首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Quantifying the radiative forcing due to aerosol–cloud interactions especially through cirrus clouds remains challenging because of our limited understanding of aerosol and cloud processes. In this study, we investigate the anthropogenic aerosol indirect forcing (AIF) through cirrus clouds using the Community Atmosphere Model version 5 (CAM5) with a state-of-the-art treatment of ice nucleation. We adopt a new approach to isolate anthropogenic AIF through cirrus clouds in which ice nucleation parameterization is driven by prescribed pre-industrial (PI) and presentday (PD) aerosols, respectively. Sensitivities of anthropogenic ice AIF (i.e., anthropogenic AIF through cirrus clouds) to different ice nucleation parameterizations, homogeneous freezing occurrence, and uncertainties in the cloud microphysics scheme are investigated. Results of sensitivity experiments show that the change (PD minus PI) in global annual mean longwave cloud forcing (i.e., longwave anthropogenic ice AIF) ranges from 0.14 to 0.35 W m–2, the change in global annual mean shortwave cloud forcing (i.e., shortwave anthropogenic ice AIF) from–0.47 to–0.20 W m–2, and the change in net cloud forcing from–0.12 to 0.05 W m–2. Our results suggest that different ice nucleation parameterizations are an important factor for the large uncertainty of anthropogenic ice AIF. Furthermore, improved understanding of the spatial and temporal occurrence characteristics of homogeneous freezing events and the mean states of cirrus cloud properties are also important for constraining anthropogenic ice AIF.  相似文献   

2.
Daily global solar irradiation (R s) is one of the main inputs in environmental modeling. Because of the lack of its measuring facilities, high-quality and long-term data are limited. In this research, R s values were estimated based on measured sunshine duration and cloud cover of our synoptic meteorological stations in central and southern Iran during 2008, 2009, and 2011. Clear sky solar irradiation was estimated from linear regression using extraterrestrial solar irradiation as the independent variable with normalized root mean square error (NRMSE) of 4.69 %. Daily R s was calibrated using measured sunshine duration and cloud cover data under different sky conditions during 2008 and 2009. The 2011 data were used for model validation. According to the results, in the presence of clouds, the R s model using sunshine duration data was more accurate when compared with the model using cloud cover data (NRMSE = 11. 69 %). In both models, with increasing sky cloudiness, the accuracy decreased. In the study region, more than 92 % of sunshine durations were clear or partly cloudy, which received close to 95 % of total solar irradiation. Hence, it was possible to estimate solar irradiation with a good accuracy in most days with the measurements of sunshine duration.  相似文献   

3.
Anthropogenic aerosols play an important role in the atmospheric energy balance. Anthropogenic aerosol optical depth (AOD) and its accompanying shortwave radiative forcing (RF) are usually simulated by nu- merical models. Recently, with the development of space-borne instruments and sophisticated retrieval algorithms, it has become possible to estimate aerosol radiative forcing based on satellite observations. In this study, we have estimated shortwave direct radiative forcing due to anthropogenic aerosols over oceans in all-sky conditions by combining clouds and the Single Scanner Footprint data of the Clouds and Earth’s Radiant Energy System (CERES/SSF) experiment, which provide measurements of upward shortwave fluxes at the top of atmosphere, with Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol and cloud products. We found that globally averaged aerosol radiative forcing over oceans in the clear-sky conditions and all-sky conditions were -1.03±0.48 W m-2 and -0.34 ±0.16 W m-2, respectively. Direct radiative forcing by anthropogenic aerosols shows large regional and seasonal variations. In some regions and in particular seasons, the magnitude of direct forcing by anthropogenic aerosols can be comparable to the forcing of greenhouse gases. However, it shows that aerosols caused the cooling effect, rather than warming effect from global scale, which is different from greenhouse gases.  相似文献   

