首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pacific Northwest (PNW) hydrology is particularly sensitive to changes in climate because snowmelt dominates seasonal runoff, and temperature changes impact the rain/snow balance. Based on results from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4), we updated previous studies of implications of climate change on PNW hydrology. PNW 21st century hydrology was simulated using 20 Global Climate Models (GCMs) and 2 greenhouse gas emissions scenarios over Washington and the greater Columbia River watershed, with additional focus on the Yakima River watershed and the Puget Sound which are particularly sensitive to climate change. We evaluated projected changes in snow water equivalent (SWE), soil moisture, runoff, and streamflow for A1B and B1 emissions scenarios for the 2020s, 2040s, and 2080s. April 1 SWE is projected to decrease by approximately 38–46% by the 2040s (compared with the mean over water years 1917–2006), based on composite scenarios of B1 and A1B, respectively, which represent average effects of all climate models. In three relatively warm transient watersheds west of the Cascade crest, April 1 SWE is projected to almost completely disappear by the 2080s. By the 2080s, seasonal streamflow timing will shift significantly in both snowmelt dominant and rain–snow mixed watersheds. Annual runoff across the State is projected to increase by 2–3% by the 2040s; these changes are mainly driven by projected increases in winter precipitation.  相似文献   

2.
The potential effects of climate change on the hydrology and water resources of the Columbia River Basin (CRB) were evaluated using simulations from the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). This study focuses on three climate projections for the 21st century based on a `business as usual' (BAU) global emissions scenario, evaluated with respect to a control climate scenario based on static 1995 emissions. Time-varying monthly PCM temperature and precipitation changes were statistically downscaled and temporally disaggregated to produce daily forcings that drove a macro-scale hydrologic simulation model of the Columbia River basin at 1/4-degree spatial resolution. For comparison with the direct statistical downscaling approach, a dynamical downscaling approach using a regional climate model (RCM) was also used to derive hydrologic model forcings for 20-year subsets from the PCM control climate (1995–2015) scenario and from the three BAU climate(2040–2060) projections. The statistically downscaled PCM scenario results were assessed for three analysis periods (denoted Periods 1–3: 2010–2039,2040–2069, 2070–2098) in which changes in annual average temperature were +0.5,+1.3 and +2.1 °C, respectively, while critical winter season precipitation changes were –3, +5 and +1 percent. For RCM, the predicted temperature change for the 2040–2060 period was +1.2 °C and the average winter precipitation change was –3 percent, relative to the RCM controlclimate. Due to the modest changes in winter precipitation, temperature changes dominated the simulated hydrologic effects by reducing winter snow accumulation, thus shifting summer streamflow to the winter. The hydrologic changes caused increased competition for reservoir storage between firm hydropower and instream flow targets developed pursuant to the Endangered Species Act listing of Columbia River salmonids. We examined several alternative reservoir operating policies designed to mitigate reservoir system performance losses. In general, the combination of earlier reservoir refill with greater storage allocations for instream flow targets mitigated some of the negative impacts to flow, but only with significant losses in firm hydropower production (ranging from –9 percent in Period1 to –35 percent for RCM). Simulated hydropower revenue changes were lessthan 5 percent for all scenarios, however, primarily due to small changes inannual runoff.  相似文献   

