首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The retrospective forecast skill of three coupled climate models (NCEP CFS, GFDL CM2.1, and CAWCR POAMA 1.5) and their multi-model ensemble (MME) is evaluated, focusing on the Northern Hemisphere (NH) summer upper-tropospheric circulation along with surface temperature and precipitation for the 25-year period of 1981–2005. The seasonal prediction skill for the NH 200-hPa geopotential height basically comes from the coupled models’ ability in predicting the first two empirical orthogonal function (EOF) modes of interannual variability, because the models cannot replicate the residual higher modes. The first two leading EOF modes of the summer 200-hPa circulation account for about 84% (35.4%) of the total variability over the NH tropics (extratropics) and offer a hint of realizable potential predictability. The MME is able to predict both spatial and temporal characteristics of the first EOF mode (EOF1) even at a 5-month lead (January initial condition) with a pattern correlation coefficient (PCC) skill of 0.96 and a temporal correlation coefficient (TCC) skill of 0.62. This long-lead predictability of the EOF1 comes mainly from the prolonged impacts of El Niño-Southern Oscillation (ENSO) as the EOF1 tends to occur during the summer after the mature phase of ENSO. The second EOF mode (EOF2), on the other hand, is related to the developing ENSO and also the interdecadal variability of the sea surface temperature over the North Pacific and North Atlantic Ocean. The MME also captures the EOF2 at a 5-month lead with a PCC skill of 0.87 and a TCC skill of 0.67, but these skills are mainly obtained from the zonally symmetric component of the EOF2, not the prominent wavelike structure, the so-called circumglobal teleconnection (CGT) pattern. In both observation and the 1-month lead MME prediction, the first two leading modes are accompanied by significant rainfall and surface air temperature anomalies in the continental regions of the NH extratropics. The MME’s success in predicting the EOF1 (EOF2) is likely to lead to a better prediction of JJA precipitation anomalies over East Asia and the North Pacific (central and southern Europe and western North America).  相似文献   

2.
Abstract

The role of sea‐ice in affecting the stability and long‐term variability of the oceanic thermohaline circulation (THC) is studied in this paper. The emphasis is placed on studying how sea‐ice might affect the stability and the long‐term variability of the THC through modulations of the surface heat and freshwater fluxes. A simple box model is analyzed to elucidate qualitatively the distinct physical meanings of these two processes. The analytical solution of this simple model indicates that, for the long timescales considered here, the thermal insulation stabilizes the THC while the freshwater feedback increases the effective inertia of the coupled ice‐ocean system. Sea‐ice insulation lessens the negative feedback between heat flux and the SST, and therefore, allows the SST to play a greater role in counteracting changes of the THC and high latitude salinity field. The freshwater feedback effectively links the surface heat flux to a freshwater reservoir, and thus, increases the effective inertia of the coupled ocean‐ice system. A two‐dimensional ocean model coupled with a thermodynamic sea‐ice model is used to estimate quantitatively the magnitudes of these two feedbacks. The numerical experiments involve the model's responses both to initial anomalies and to changes of forcing fields. For the free response cases (model responses to initial anomalies without changing the forcing fields), the model shows that the decay rate of an initial anomaly is greater when sea‐ice is included. For small perturbations the thermal insulation effect dominates over the freshwater feedback. The latter becomes increasingly more important for larger perturbations. In response to a change of external forcing, the presence of sea‐ice reduces the magnitude and the pace of the model's response. The numerical results are qualitatively consistent with the analytical solution of the box model.  相似文献   

3.
Abstract

In this paper Nappo’ s (1975) formulation of the moisture availability function was used to derive the ß function of the form employed in the evapotranspiration calculations of various GCMs (Carson, 1981). An inverse calculation using the planetary boundary‐layer parameterizations of the GLAS general circulation model was made to derive this function. For this purpose two ground temperatures, namely those of saturated and naturally dry ground, were prognostically carried in a 47‐day integration with the model. The form of the calculated ß function is different from those reviewed by Carson. An example of global evapotranspiration obtained with the derived ß function is shown. Two separate five‐day simulations, one using ß as derived here and the other using Nappo's (1975) M function as a ß function, are compared. Large differences in the calculated evapotranspiration occur in dry regions.  相似文献   