4.
Simultaneous measurements of downwelling short-wave solar irradiance and incoming total radiation flux were performed at the Reeves Nevè glacier station (1200 m MSL) in Antarctica on 41 days from late November 1994 to early January 1995, employing the upward sensors of an albedometer and a pyrradiometer. The downwelling short-wave radiation measurements were analysed following the Duchon and O'Malley [J. Appl. Meteorol. 38 (1999) 132] procedure for classifying clouds, using the 50-min running mean values of standard deviation and the ratio of scaled observed to scaled clear-sky irradiance. Comparing these measurements with the Duchon and O'Malley rectangular boundaries and the local human observations of clouds collected on 17 days of the campaign, we found that the Duchon and O'Malley classification method obtained a success rate of 93% for cirrus and only 25% for cumulus. New decision criteria were established for some polar cloud classes providing success rates of 94% for cirrus, 67% for cirrostratus and altostratus, and 33% for cumulus and altocumulus.The ratios of the downwelling short-wave irradiance measured for cloudy-sky conditions to that calculated for clear-sky conditions were analysed in terms of the Kasten and Czeplak [Sol. Energy 24 (1980) 177] formula together with simultaneous human observations of cloudiness, to determine the empirical relationship curves providing reliable estimates of cloudiness for each of the three above-mentioned cloud classes. Using these cloudiness estimates, the downwelling long-wave radiation measurements (obtained as differences between the downward fluxes of total and short-wave radiation) were examined to evaluate the downwelling long-wave radiation flux normalised to totally overcast sky conditions. Calculations of the long-wave radiation flux were performed with the MODTRAN 3.7 code [Kneizys, F.X., Abreu, L.W., Anderson, G.P., Chetwynd, J.H., Shettle, E.P., Berk, A., Bernstein, L.S., Robertson, D.C., Acharya, P., Rothman, L.S., Selby, J.E.A., Gallery, W.O., Clough, S.A., 1996. In: Abreu, L.W., Anderson, G.P. (Eds.), The MODTRAN 2/3 Report and LOWTRAN 7 MODEL. Contract F19628-91-C.0132, Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom AFB, MA, 261 pp.] for both clear-sky and cloudy-sky conditions, considering various cloud types characterised by different cloud base altitudes and vertical thicknesses. From these evaluations, best-fit curves of the downwelling long-wave radiation flux were defined as a function of the cloud base height for the three polar cloud classes. Using these relationship curves, average estimates of the cloud base height were obtained from the three corresponding sub-sets of long-wave radiation measurements. The relative frequency histograms of the cloud base height defined by examining these three sub-sets were found to present median values of 4.7, 1.7 and 3.6 km for cirrus, cirrostratus/altostratus and cumulus/altocumulus, respectively, while median values of 6.5, 1.8 and 2.9 km were correspondingly determined by analysing only the measurements taken together with simultaneous cloud observations.  相似文献   

5.
利用红外高光谱探测仪(Infrared Atmospheric Sounding Interferometer,IASI)在二氧化碳吸收带的长短波红外通道对云反应程度的不同来探测云。依据不同通道的权重函数峰值高度和云不敏感层高度将IASI长短波红外通道进行配对,成功配对的长短波红外通道晴空亮温之间建立线性回归模型,即通过长波红外通道亮温可以线性回归得到配对的短波通道亮温,将短波通道的晴空回归亮温和观测亮温之差定义为云指数。权重函数峰值高度位于383 hPa的云指数空间分布和云成分为冰的空间分布较为一致,尤其在赤道和低纬度地区。权重函数峰值高度位于790 hPa的云指数空间分布和低云云顶气压也有较好的一致性。  相似文献   

6.
To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed in this study. The results demonstrated that the vertical distribution of the aerosol number concentration(N_a) was similar to that of the clean rural continent. The average aerosol effective diameter(D_e) was maintained at approximately 0.4 μm at all levels. The data obtained during cloud penetrations showed that there was a progressive increase in the cloud droplet concentration(N_c) and liquid water content(LWC) from outside to inside the clouds, while the Nawas negatively related to the Ncand LWC at the same height. The fluctuation of the N_a, Ncand LWC during cloud penetration was more obvious under polluted conditions(Type 1) than under clean conditions(Type 2). Moreover, the wet scavenging of cloud droplets had a significant impact on the accumulation mode of aerosols, especially on particles with diameters less than 0.4 μm. The minimum wet scavenging coefficient within the cloud was close to 0.02 under Type 1 conditions, while it increased to 0.1 under Type 2 conditions,which proved that the cloud wet scavenging effect under Type 1 conditions was stronger than that under Type 2 conditions.Additionally, cloud droplet spectra under Type 1 conditions were narrower, and their horizontal distributions were more homogeneous than those under Type 2 conditions.  相似文献   