3.
The potential effects of climate change on the hydrology and water resources of the Colorado River basin are assessed by comparing simulated hydrologic and water resources scenarios derived from downscaled climate simulations of the U.S. Department of Energy/National Center for Atmospheric Research Parallel Climate Model (PCM) to scenarios driven by observed historical (1950–1999) climate. PCM climate scenarios include an ensemble of three 105-year future climate simulations based on projected `business-as-usual'(BAU) greenhouse gas emissions and a control climate simulation based on static 1995 greenhouse gas concentrations. Downscaled transient temperature and precipitation sequences were extracted from PCM simulations, and were used to drive the Variable Infiltration Capacity (VIC) macroscale hydrology model to produce corresponding streamflow sequences. Results for the BAU scenarios were summarized into Periods 1, 2, and 3 (2010–2039,2040–2069, 2070–2098). Average annual temperature changes for the Colorado Riverbasin were 0.5 °C warmer for control climate, and 1.0, 1.7, and 2.4 °C warmer for Periods 1–3, respectively, relative to the historicalclimate. Basin-average annual precipitation for the control climate was slightly(1%) less than for observed historical climate, and 3, 6, and 3%less for future Periods 1–3, respectively. Annual runoff in the controlrun was about 10% lower than for simulated historical conditions, and 14, 18, and 17% less for Periods 1–3, respectively. Analysis of watermanagement operations using a water management model driven by simulated streamflows showed that streamflows associated with control and future BAU climates would significantly degrade the performance of the water resourcessystem relative to historical conditions, with average total basin storage reduced by 7% for the control climate and 36, 32 and 40% for Periods 1–3, respectively. Releases from Glen Canyon Dam to the LowerBasin (mandated by the Colorado River Compact) were met in 80% of years for the control climate simulation (versus 92% in the historical climate simulation), and only in 59–75% of years for the future climate runs. Annual hydropower output was also significantly reduced for the control and future climate simulations. The high sensitivity of reservoir system performance for future climate is a reflection of the fragile equilibrium that now exists in operation of the system, with system demands only slightly less than long-term mean annual inflow.  相似文献   

4.
The Californian Mono Lake Basin (MLB) is a fragile ecosystem, for which a 1983 ruling carefully balanced water diversions with ecological needs without the consideration of global climate change. The hydroclimatologic response to the impact of projected climatic changes in the MLB has not been comprehensively assessed and is the focus of this study. Downscaled temperature and precipitation projections from 16 Global Climate Models (GCMs), using two emission scenarios (B1 and A2), were used to drive a calibrated Soil and Water Assessment Tool (SWAT) hydrologic model to assess the effects on streamflow on the two significant inflows to the MLB, Lee Vining and Rush Creeks. For the MLB, the GCM ensemble output suggests significant increases in annual temperature, averaging 2.5 and 4.1 °C for the B1 and A2 emission scenarios, respectively, with concurrent small (1–3 %) decreases in annual precipitation by the end of the century. Annual total evapotranspiration is projected to increase by 10 mm by the end of the century for both emission scenarios. SWAT modeling results suggest a significant hydrologic response in the MLB by the end of the century that includes a) decreases in annual streamflow by 15 % compared to historical conditions b) an advance of the peak snowmelt runoff to 1 month earlier (June to May), c) a decreased (10–15 %) occurrence of ‘wet’ hydrologic years, and d) and more frequent (7–22 %) drought conditions. Ecosystem health and water diversions may be affected by reduced water availability in the MLB by the end of the century.  相似文献   

5.
The potential effects of climate change on the hydrology and water resources of the Sacramento–San Joaquin River Basin were evaluated using ensemble climate simulations generated by the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). Five PCM scenarios were employed. The first three were ensemble runs from 1995–2099 with a `business as usual' global emissions scenario, eachwith different atmospheric initializations. The fourth was a `control climate'scenario with greenhouse gas emissions set at 1995 levels and run through 2099. The fifth was a historical climate simulation forced with evolving greenhouse gas concentrations from 1870–2000, from which a 50-yearportion is taken for use in bias-correction of the other runs. From these global simulations, transient monthly temperature and precipitation sequences were statistically downscaled to produce continuous daily hydrologic model forcings, which drove a macro-scale hydrology model of theSacramento–San Joaquin River Basins at a 1/8-degree spatial resolution, and produceddaily streamflow sequences for each climate scenario. Each streamflow scenario was used in a water resources system model that simulated current and predicted future performance of the system. The progressive warming of the PCM scenarios (approximately 1.2 °C at midcentury, and 2.2 °C by the 2090s), coupled with reductions in winter and spring precipitation (from 10 to 25%), markedly reduced late spring snowpack (by as much as half on average by the end of the century). Progressive reductions in winter, spring, and summer streamflow were less severe in the northern part of the study domain than in the south, where a seasonality shift was apparent. Results from the water resources system model indicate that achieving and maintaining status quo (control scenario climate) system performance in the future would be nearly impossible, given the altered climate scenario hydrologies. The most comprehensive of the mitigation alternatives examined satisfied only 87–96% of environmental targets in the Sacramento system, and less than 80% in the San Joaquin system. It is evident that demand modification and system infrastructure improvements will be required to account for the volumetric and temporal shifts in flows predicted to occur with future climates in the Sacramento–San JoaquinRiver basins.  相似文献   