4.
Understanding the response of the South Asian monsoon (SAM) system to global climate change is an interesting scientific problem that has enormous implications from the societal viewpoint. While the CMIP3 projections of future changes in monsoon precipitation used in the IPCC AR4 show major uncertainties, there is a growing recognition that the rapid increase of moisture in a warming climate can potentially enhance the stability of the large-scale tropical circulations. In this work, the authors have examined the stability of the SAM circulation based on diagnostic analysis of climate datasets over the past half century; and addressed the issue of likely future changes in the SAM in response to global warming using simulations from an ultra-high resolution (20 km) global climate model. Additional sensitivity experiments using a simplified atmospheric model have been presented to supplement the overall findings. The results here suggest that the intensity of the boreal summer monsoon overturning circulation and the associated southwesterly monsoon flow have significantly weakened during the past 50-years. The weakening trend of the monsoon circulation is further corroborated by a significant decrease in the frequency of moderate-to-heavy monsoon rainfall days and upward vertical velocities particularly over the narrow mountain ranges of the Western Ghats. Based on simulations from the 20-km ultra high-resolution model, it is argued that a stabilization (weakening) of the summer monsoon Hadley-type circulation in response to global warming can potentially lead to a weakened large-scale monsoon flow thereby resulting in weaker vertical velocities and reduced orographic precipitation over the narrow Western Ghat mountains by the end of the twenty-first century. Supplementary experiments using a simplified atmospheric model indicate a high sensitivity of the large-scale monsoon circulation to atmospheric stability in comparison with the effects of condensational heating.  相似文献   

5.
Abstract

The coupling of atmospheric general circulation models (AGCMs) to oceanic general circulation models (OGCMs) requires that each behaves appropriately in the uncoupled mode. The lower boundary conditions for uncoupled AGCMs are particularly simple over the oceans and consist of the specified climatological sea surface temperatures and sea‐ice extents. AGCMs develop fluxes of energy, momentum and moisture in response to these specified sea surface temperatures while they interact with their internal dynamics and parametrized physics.

The atmosphere‐ocean fluxes of energy and momentum developed in a collection of twelve AGCMs are compared with the climatological estimates of these terms. For the snapshot provided by this particular collection of models, the fluxes developed in the AGCMs are qualitatively similar to the climatological estimates, but there may be quantitative differences of considerable magnitude for some models as well as scatter among model values. Both the observation‐based estimates and the model‐generated values of these basic climatological quantities deserve attention, and efforts in this area are briefly noted.  相似文献   

6.
7.
Abstract

Analysis of 39 satellite‐tracked drifter records from the Newfoundland Grand Banks region has allowed maps of the mean and variable flows to be drawn. The variable currents are particularly large relative to the mean for the shelf, Flemish Cap and in the Newfoundland Basin. The ratio of the mean to variable flow is largest along the path of the Labrador Current. Drifters that either have been released on or migrate onto the Grand Banks remain therefor an average of 71 d. A statistical study of the effect of wind on drifter motion has shown that winds can only account for about 10% of current variability. This result is examined with consideration given to data noise, aliasing and non‐stationary conditions. Some drifters that were deployed in the Labrador Current moved onto the shelf and vice versa. These observations have been used to estimate the rate of exchange between the Current and the Grand Banks. Using this exchange rate in a box model, it is calculated that, over the iceberg season, 30% of the bergs will be in the Avalon Channel, 20% on the Grand Banks and 50% in the Labrador Current, in good agreement with the observed distribution. An alternative model based solely on advection is considered as well. The exchange model is also applied to the salinity budget for the Labrador Current with some success.  相似文献   

8.
We consider the general atmospheric circulation within the deductive framework of our climate theory. The preceding three parts of this theory have reduced the troposphere to the tropical and polar air masses and determined their temperature and the surface latitude of their dividing boundary, which provide the prior thermal constraint for the present dynamical derivation. Drawing upon its similar material conservation as the thermal property, the (columnar) potential vorticity (PV) is assumed homogenized as well in air masses, which moreover has a zero tropical value owing to the hemispheric symmetry. Inverting this PV field produces an upper-bound zonal wind that resembles the prevailing wind, suggesting that the latter may be explained as the maximum macroscopic motion extractable by random eddies – within the confine of the thermal differentiation.With the polar front determined in conjunction with the zonal wind, the approximate leveling of the isobars at the surface and high aloft specifies the tropopause, which is colder and higher in the tropics than in the polar region. The zonal wind drives the meridional circulation via the Ekman dynamics, and the preeminence of the Hadley cell stems from the singular Ekman convergence at the equator that allows it to supply the upward mass flux in the ITCZ demanded by the global energy balance.  相似文献   