7.
The effect of clouds on aerosol growth in the rural atmosphere   总被引:1,自引:0,他引:1  
Measurements of accumulation mode aerosol in the atmospheric boundary layer under cloudy and cloud-free conditions, and in the lower free troposphere under cloud-free conditions, were conducted over the rural northwest of England. Normalised size distributions in the cloud-free boundary layer (CFBL) and the cloud-free free troposphere (CFFT) exhibited almost identical spectral similarities with both size distributions possessing a concentration peak mode-radius of ≈0.05 μm or less. By comparison, aerosol distributions observed in cloudy air exhibited a distinctive log-normal distribution with mode-radii occurring at ≈0.1 μm concomitant with a local minimum at ≈0.05 μm. The consistent and noticeable difference in spectral features observed between cloudy and cloud-free conditions suggest that a greater amount of gas-to-particle conversion occurs on cloudy days, presumably through in-cloud aqueous phase oxidation processes, leading to larger sized accumulation mode particles. Apart from the distinct difference between cloudy and cloud-free aerosol spectra on cloudy days, aerosol concentration and mass were observed to be significantly enhanced above that of the ambient background in the vicinity of clouds. Volatility analysis during one case of cloud processing indicated an increase in the relative contribution of aerosol mass volatile at temperatures characteristic of sulphuric acid, along with a smaller fraction of more volatile material (possibly nitric acid and/or organic aerosol). Growth-law analysis of possible growth mechanisms point to aqueous phase oxidation of aerosol precursors in cloud droplets as being the only feasible mechanism capable of producing the observed growth. The effect of cloud processing is to alter the cloud condensation nuclei (CCN) supersaturation spectrum in a manner which increases the availability of CCN at lower cloud supersaturations.  相似文献   

8.
Among anthropogenic perturbations of the Earths atmosphere, greenhouse gases and aerosols are considered to have a major impact on the energy budget through their impact on radiative fluxes. We use three ensembles of simulations with the LMDZ general circulation model to investigate the radiative impacts of five species of greenhouse gases (CO2, CH4, N2O, CFC-11 and CFC-12) and sulfate aerosols for the period 1930–1989. Since our focus is on the atmospheric changes in clouds and radiation from greenhouse gases and aerosols, we prescribed sea-surface temperatures in these simulations. Besides the direct impact on radiation through the greenhouse effect and scattering of sunlight by aerosols, strong radiative impacts of both perturbations through changes in cloudiness are analysed. The increase in greenhouse gas concentration leads to a reduction of clouds at all atmospheric levels, thus decreasing the total greenhouse effect in the longwave spectrum and increasing absorption of solar radiation by reduction of cloud albedo. Increasing anthropogenic aerosol burden results in a decrease in high-level cloud cover through a cooling of the atmosphere, and an increase in the low-level cloud cover through the second aerosol indirect effect. The trend in low-level cloud lifetime due to aerosols is quantified to 0.5 min day–1 decade–1 for the simulation period. The different changes in high (decrease) and low-level (increase) cloudiness due to the response of cloud processes to aerosols impact shortwave radiation in a contrariwise manner, and the net effect is slightly positive. The total aerosol effect including the aerosol direct and first indirect effects remains strongly negative.  相似文献   

