer (PBL) is explored. An observing system simulation experiment is designed to mimic the assimilation of near-surface soil moisture observations (θo ) and in-situ measurements of 2-m temperature (To ), 2-m specific humidity (Qo ), and 10-m horizontal winds [Vo =(Uo , Vo )]. The background forecasts are generated by a one-dimensional coupled land surface-boundary layer model (CLS-BLM) with soil, surface-layer and PBL parameterization schemes similar to those used in the Weather Research and Forecasting (WRF) model. Soil moisture, surface heat fluxes, and the state of the PBL evolve on different characteristic timescales, so the minimum assimilation time intervals required for skillful estimates of each target component are different. Correct estimates of the soil moisture profile are obtained effectively when a 6-h update time interval is used, while skillful estimates of surface fluxes and the PBL state require more frequent updates. The CLS-BLM requires a shorter assimilation time interval to correctly estimate the soil moisture profile than previously indicated by experiments using an off-line land surface model (LSM). Results from assimilating different subsets of observations show that θo makes a larger contribution to soil moisture estimates, while To , θo , and Vo are more important for estimates of surface heat fluxes and the PBL state. It is therefore necessary to combine these variables to accurately estimate the states of both the land surface and the PBL. Experimentation with different prescribed observational errors shows that the assimilation system is more sensitive to increases in observational errors than to reductions in observational errors.  相似文献   

17.
This paper analyzes the spatial dependence of annual diurnal temperature range (DTR) trends from 1950–2004 on the annual climatology of three variables: precipitation, cloud cover, and leaf area index (LAI), by classifying the global land into various climatic regions based on the climatological annual precipitation. The regional average trends for annual minimum temperature (T min) and DTR exhibit significant spatial correlations with the climatological values of these three variables, while such correlation for annual maximum temperature (T max) is very weak. In general, the magnitude of the downward trend of DTR and the warming trend of T min decreases with increasing precipitation amount, cloud cover, and LAI, i.e., with stronger DTR decreasing trends over drier regions. Such spatial dependence of T min and DTR trends on the climatological precipitation possibly reflects large-scale effects of increased global greenhouse gases and aerosols (and associated changes in cloudiness, soil moisture, and water vapor) during the later half of the twentieth century.  相似文献   

18.
Soil temperature (T s) and its thermal regime are the most important factors in plant growth, biological activities, and water movement in soil. Due to scarcity of the T s data, estimation of soil temperature is an important issue in different fields of sciences. The main objective of the present study is to investigate the accuracy of multivariate adaptive regression splines (MARS) and support vector machine (SVM) methods for estimating the T s. For this aim, the monthly mean data of the T s (at depths of 5, 10, 50, and 100 cm) and meteorological parameters of 30 synoptic stations in Iran were utilized. To develop the MARS and SVM models, various combinations of minimum, maximum, and mean air temperatures (T min, T max, T); actual and maximum possible sunshine duration; sunshine duration ratio (n, N, n/N); actual, net, and extraterrestrial solar radiation data (R s, R n, R a); precipitation (P); relative humidity (RH); wind speed at 2 m height (u 2); and water vapor pressure (Vp) were used as input variables. Three error statistics including root-mean-square-error (RMSE), mean absolute error (MAE), and determination coefficient (R 2) were used to check the performance of MARS and SVM models. The results indicated that the MARS was superior to the SVM at different depths. In the test and validation phases, the most accurate estimations for the MARS were obtained at the depth of 10 cm for T max, T min, T inputs (RMSE = 0.71 °C, MAE = 0.54 °C, and R 2 = 0.995) and for RH, V p, P, and u 2 inputs (RMSE = 0.80 °C, MAE = 0.61 °C, and R 2 = 0.996), respectively.  相似文献   

19.
We developed an operationally applicable land-only daily high-resolution (5?km?×?5?km) gridding method for station observations of minimum and maximum 2?m temperature (T min/T max) for Europe (WMO region VI). The method involves two major steps: (1) the generation of climatological T min/T max maps for each month of the year using block regression kriging, which considers the spatial variation explained by applied predictors; and (2) interpolation of transformed daily anomalies using block kriging, and combination of the resulting anomaly maps with climatological maps. To account for heterogeneous climatic conditions in the estimation of the statistical parameters, these steps were applied independently in overlapping climatic subregions, followed by an additional spatial merging step. Uncertainties in the gridded maps and the derived error maps were quantified: (a) by cross-validation; and (b) comparison with the T min/T max maps estimated in two regions having very dense temperature observation networks. The main advantages of the method are the high quality of the daily maps of T min/T max, the calculation of daily error maps and computational efficiency.  相似文献   

20.
There is a large thermal contrast between the Arabian Peninsula and India (Δθ AI) at the mature stage of the Indian summer monsoon (ISM). The forming process of Δθ AI is investigated analyzing various datasets. It forms earlier in the lower troposphere than in the middle and upper layers. The potential temperature in the lower troposphere over the west coast of India (θ IW) abruptly decreases in advance of the rapid enhancement of the westerly wind over the Arabian Sea corresponding to the ISM onset. Such a process was observed for all the target years and the rapid decrease in θ IW could trigger the ISM onset. The decrease in θ IW had two patterns. In one case, cooler air is brought by the strong winds around a cyclone over the Arabian Sea. In another case, θ IW decreases gradually by a synergy of a southwesterly wind over the Arabian Sea and the enlargement of Δθ AI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号