6.
The potential hydrologic impact of climatic change on three sub-basins of the South Saskatchewan River Basin (SSRB) within Alberta, namely, Oldman, Bow and Red Deer River basins was investigated using the Modified Interactions Soil-Biosphere-Atmosphere (MISBA) land surface scheme of Kerkhoven and Gan (Advances in Water Resources 29:808–826 2006). The European Centre for Mid-range Weather Forecasts global re-analysis (ERA-40) climate data, Digital Elevation Model of the National Water Research Institute, land cover data and a priori soil parameters from the Ecoclimap global data set were used to drive MISBA to simulate the runoff of SSRB. Four SRES scenarios (A21, A1FI, B21 and B11) of four General Circulation Models (CCSRNIES, CGCM2, ECHAM4 and HadCM3) of IPCC were used to adjust climate data of the 1961–1990 base period (climate normal) to study the effect of climate change on SSRB over three 30-year time periods (2010–2039, 2040–2069, 2070–2099). The model results of MISBA forced under various climate change projections of the four GCMs with respect to the 1961–1990 normal show that SSRB is expected to experience a decrease in future streamflow and snow water equivalent, and an earlier onset of spring runoff despite of projected increasing trends in precipitation over the 21st century. Apparently the projected increase in evaporation loss due to a warmer climate over the 21st century will offset the projected precipitation increase, leading to an overall decreasing trend in the basin runoff of SSRB. Finally, a Gamma probability distribution function was fitted to the mean annual maximum flow and mean annual mean flow data simulated for the Oldman, Bow and Red Deer River Basins by MISBA to statistically quantify the possible range of uncertainties associated with SRES climate scenarios projected by the four GCMs selected for this study.  相似文献   

7.
Water Resources Implications of Global Warming: A U.S. Regional Perspective   总被引:8,自引:1,他引:7  
The implications of global warming for the performance of six U.S. water resource systems are evaluated. The six case study sites represent a range of geographic and hydrologic, as well as institutional and social settings. Large, multi-reservoir systems (Columbia River, Missouri River, Apalachicola-Chatahoochee-Flint (ACF) Rivers), small, one or two reservoir systems (Tacoma and Boston) and medium size systems (Savannah River) are represented. The river basins range from mountainous to low relief and semi-humid to semi-arid, and the system operational purposes range from predominantly municipal to broadly multi-purpose. The studies inferred, using a chain of climate downscaling, hydrologic and water resources systems models, the sensitivity of six water resources systems to changes in precipitation, temperature and solar radiation. The climate change scenarios used in this study are based on results from transient climate change experiments performed with coupled ocean-atmosphere General Circulation Models (GCMs) for the 1995 Intergovernmental Panel on Climate Change (IPCC) assessment. An earlier doubled-CO2 scenario from one of the GCMs was also used in the evaluation. The GCM scenarios were transferred to the local level using a simple downscaling approach that scales local weather variables by fixed monthly ratios (for precipitation) and fixed monthly shifts (for temperature). For those river basins where snow plays an important role in the current climate hydrology (Tacoma, Columbia, Missouri and, to a lesser extent, Boston) changes in temperature result in important changes in seasonal streamflow hydrographs. In these systems, spring snowmelt peaks are reduced and winter flows increase, on average. Changes in precipitation are generally reflected in the annual total runoff volumes more than in the seasonal shape of the hydrographs. In the Savannah and ACF systems, where snow plays a minor hydrological role, changes in hydrological response are linked more directly to temperature and precipitation changes. Effects on system performance varied from system to system, from GCM to GCM, and for each system operating objective (such as hydropower production, municipal and industrial supply, flood control, recreation, navigation and instream flow protection). Effects were generally smaller for the transient scenarios than for the doubled CO2 scenario. In terms of streamflow, one of the transient scenarios tended to have increases at most sites, while another tended to have decreases at most sites. The third showed no general consistency over the six sites. Generally, the water resource system performance effects were determined by the hydrologic changes and the amount of buffering provided by the system's storage capacity. The effects of demand growth and other plausible future operational considerations were evaluated as well. For most sites, the effects of these non-climatic effects on future system performance would about equal or exceed the effects of climate change over system planning horizons.  相似文献   