9.
To investigate the processes of development and maintenance of low-level clouds during major synoptic events, the cloudy boundary layer under stormy conditions during the summertime Arctic has been studied using observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment and large-eddy simulations (LES). On 29 July 1998, a stable Arctic cloudy boundary-layer event was observed after the passage of a synoptic low pressure system. The local dynamic and thermodynamic structure of the boundary layer was determined from aircraft measurements including the analysis of turbulence, cloud microphysics and radiative properties. After the upper cloud layer advected over the existing cloud layer, the turbulent kinetic energy (TKE) budget indicated that the cloud layer below 200 m was maintained predominantly by shear production. Observations of longwave radiation showed that cloud-top cooling at the lower cloud top has been suppressed by radiative effects of the upper cloud layer. Our LES results demonstrate the importance of the combination of shear mixing near the surface and radiative cooling at the cloud top in the storm-driven cloudy boundary layer. Once the low-level cloud reaches a certain height, depending on the amount of cloud-top cooling, the two sources of TKE production begin to separate in space under continuous stormy conditions, suggesting one possible mechanism for the cloud layering. The sensitivity tests suggest that the storm-driven cloudy boundary layer is possibly switched to the shear-driven system due to the advection of upper clouds or to the buoyantly driven system due to the lack of wind shear. A comparison is made of this storm-driven boundary layer with the buoyantly driven boundary layer previously described in the literature.  相似文献   

10.
Tazhong station, located at the hinterland of the Taklimakan Desert in northwest China, experiences frequent dusty weather events during spring and summer seasons (its dusty season) caused by unstable stratified atmosphere, abundant sand source and strong low-level wind. On average, it has 246.2 dusty days each year, of which 16.2 days are classified as sand and dust storm days. To better understand the characteristic of solar ultraviolet (UV) radiation and factors influencing its variations under such an extreme environment, UV radiation data were collected continuously from 2007 to 2011 at Tazhong station using UVS-AB-T radiometer by Kipp and Zonen. This study documents observational characteristics of the UV radiation variations observed during the five-year period. Monthly UV radiation in this region varied in the range of 14.1–37.8 MJ m?2 and the average annual amount was 320.7 MJ m?2. The highest value of UV radiation occurred in June (62.5 W m?2) while the lowest one in December (29.3 W m?2). It showed a notable diurnal cycle, with peak value at 12:00–13:00 LST. Furthermore, its seasonal variation exhibited some unique features, with averaged UV magnitude showing an order of summer > spring > autumn > winter. The seasonal values were 37.0, 29.1, 24.9 and 15.9 MJ m?2, respectively. In autumn and winter, its daily variations were relatively weak. However, significant daily variations were observed during spring and summer associated with frequent dust weather events occurring in the region. Further analysis showed that there was a significant correlation between the UV radiation and solar zenith angle under different weather conditions. Under the same solar zenith angle, UV radiation was higher during clear days while it was lower in sand and dust storm days. Our observations showed that there was a negative correlation between UV radiation and ozone, but such a relationship became absent in dusty days. The UV radiation was reduced by 6 % when cloud amount was 1–4 oktas, by 12 % when the cloud amount was 5–7 oktas, and by 24 % when the cloud amount was greater than 8 oktas. The relative reduction of UV radiation reached 26, 38, and 45 % in dust day, blowing sand day and sand and dust storm day, respectively. The results revealed that decrease in UV radiation can be attributed to cloud coverage and dust aerosols. Moreover, the reduction of UV radiation caused by dust aerosols was about 2–4 times greater than that caused by cloud coverage. These observational results are of value for improving our understanding of processes controlling UV radiation over sand desert and developing methods for its estimation and prediction.  相似文献   

11.
全天空成像仪(total sky imager 440,TSI-440)可以实现白天全天空云量的持续自动监测,时空分辨率较高,得到的云量计算结果更精确.首先介绍了TSI-440的基本原理和资料格式,并基于太湖地区2008年5-10月的TSI-440资料及无锡站地面观测资料,采用统计方法详细地分析了不同天气情况下图像的成像特征及云量的计算误差.结果发现:图像的成像特征与能见度密切相关,红蓝比值随着能见度的减小而增大.另外,仪器在处理阴天图像及复杂天空(多云)图像时,易造成一定的云量计算误差.针对上述问题,本文通过直方图分析,重新选定了红蓝比阈值(晴空点阈值0.62,云点阈值0.66),基于新阈值计算的云量结果较仪器自带的处理结果更为准确,减小了因天气状况不同而产生的云量计算误差.  相似文献   