9.
Julien Boé 《Climate Dynamics》2013,40(3-4):875-892
How soil moisture affects precipitation is an important question—with far reaching consequences, from weather prediction to centennial climate change—, albeit a poorly understood one. In this paper, an analysis of soil moisture–precipitation interactions over France based on observations is presented. A first objective of this paper is to investigate how large scale circulation modulates soil moisture–precipitation interactions, thanks to a weather regime approach. A second objective is to study the influence of soil moisture not only on precipitation but also on the difference between precipitation and evapotranspiration. Indeed, to have a total positive soil moisture–precipitation feedback, the potential decrease in precipitation associated with drier soils should be larger than the decrease in evapotranspiration that drier soils may also cause. A potential limited impact of soil moisture on precipitation is found for some weather regimes, but its sign depends on large scale circulation. Indeed, antecedent dry soil conditions tend to lead to smaller precipitation for the negative phase of the North Atlantic Oscillation (NAO) regime but to larger precipitation for the Atlantic Low regime. This differential response of precipitation to soil moisture anomalies depending on large scale circulation is traced back to different responses of atmospheric stability. For all circulation regimes, dry soils tend to increase the lifted condensation level, which is unfavorable to precipitation. But for the negative phase of the NAO, low soil moisture tends to lead to an increase of atmospheric stability while it tends to lead to a decrease of stability for Atlantic Low. Even if the impact of soil moisture anomalies varies depending on large scale circulation (it is larger for Atlantic low and the positive phase of the NAO), dry soils always lead to a decrease in evapotranspiration. As the absolute effect of antecedent soil moisture on evapotranspiration is always much larger than its effects on precipitation, for all circulation regimes dry soil anomalies subsequently lead to positive precipitation minus evapotranspiration anomalies i.e. the total soil moisture feedback is found to be negative. This negative feedback is stronger for the Atlantic Low and the positive phase of the NAO regimes.  相似文献   

10.
Abstract

The relationship between Arctic sea‐ice concentration anomalies, particularly those associated with the “Great Salinity Anomaly” of 1968–1982, and atmospheric circulation anomalies north of 45°N is investigated. Empirical orthogonal function (EOF) analyses are performed on winter Arctic ice concentration from 1954 to 1990, sea level pressure and 500‐hPa heights from 1947 to 1994, and 850‐hPa temperatures from 1963 to 1994. Variability on both interannual and decadal timescales is apparent in the time series of the leading winter EOFs of all variables. The first EOF of winter sea‐ice concentration was found to characterize the patterns of ice variability associated with the Great Salinity Anomaly in the northern North Atlantic from 1968–82. Spatial maps of temporal correlation coefficients between the time series of the first EOF of winter sea‐ice concentration and the winter atmospheric anomaly fields are calculated at lags of 0 and ±7 year. Maximum correlations were found to exist when the time‐series of this ice EOF 1 leads the atmospheric anomaly fields by one year. A particularly interesting result is the connection between the presence of ice anomalies in the Greenland and Barents Seas and subsequent pressure anomalies of the same sign over the Irminger Basin and the Canadian Arctic. The main emphasis of the paper is to identify connections between Arctic sea‐ice and atmospheric circulation anomalies at interannual time‐scales.  相似文献   

11.
Changes in the Brewer-Dobson circulation (BDC) during the 30 years 1980–2009 are investigated using Modern Era Retrospective-analysis for Research and Applications (MERRA) reanalysis data. The mass streamfunction that is induced by wave forcings in the transformed Eulerian-mean (TEM) equation through the downward-control principle is used as a proxy for the BDC. The changes in the BDC are investigated using two aspects: the wave propagation conditions in the stratosphere and the wave activity in the upper troposphere. They are compared in the first (P1) and second (P2) 15-year periods. The resolved wave forcing, expressed by the Eliassen-Palm (EP) flux divergence (EPD), is significantly enhanced during the December-January-February (DJF) season in P2 in both the Northern Hemisphere (NH) high latitudes and the Southern Hemisphere (SH) mid- and high latitudes. The increased zonal mean zonal wind at high latitudes in the SH, caused by ozone depletion, leads to an upward shift of the Rossby-wave critical layer and this allows more transient planetary waves to propagate into the stratosphere. In the NH, the enhanced EPD in DJF leads to an increase in the frequency of Sudden Stratospheric Warming (SSW) events. The gravity wave drag (GWD) is smaller than the EPD and the change in it between the two time periods is insignificant. The residual term in the TEM equation is similar to the GWD in the two periods, but its change between the two periods is as large as the change in the EPD. Among the four components of the EP flux at 250 hPa, the meridional heat flux played a dominant role in the enhancement of the BDC in P2.  相似文献   