8.
The Yiluo River is the largest tributary of the middle and lower Yellow River below the Sanmenxia Dam. Hydro-climatic variables have changed in the Yiluo River during the last half century. In this study, the trends in the annual precipitation and streamflow were analyzed in the Yiluo River during 1960–2006. The results indicated that both the annual precipitation and streamflow decreased significantly (P?<?0.05) from 1960 to 2006. Pettitt’s test shows that there was a change point for annual streamflow series around the year 1986 (P?<?0.05), while there was no change point identified for the annual precipitation series from 1960 to 2006. Annual streamflow decreased more significantly than annual precipitation since 1986. The relationship between the annual precipitation and streamflow presented a non-stationary state since 1986. This non-stationary relationship was mainly influenced by human activities. The average annual amount of water diversion from the Yiluo River increased significantly since the mid-1980s, accounting for 31.3 % of the total streamflow decrease from 1986 to 2006. In addition, land use/cover change (LUCC) contributed to 27.1–29.8 % of the decrease in streamflow. Human activities, including water diversion and LUCC, together contributed to 58.4–61.1 % of the decrease in streamflow and led to the non-stationary relationship between the annual precipitation and streamflow from 1986 to 2006. This study detected the changes in the precipitation–streamflow relationship and investigated the possible causes in the Yiluo River, which will be helpful for the understanding of the changes in streamflow in the Yellow River Basin.  相似文献   

9.
This paper investigates how using different regional climate model (RCM) simulations affects climate change impacts on hydrology in northern Europe using an offline hydrological model. Climate change scenarios from an ensemble of seven RCMs, two global climate models (GCMs), two global emissions scenarios and two RCMs of varying resolution were used. A total of 15 climate change simulations were included in studies on the Lule River basin in Northern Sweden. Two different approaches to transfer climate change from the RCMs to hydrological models were tested. A rudimentary estimate of change in hydropower potential on the Lule River due to climate change was also made. The results indicate an overall increase in river flow, earlier spring peak flows and an increase in hydropower potential. The two approaches for transferring the signal of climate change to the hydrological impacts model gave similar mean results, but considerably different seasonal dynamics, a result that is highly relevant for other types of climate change impacts studies.  相似文献   

10.
Climate strongly affects energy supply and demand in the Pacific Northwest (PNW) and Washington State (WA). We evaluate potential effects of climate change on the seasonality and annual amount of PNW hydropower production, and on heating and cooling energy demand. Changes in hydropower production are estimated by linking simulated streamflow scenarios produced by a hydrology model to a simulation model of the Columbia River hydro system. Changes in energy demand are assessed using gridded estimates of heating degree days (HDD) and cooling degree days (CDD) which are then combined with population projections to create energy demand indices that respond both to climate, future population, and changes in residential air conditioning market penetration. We find that substantial changes in the amount and seasonality of energy supply and demand in the PNW are likely to occur over the next century in response to warming, precipitation changes, and population growth. By the 2040s hydropower production is projected to increase by 4.7–5.0% in winter, decrease by about 12.1–15.4% in summer, with annual reductions of 2.0–3.4%. Larger decreases of 17.1–20.8% in summer hydropower production are projected for the 2080s. Although the combined effects of population growth and warming are projected to increase heating energy demand overall (22–23% for the 2020s, 35–42% for the 2040s, and 56–74% for the 2080s), warming results in reduced per capita heating demand. Residential cooling energy demand (currently less than one percent of residential demand) increases rapidly (both overall and per capita) to 4.8–9.1% of the total demand by the 2080s due to increasing population, cooling degree days, and air conditioning penetration.  相似文献   