12.
The radiative energy exchange between arctic sea-ice and stratiform clouds is studied by means of aircraft measurements and a two-stream radiation transfer model. The data have been obtained by flights of two identically instrumented aircraft during the Radiation and Eddy Flux Experiments REFLEX I in autumn 1991 and REFLEX II in winter 1993 over the arctic marginal ice zone of Fram Strait. The instrumental equipment comprised Eppley pyranometers and pyrgeometers, which measure the solar and terrestrial upwelling and downwelling hemispheric radiation flux densities, and a line-scan-camera on one aircraft to monitor the surface structure of the sea-ice. An empirical parametrization of the albedo of partly ice-covered ocean surfaces is obtained from the data, which describes the albedo increasing linearly with the concentration of the snow-covered sea-ice and with the cosine of the sun zenith angle at sun elevations below 10°. Cloud optical parameters, such as single scattering albedo, asymmetry factor and shortwave and longwave height-dependent extinction coefficient are determined by adjusting modeled radiation flux densities to observations. We found significant influence of the multiple reflection of shortwave radiation between the ice surface and the cloud base on the radiation regime. Consistent with the data, a radiation transfer model shows that stratus clouds of 400 m thickness with common cloud parameters may double the global radiation at the surface of sea-ice compared to open water values. The total cloud-surface-albedo under these circumstances is 30% larger over sea-ice than over water. Parametrizations of the global and reflected radiation above and below stratus clouds are proposed on the basis of the measurements and modeling. The upwelling and downwelling longwave emission of stratus clouds with thicknesses of more than 500 m can be satisfactorily estimated by Stefan's law with an emissivity of nearly 1 and when the maximum air temperature within the cloud is used.  相似文献   

13.
Efficient and proper understanding of the state of the clouds regarding different seasons of the year will have profound effects on different economic and environmental sectors. The purpose of this study is to determine the hourly dissociation of ice and liquid clouds in Iran. To this end, cloud optical thickness (COT) data, as well as optical depth of clouds in two phases of liquid and ice were obtained and processed from 31 synoptic meteorological stations (1960–2015), MODIS data from Terra satellite during the years 2001 to 2011, and they were processed then. Next, using the RegCM4 model, the cloud fraction (clt) was simulated to accurately identify the cloud cover situation in Iran. The results showed that the maximum annual mean abundance of liquid and ice clouds was 18.95 days for the time 15:00 and 3.99 days for the time 06:00, respectively. Climatic zones of the Caspian and Persian Gulf coasts at 15 o’clock had the highest decreasing trend of liquid clouds. Ice clouds in all parts of Iran’s climate, with the exception of the eastern plateau, also declined. From south to north and east to west of Iran, the occurrence of ice and liquid clouds is increasing. Therefore, the spatio-temporal distribution of liquid and ice clouds in the country was also dependent on spatial components and latitude had the greatest impact. From the satellite and modeled data, the RegCM4 model has been able to detect the Monsoon phenomenon in southeastern Iran during the summer. CLT simulation in Iran has also shown that cloud cover in Iran fluctuates between 28 and 65% on average, with 81.5% of Iranian stations having a significant change in the amount of annual cloud cover. Correlation of liquid and ice clouds with precipitation showed that liquid clouds in summer and ice clouds in spring had higher correlation with precipitation in Iran. Northern coasts of Iran due to greater ascent mechanisms such as coastal compressors, north latitude atmospheric circulation systems, and maximum winds in the north and west of Iran due to the location of western systems entry and sufficient thermal gradient, had maximum ice clouds in the last half century. Also, south of Iran, despite having extended and great water-bodies, is less cloudy due to descending air in Hadley’s circulation (Hadley cell) of air.  相似文献   