12.
The impact of asymmetric thermal forcing associated with land–sea distribution on interdecadal variation in large-scale circulation and blocking was investigated using observations and the coupled model intercomparison project outputs. A land–sea index (LSI) was defined to measure asymmetric zonal thermal forcing; the index changed from a negative to a positive anomaly in the 1980s. In the positive phase of the LSI, the 500 hPa geopotential height decreased in the polar regions and increased in the mid-latitudes. The tropospheric planetary wave activity also became weaker and exerted less easterly forcing on the westerly wind. These circulation changes were favorable for westerly wind acceleration and reduced blocking. In the Atlantic, the duration of blocking decreased by 38 % during the positive LSI phase compared with that during the negative phase; in Europe, the number of blocking persisting for longer than 10 days during the positive LSI phase was only half of the number during the negative phase. The observed surface air temperature anomaly followed a distinctive “cold ocean/warm land” (COWL) pattern, which provided an environment that reduced, or destroyed, the resonance forcing of topography and was unfavorable for the development and persistence of blocking. In turn, the responses of the westerly and blocking could further enhance continental warming, which would strengthen the “cold ocean/warm land” pattern. This positive feedback amplified regional warming in the context of overall global warming.  相似文献   

13.
Air pressure field and circulation pattern frequencies were investigated to (1) locate and compare positions of the underlying pressure fields, (2) analyse the spatial dimension of affected areas, (3) create schematic maps of important circulation types and (4) compare the classification types in their response to the data. Two manual classifications were used, selected for the length of their time series and their applicability to a larger region: the Grosswetterlagen classification (GWLc) and the Vangengeim–Girs classification (VGc). Their time series were correlated with a global set of gridded monthly sea-level pressure data. Results show the different conceptual orientation of VGc (hemispheric) and GWLc (continental). The highest correlation values and the largest affected areas are visible in winter, where patterns frequently extended into northern Africa and western Asia. Schematic maps, illustrating the average location of main pressure centres, are provided for basic classes of both classifications. Re-arranging GWLc subtypes increases the classifications comparability with the VGc. Analysis of moving correlation coefficients reveals high fluctuations in the relation of both classifications over time.  相似文献   

14.
Scenarios for the development of large-scale vertical circulation anomalies during warm and cold phases of El Niño-Southern Oscillation are generalized based on the NCEP/NCAR reanalysis data for 1958-1998. Composite models of the cells of vertical circulation in the monsoon and trade-wind regions of the tropical Pacific are obtained for the first time for El Niño and La Niña separately. An unprecedented shift of the ascending branch of the zonal Walker circulation from the “maritime continent” of Indonesia to the east, to the central and eastern Pacific, was observed during the warm phase over the tropical Pacific; this shift was accompanied by an abrupt increase in the tropical cyclogenesis activity in the southern Pacific zone of convergence. On the contrary, during the cold phase, the ascending motions in the region of the summer Australian monsoon are subject to abrupt intensification. The reconstruction of the vertical meridional circulation during the warm phase manifested itself in the almost complete disappearance of the Hadley classic circulation over the central Pacific, characteristic of the trade-wind intertropical convergence zone (ITCZ), and in its replacement by the latitudinal monsoon circulation typical of the ITCZ over the Indian Ocean. During a cold phase, the Hadley circulation is both restored and intensified.  相似文献   

15.
The composite analysis of the structure of anomalies of vertical motions revealed disturbances in the Walker and Hadley circulations in the whole tropical zone associated with the two types of El Niño. The Eastern Pacific El Niño is characterized by the suppressed convection over the Maritime Continent and by the intensification of ascending motions in the central and eastern Pacific. The Central Pacific El Niño is characterized by the double Walker circulation cell with ascending motions in the central Pacific and descending motions in the western and eastern Pacific. Significant differences in the pattern of vertical circulation anomalies outside the Pacific region are also found in the north and west of the Indian Ocean and in the area of South America and the Caribbean.  相似文献   