11.
潮白河流域为北京主要供水源,其水资源量对北京用水保障至关重要,因此开展该流域在全球1.5℃和2.0℃升温下的径流预估研究具有现实意义。利用1961—2001年WATCH数据对SWAT水文模型进行率定和验证,在此基础上,应用第五次耦合模式比较计划(CMIP5)中5个全球气候模式在典型浓度路径(RCP4.5、RCP6.0和RCP8.5)下预估的全球1.5℃和2.0℃升温下的数据驱动SWAT模型,开展了潮白河流域气温、降水及径流量的变化预估研究,并量化评估由气候模式和RCPs导致的水文效应的不确定性。结果表明:(1) SWAT模型基本能较好地模拟潮白河流域的月径流特征,应用该模型进行气候变化对径流量的影响评估是可行的。(2)在全球1.5℃和2.0℃升温下,潮白河流域年平均温度较基准期(1976—2005年)分别增加1.5℃和2.2℃,年平均降水量也增加4.9%和7.0%。预估的年径流量在全球1.5℃升温下总体略有增加,盛夏和秋初的径流量占全年的比例也有所增加;在全球2.0℃升温下,年径流量增幅达30%以上,但夏季径流量占全年的比例明显减少。(3)在全球2.0℃升温下,潮白河流域极端丰水流量明显增加,洪涝发生风险增大。(4)未来气温、降水量和径流量的预估都存在一定的不确定性,在全球2.0℃升温下不确定性更大;相对而言,径流量的不确定性要远大于降水量的不确定性;无论是全球1.5℃升温下还是2.0℃升温下,预估不确定性主要来源于全球气候模式。  相似文献   

12.
C. Tague  L. Seaby  A. Hope 《Climatic change》2009,93(1-2):137-155
Global Climate Models (GCMs) project moderate warming along with increases in atmospheric CO2 for California Mediterranean type ecosystems (MTEs). In water-limited ecosystems, vegetation acts as an important control on streamflow and responds to soil moisture availability. Fires are also key disturbances in semi-arid environments, and few studies have explored the potential interactions among changes in climate, vegetation dynamics, hydrology, elevated atmospheric CO2 concentrations and fire. We model ecosystem productivity, evapotranspiration, and summer streamflow under a range of temperature and precipitation scenarios using RHESSys, a spatially distributed model of carbon–water interactions. We examine the direct impacts of temperature and precipitation on vegetation productivity and impacts associated with higher water-use efficiency under elevated atmospheric CO2. Results suggest that for most climate scenarios, biomass in chaparral-dominated systems is likely to increase, leading to reductions in summer streamflow. However, within the range of GCM predictions, there are some scenarios in which vegetation may decrease, leading to higher summer streamflows. Changes due to increases in fire frequency will also impact summer streamflow but these will be small relative to changes due to vegetation productivity. Results suggest that monitoring vegetation responses to a changing climate should be a focus of climate change assessment for California MTEs.  相似文献   

13.
Model Projections of Precipitation Minus Evaporation in China   总被引:1,自引:0,他引:1       下载免费PDF全文
Changes in precipitation minus evaporation (P -E) are analyzed to investigate the possible impacts of climate change on water resource conditions in China. Simulations of SRES A1B and 20C3M scenarios from the WCRP CMIP3 GCMs are employed in the study. Time slice analysis shows that there would be more annual mean P -E across China in 2040-2055 and 2080-2099, compared to 1980-1999, with the largest percentage change over Northwest China and the Bohai Rim area. Precipitation and evaporation would also increase over entire China during these two periods. Annual mean P -E, precipitation, and evaporation averaged over the whole China and its eight sub-areas all yield generally upward trends during the 21st century. This indicates that on annual mean scale, the global warming related precipitation dominates the hydroclimate conditions in China. On seasonal mean scale, although precipitation is projected to increase over China, P -E exhibits both decreasing and increasing trends over certain regions of China. This suggests that the variation of global warming related evaporation dominates hydroclimate conditions over some parts of China, especially in northern China. Therefore, in hydroclimate condition projections, considering both evaporation and precipitation changes should be more reasonable than considering only precipitation.  相似文献   