14.
利用毫米波云雷达、微波辐射计联合反演方法,对2015年11月11日安徽寿县的一次层状云过程的云参数进行了反演,将所得云参数加入到SBDART辐射传输模式中,进行辐射通量计算,并将计算的地面辐射通量与观测的地面辐射通量进行了对比分析。研究表明:1)利用毫米波雷达和微波辐射计数据联合反演的云参数比较可靠;2)利用SBDART模式并结合反演的云参数,可以准确实时地计算地面及其他高度层的长短波辐射通量;3)在反演的云参数中,光学厚度对地面各种辐射通量的影响是最大的,云层的光学厚度越大,到达地面的太阳短波辐射越小,地面反射短波辐射也越小。另外云底温度越高,云体向下发射的红外长波辐射越大。地面向上的长波辐射是地面温度的普朗克函数,随地面温度而变;4)云对地面的短波辐射强迫为负值,对地面有降温的作用。云对地面的长波辐射强迫是一个正值,对地面有一个增温的作用;5)云对地面的净辐射强迫随时间变化很大,它的正负与太阳高度角和云参数有关。  相似文献   

15.
 Using two pairs of coincident long-term satellite derived cloud and earth radiation budget data sets (Nimbus-7 ERB/Nimbus-7 Cloud Climatology and ERBE Scanner/ISCCP-C2), estimates are made of the sensitivity of the top of the atmosphere radiation budget to interannual variations in the total cloud amount. Both sets of analyses indicate that the largest net warming due to interannual cloud cover changes occurs over desert regions, while the largest net cooling occurs in areas of persistent marine stratiform cloud. There is generally a large amount of cancellation between the large shortwave cooling and longwave warming effects in tropical convection regions. However, the Nimbus-7 analysis identifies an area of net warming in the tropical eastern Pacific Ocean which is shown to be associated with the 1982–83 ENSO event. In the zonal mean the Nimbus-7 data sets indicate that interannual cloud cover changes lead to a net warming at low latitudes and net cooling polewards of 25° in both hemispheres. In contrast, the analysis of the ERBE and ISCCP data sets indicates net cooling everywhere except for the Northern Hemisphere equatorwards of 20 °N. For the spatial average between 60 °N and 60 °S the ratio of the shortwave and longwave effects is 0.94 in the Nimbus-7 analysis (i.e. clouds cause a small net warming) and 1.21 in the ERBE-ISCCP analysis (i.e. a net cooling). Given their improved spatial and temporal sampling the analysis using the ERBE and ISCCP data sets should be the more reliable. However, the large differences between the two analyses still raises some issues concerning the confidence with which the sign of the effect of clouds on the radiation budget at these time scales is currently known. Received: 24 October 1995 / Accepted: 8 August 1996  相似文献   

16.
彭杰  张华 《大气科学学报》2015,38(4):465-472
结合Cloud Sat对云的主动观测和MODIS(MODerate-Resolution Imaging Spectroradiometer)对气溶胶的被动反演,研究了典型站点气溶胶对云的宏观、微观和辐射特性的影响。结果表明,气溶胶对大陆性和海洋性站点的云均有显著影响。1)随气溶胶光学厚度(Aerosol Optical Depth,AOD)增加,水汽含量较弱站点的低层(高层)云量呈减小(增加)趋势,而水汽条件较强站点的各层云量均增大,且具有较高(较低)云顶的云层发生概率在各个站点都呈增加(减小)趋势。2)AOD的增大导致各站点云滴和冰晶粒子的有效半径均减小、大气层顶的短波和长波云辐射强迫均增强、短波云辐射强迫绝对值的加强更显著、长波云辐射强迫增加的幅度相对更大。3)气象要素在AOD大(小)值情况下的变化表明,大尺度动力条件并不能解释云的上述特性随AOD的显著改变。  相似文献   