16.
《大气与海洋》2013,51(2):81-92
Abstract

Evidence based on numerical simulations is presented for a strong correlation between the North Atlantic Oscillation (NAO) and the North Atlantic overturning circulation. Using an ensemble of numerical experiments with a coupled ocean‐atmosphere model including both natural and anthropogenic forcings, it is shown that the weakening of the thermohaline circulation (THC) could be delayed in response to a sustained upward trend in the NAO, which was observed over the last three decades of the twentieth century, 1970–99. Overall warming and enhanced horizontal transports of heat from the tropics to the subpolar North Atlantic overwhelm the NAO‐induced cooling of the upper ocean layers due to enhanced fluxes of latent and sensible heat, so that the net effect of warmed surface ocean temperatures acts to increase the vertical stability of the ocean column. However, the strong westerly winds cause increased evaporation from the ocean surface, which leads to a reduced fresh water flux over the western part of the North Atlantic. Horizontal poleward transport of salinity anomalies from the tropical Atlantic is the major contributor to the increasing salinities in the sinking regions of the North Atlantic. The effect of positive salinity anomalies on surface ocean density overrides the opposing effect of enhanced warming of the ocean surface, which causes an increase in surface density in the Labrador Sea and in the ocean area south of Greenland. The increased density of the upper ocean layer leads to deeper convection in the Labrador Sea and in the western North Atlantic. With a lag of four years, the meridional overturning circulation of the North Atlantic shows strengthening as it adjusts to positive density anomalies and enhanced vertical mixing. During the positive NAO trend, the salinity‐driven density instability in the upper ocean, due to both increased northward ocean transports of salinity and decreased atmospheric freshwater fluxes, results in a strengthening overturning circulation in the North Atlantic when the surface atmospheric temperature increases by 0.3°C and the ocean surface temperature warms by 0.5° to 1°C.  相似文献   

17.
In order to assess the impact of the mid-tropospheric circulation over the Greenland ice sheet (GrIS) on surface melt, as simulated by the regional climate model MAR, an automatic Circulation type classification (CTC) based on 500?hPa geopotential height from reanalyses is developed. General circulation correlates significantly with the surface melt anomalies for the summers in the period 1958?C2009. The record surface melt events observed during the summers of 2007?C2009 are linked to the exceptional persistence of atmospheric circulations favouring warm air advection. The CTC emphasizes that summer 500?hPa circulation patterns have changed since the beginning of the 2000s; this process is partly responsible for the recent warming observed over the GrIS.  相似文献   

18.
We analyze the ability of an oceanic monitoring array to detect potential changes in the North Atlantic meridional overturning circulation (MOC). The observing array is ‘deployed’ into a numerical model (ECHAM5/MPI-OM), and simulates the measurements of density and wind stress at 26°N in the Atlantic. The simulated array mimics the continuous monitoring system deployed in the framework of the UK Rapid Climate Change program. We analyze a set of three realizations of a climate change scenario (IPCC A1B), in which – within the considered time-horizon of 200 years – the MOC weakens, but does not collapse. For the detection analysis, we assume that the natural variability of the MOC is known from an independent source, the control run. Our detection approach accounts for the effects of observation errors, infrequent observations, autocorrelated internal variability, and uncertainty in the initial conditions. Continuous observation with the simulated array for approximately 60 years yields a statistically significant (p < 0.05) detection with 95 percent reliability assuming a random observation error of 1 Sv (1 Sv = 106 m3 s?1). Observing continuously with an observation error of 3 Sv yields a detection time of about 90 years (with 95 percent reliability). Repeated hydrographic transects every 5 years/ 20 years result in a detection time of about 90 years/120 years, with 95 percent reliability and an assumed observation error of 3 Sv. An observation error of 3 Sv (one standard deviation) is a plausible estimate of the observation error associated with the RAPID UK 26°N array.  相似文献   

19.
Statistical relationship between the dates of the spring reconstruction of the stratospheric circulation (10 hPa) and frequency of Dzerdzeevskii elementary circulation mechanisms (ECM) over the Northern Hemisphere in March-June is studied. It is found that, after early (March) and late (May) stratospheric reconstruction, the frequency substantially differs, which can be useful for long-term forecasting.  相似文献   

20.
In order to examine the changes in Walker circulation over the recent decades, we analyzed the sea surface temperature (SST), deep convective activities, upper tropospheric moistening, sea level pressure (SLP), and effective wind in the boundary layer over the 30-year period of 1979–2008. The analysis showed that the eastern tropical Pacific has undergone cooling while the western Pacific has undergone warming over the past three decades, causing an increase in the east–west SST gradient. It is indicated that the tropical atmosphere should have responded to these SST changes; increased deep convective activities and associated upper tropospheric moistening over the western Pacific ascending region, increased SLP over the eastern Pacific descending region in contrast to decreased SLP over the western Pacific ascending region, and enhanced easterly wind in the boundary layer in response to the SLP change. These variations, recognized from different data sets, occur in tandem with each other, strongly supporting the intensified Walker circulation over the tropical Pacific Ocean. Since the SST trend was attributed to more frequent occurrences of central Pacific-type El Niño in recent decades, it is suggested that the decadal variation of El Niño caused the intensified Walker circulation over the past 30 years. An analysis of current climate models shows that model results deviate greatly from the observed intensified Walker circulation. The uncertainties in the current climate models may be due to the natural variability dominating the forced signal over the tropical Pacific during the last three decades in the twentieth century climate scenario runs by CMIP3 CGCMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号