14.
Going to the Extremes   总被引:8,自引:1,他引:8  
Projections of changes in climate extremes are critical to assessing the potential impacts of climate change on human and natural systems. Modeling advances now provide the opportunity of utilizing global general circulation models (GCMs) for projections of extreme temperature and precipitation indicators. We analyze historical and future simulations of ten such indicators as derived from an ensemble of 9 GCMs contributing to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR4), under a range of emissions scenarios. Our focus is on the consensus from the GCM ensemble, in terms of direction and significance of the changes, at the global average and geographical scale. The climate extremes described by the ten indices range from heat-wave frequency to frost-day occurrence, from dry-spell length to heavy rainfall amounts. Historical trends generally agree with previous observational studies, providing a basic sense of reliability for the GCM simulations. Individual model projections for the 21st century across the three scenarios examined are in agreement in showing greater temperature extremes consistent with a warmer climate. For any specific temperature index, minor differences appear in the spatial distribution of the changes across models and across scenarios, while substantial differences appear in the relative magnitude of the trends under different emissions rates. Depictions of a wetter world and greater precipitation intensity emerge unequivocally in the global averages of most of the precipitation indices. However, consensus and significance are less strong when regional patterns are considered. This analysis provides a first overview of projected changes in climate extremes from the IPCC-AR4 model ensemble, and has significant implications with regard to climate projections for impact assessments. An erratum to this article is available at . An erratum to this article can be found at  相似文献   

15.
Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971–2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18–33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11–14% (for RCP2.6 and the shared socio-economic pathway (SSP)1, SSP2, SSP4) and 41–51% (RCP8.5–SSP3, SSP5) of the world population by the 2080s.  相似文献   

16.
In the Arkansas River Basin in southeastern Colorado, surface irrigation provides most of the water required for agriculture. Consequently, the region’s future could be significantly affected if climate change impacts the amount of water available for irrigation. A methodology to model the expected impacts of climate change on irrigation water demand in the region is described. The Integrated Decision Support Consumptive Use model, which accounts for spatial and temporal variability in evapotranspiration and precipitation, is used in conjunction with two climate scenarios from the Vegetation-Ecosystem Modeling and Analysis Project. The two scenarios were extracted and scaled down from two general circulation models (GCMs), the HAD from the Hadley Centre for Climate Prediction and Research and the CCC from the Canadian Climate Centre. The results show significant changes in the water demands of crops due to climate change. The HAD and CCC climate change scenarios both predict an increase in water demand. However, the projections of the two GCMs concerning the water available for irrigation differ significantly, reflecting the large degree of uncertainty concerning what the future impacts of climate change might be in the study region. As new or updated predictions become available, the methodology described here can be used to estimate the impacts of climate change.  相似文献   

17.
Diverse vulnerabilities of Bangladesh's agricultural sector in 16 sub-regions are assessed using experiments designed to investigate climate impact factors in isolation and in combination. Climate information from a suite of global climate models (GCMs) is used to drive models assessing the agricultural impact of changes in temperature, precipitation, carbon dioxide concentrations, river floods, and sea level rise for the 2040–2069 period in comparison to a historical baseline. Using the multi-factor impacts analysis framework developed in Yu et al. (2010), this study provides new sub-regional vulnerability analyses and quantifies key uncertainties in climate and production. Rice (aman, boro, and aus seasons) and wheat production are simulated in each sub-region using the biophysical Crop Environment REsource Synthesis (CERES) models. These simulations are then combined with the MIKE BASIN hydrologic model for river floods in the Ganges-Brahmaputra-Meghna (GBM) Basins, and the MIKE21 Two-Dimensional Estuary Model to determine coastal inundation under conditions of higher mean sea level. The impacts of each factor depend on GCM configurations, emissions pathways, sub-regions, and particular seasons and crops. Temperature increases generally reduce production across all scenarios. Precipitation changes can have either a positive or a negative impact, with a high degree of uncertainty across GCMs. Carbon dioxide impacts on crop production are positive and depend on the emissions pathway. Increasing river flood areas reduce production in affected sub-regions. Precipitation uncertainties from different GCMs and emissions scenarios are reduced when integrated across the large GBM Basins’ hydrology. Agriculture in Southern Bangladesh is severely affected by sea level rise even when cyclonic surges are not fully considered, with impacts increasing under the higher emissions scenario.  相似文献   