17.
Components of the surface radiation budget (SRB) [incoming shortwave radiation (ISR) and downwelling longwave radiation (DLR)] and cloud cover are assessed for three regional climate models (RCM) forced by analysed boundary conditions, over North America. We present a comparison of the mean seasonal and diurnal cycles of surface radiation between the three RCMs, and surface observations. This aids in identifying in what type of sky situation simulated surface radiation budget errors arise. We present results for total-sky conditions as well as overcast and clear-sky conditions separately. Through the analysis of normalised frequency distributions we show the impact of varying cloud cover on the simulated and observed surface radiation budget, from which we derive observed and model estimates of surface cloud radiative forcing. Surface observations are from the NOAA SURFRAD network. For all models DLR all-sky biases are significantly influenced by cloud-free radiation, cloud emissivity and cloud cover errors. Simulated cloud-free DLR exhibits a systematic negative bias during cold, dry conditions, probably due to a combination of omission of trace gas contributions to the DLR and a poor treatment of the water vapor continuum at low water vapor concentrations. Overall, models overestimate ISR all-sky in summer, which is primarily linked to an underestimate of cloud cover. Cloud-free ISR is relatively well simulated by all RCMs. We show that cloud cover and cloud-free ISR biases can often compensate to result in an accurate total-sky ISR, emphasizing the need to evaluate the individual components making up the total simulated SRB.  相似文献   

18.
Using infrared sensors to detect ice clouds in different atmospheric layers is still a challenge. The different scattering and absorption properties of longwave and shortwave infrared channels can be utilized to fulfill this purpose.In this study, the release of Suomi-NPP Cross-track Infrared Sounder(Cr IS) full spectrum resolution is used to select and pair channels from longwave(~ 15 μm) and shortwave(~4.3 μm) CO_2 absorption bands under stricter conditions, so as to better detect ice clouds. Besides, the differences of the weighting function peaks and cloud insensitive level altitudes of the paired channels are both within 50 h Pa so that the variances due to atmospheric conditions can be minimized. The training data of clear sky are determined by Visible Infrared Imaging Radiometer Suite(VIIRS) cloud mask product and used to find the linear relationship between the paired longwave and shortwave CO_2 absorption channels. From the linear relationship, the so-called cloud emission and scattering index(CESI) is derived to detect ice clouds. CESI clearly captures the center and the ice cloud features of the Super Typhoon Hato located above 415 h Pa. Moreover, the CESI distributions agree with cloud top pressure from the VIIRS in both daytime and nighttime in different atmospheric layers.  相似文献   

19.
The influence of various cloud parameters and the interactions with the ground albedo and the solar zenith angle have been studied by means of model simulations. The radiative transfer model suitable for a cloudy atmosphere as well as for a clear atmosphere has been developed on the basis of the Discrete Ordinate Method. This study leads to a general understanding for cloudy atmospheres: in the presence of a uniform cloud, the cloud scattering is dominant to molecular and aerosol scattering, and it is also wavelength-independent; the ratio of transmitted irradiance in a cloudy atmosphere to that in the background clear atmosphere is independent of cloud height and solar zenith angle. That’s to say, the radiation downwelling out of a cloud is quite isotropic; it decreases approximately exponentially with the cloud optical depth at a rate related to the ground albedo; the reflected irradiance at the top of the atmosphere is dependent on cloud optical depth as well as on solar zenith angle, but not on ground albedo for clouds of not very thin optical depth.  相似文献   

20.
郭伟  刘磊 《气象科技》2016,44(6):860-866
利用地基红外测云仪(WSIRCMS)在2011年11月北京观象台的连续观测数据,从总云量、云底高和天空类型3个方面初步分析其探测能力。结果表明:1该仪器能够不分昼夜同时实现云高、云量(高、中、低和总云量)和天空类型的连续自动探测;2与参考标准云量的差值在±10%以内的样本数占总样本数的72.5%,有霾存在时,对中高云的观测能力较弱,造成云量观测结果差异较大;3与激光云高仪的天顶方向的无云一致率达94.9%;在中低云情况下,云高观测结果一致性较好,高云时存在较大差异,WSIRCMS观测云高偏高;4与人工分类的天空类型一致的样本数占总样本数的82.63%,对波状云、积状云和混合云的识别能力稍低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号