18.
Hydrological modeling for climate-change impact assessment implies using meteorological variables simulated by global climate models (GCMs). Due to mismatching scales, coarse-resolution GCM output cannot be used directly for hydrological impact studies but rather needs to be downscaled. In this study, we investigated the variability of seasonal streamflow and flood-peak projections caused by the use of three statistical approaches to downscale precipitation from two GCMs for a meso-scale catchment in southeastern Sweden: (1) an analog method (AM), (2) a multi-objective fuzzy-rule-based classification (MOFRBC) and (3) the Statistical DownScaling Model (SDSM). The obtained higher-resolution precipitation values were then used to simulate daily streamflow for a control period (1961–1990) and for two future emission scenarios (2071–2100) with the precipitation-streamflow model HBV. The choice of downscaled precipitation time series had a major impact on the streamflow simulations, which was directly related to the ability of the downscaling approaches to reproduce observed precipitation. Although SDSM was considered to be most suitable for downscaling precipitation in the studied river basin, we highlighted the importance of an ensemble approach. The climate and streamflow change signals indicated that the current flow regime with a snowmelt-driven spring flood in April will likely change to a flow regime that is rather dominated by large winter streamflows. Spring flood events are expected to decrease considerably and occur earlier, whereas autumn flood peaks are projected to increase slightly. The simulations demonstrated that projections of future streamflow regimes are highly variable and can even partly point towards different directions.  相似文献   

19.
This paper assesses the impacts of climate change on water resources in the upper Ping River Basin of Thailand. A rainfall-runoff model is used to estimate future runoff based on the bias corrected and downscaled ECHAM4/OPYC general circulation model (GCM) precipitation scenarios for three future 5-year periods; the 2023–2027 (2025s), the 2048–2052 (2050s) and 2093–2097 (2095s). Bias-correction and spatial disaggregation techniques are applied to improve the characteristics of raw ECHAM4/OPYC precipitation. Results of future simulations suggest a decrease of 13–19 % in annual streamflow compared to the base period (1998–2002). Results also indicate that there will be a shift in seasonal streamflow pattern. Peak flows in future periods will occur in October–November rather than September as observed in the base period. There will be a significant increase in the streamflow in April with overall decrease in streamflow during the rainy season (May–October) and an increase during the dry season (November–April) for all future time periods considered in the study.  相似文献   

20.
Future climate projections from general circulation models (GCMs) predict an acceleration of the global hydrological cycle throughout the 21st century in response to human-induced rise in temperatures. However, projections of GCMs are too coarse in resolution to be used in local studies of climate change impacts. To cope with this problem, downscaling methods have been developed that transform climate projections into high resolution datasets to drive impact models such as rainfall-runoff models. Generally, the range of changes simulated by different GCMs is considered to be the major source of variability in the results of such studies. However, the cascade of uncertainty in runoff projections is further elongated by differences between impact models, especially where robust calibration is hampered by the scarcity of data. Here, we address the relative importance of these different sources of uncertainty in a poorly monitored headwater catchment of the Ecuadorian Andes. Therefore, we force 7 hydrological models with downscaled outputs of 8 GCMs driven by the A1B and A2 emission scenarios over the 21st century. Results indicate a likely increase in annual runoff by 2100 with a large variability between the different combinations of a climate model with a hydrological model. Differences between GCM projections introduce a gradually increasing relative uncertainty throughout the 21st century. Meanwhile, structural differences between applied hydrological models still contribute to a third of the total uncertainty in late 21st century runoff projections and differences between the two emission scenarios are marginal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号