首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The aim of this study was to develop an advanced parameterization of the snow-free land surface albedo for climate modelling describing the temporal variation of surface albedo as a function of vegetation phenology on a monthly time scale. To estimate the effect of vegetation phenology on snow-free land surface albedo, remotely sensed data products from the Moderate-Resolution Imaging Spectroradiometer (MODIS) on board the NASA Terra platform measured during 2001 to 2004 are used. The snow-free surface albedo variability is determined by the optical contrast between the vegetation canopy and the underlying soil surface. The MODIS products of the white-sky albedo for total shortwave broad bands and the fraction of absorbed photosynthetically active radiation (FPAR) are analysed to separate the vegetation canopy albedo from the underlying soil albedo. Global maps of pure soil albedo and pure vegetation albedo are derived on a 0.5° regular latitude/longitude grid, re-sampling the high-resolution information from remote sensing-measured pixel level to the model grid scale and filling up gaps from the satellite data. These global maps show that in the northern and mid-latitudes soils are mostly darker than vegetation, whereas in the lower latitudes, especially in semi-deserts, soil albedo is mostly higher than vegetation albedo. The separated soil and vegetation albedo can be applied to compute the annual surface albedo cycle from monthly varying leaf area index. This parameterization is especially designed for the land surface scheme of the regional climate model REMO and the global climate model ECHAM5, but can easily be integrated into the land surface schemes of other regional and global climate models.  相似文献   

2.
To build land surface dataset for climate model,with application of remote sensing technique as well as the Geographic Information System(GIS),the data of surface type,roughness and albedo over China in 1997 were retrieved,resolutions being 10 km×10 km.Based on these data,an analysis is conducted on the geographic distributions and seasonal variations of surface vegetation cover and roughness as well as albedo over China.Results show that surface vegetation cover is mainly located to the south of Yangtze River,in Southwest and Northeast China andsparse vegetation cover is in the Northwest.The variation of land surface cover affects the variations of land surface roughness and albedo.High albedo occurred in the north of Xinjiang Autonomous Region,the north of Northeast China and the Qinghai-Xizang Plateau in winter,in correspondence with the location of snow cover.For most part of China,surface roughness decreases and albedo increases in winter,while the roughness increases and the albedo decreases in summer,which could mainly result from land surface cover(snow cover and vegetation cover)and soil moisture changes.This shows that the geographic distribution and seasonal variation of the albedo are almost opposite to those of the roughness,in agreement with theoretical results.Temporally,the amplitude of surface roughness change is quite small in comparison with the roughness itself.  相似文献   

3.
Land Cover, Rainfall and Land-Surface Albedo in West Africa   总被引:5,自引:0,他引:5  
Land surface albedo is an important variable in General Circulation Models (GCMs). When land cover is modified through anthropogenic land use, changes in land-surface albedo may produce atmospheric subsidence and reduction of rainfall. In this study we examined albedo time series and their relationships with rainfall, land cover, and population in West Africa. This particular region was selected because it has become a focal point in debates over biophysical impacts of desertification and deforestation. Our analyses revealed that albedo and rainfall were related only modestly at short time scales (monthly and annual) and that mean annual albedo values remained relatively stable from 1982–1989 over a widerange of climatic and vegetation zones in West Africa. The relationship between long-term mean rainfall and mean albedo was strong and curvilinear(r2 = 0.802). The same was true for the relationship betweenpercent tree cover and mean albedo (r2 = 0.659). These results suggest that long-term climate patterns, which control vegetation type and canopy structure, have greater influence on albedo than short-term fluctuations in rainfall. Our results reinforce other recent studies based on satellite data that have questioned the extent and pervasiveness of desertification in West Africa.  相似文献   

4.
 Snow cover fraction (SCF) has a significant influence on the surface albedo and thus on the radiation balance and surface climate. Long-term three dimensional simulations with general circulation models (GCMs) show that the SCF greatly affects the climate in the Northern Hemisphere. By means of both ground observations and remotely sensed data, several deficiencies in the SCF simulated by the current ECHAM4 GCM were identified: over mountainous areas a substantial overestimation in the SCF was found whereas flat areas showed a distinctly underestimated SCF. This work proposes a new parametrization of the SCF for use in GCMs. Evaluations illustrate that it is beneficial to distinguish between the following three terrains: (1) flat, non-forested areas, (2) mountainous regions and (3) forests. The modified SCF parametrization for flat, non-forested areas was derived by using global datasets of ground-based snow depth and remote sensing observations of snow cover data. A 3-dimensional ECHAM4 simulation showed that this modification raises the SCF by up to approximately 20%, mainly in areas with a relatively thin snow cover. The comparison between remotely sensed and simulated mean monthly surface albedo revealed a significant overestimation of the surface albedo in snow-covered mountainous areas. An extension of the current SCF parametrization in ECHAM4 to take into account mountain effects, based on the French climate model Arpège, yielded a close agreement with satellite-derived surface albedo. The adoption of the submodel for snow albedo, as used in the Canadian Land Surface Scheme (CLASS), combined with a newly developed simple snow interception model, demonstrated the ability to capture the main physical processes of snow-covered canopies, including the albedo. The validation of the new parametrization with Boreal Ecosystem-Atmosphere Study (BOREAS) field data showed that the modification is appropriate to capture the main features of the albedo over snow-covered forests during and after heavy snowfall events. Furthermore, the proposed modification has a beneficial impact on the delayed snow melt in spring, a well-known problem in many current GCMs: The simulated surface albedo over the boreal forests decreases by approximately 0.1 during winter and spring, which is in better agreement with ground-based observations. This induces a significant rise in the surface temperature over extended parts of Eurasia and North America in late spring, which subsequently yields a faster snowmelt and an accelerated retreat of the snow line. Received: 28 April 2000 / Accepted: 18 December 2000  相似文献   

5.
Summary ?The dependence of global and diffuse radiation on surface albedo due to multiple reflection of radiation between the surface and the atmosphere (base of clouds) is found on the basis of data obtained at the Tartu–T?ravere Actinometric Station over the period 1955–2000. It is found that the monthly totals of global radiation increase by up to 1.38–1.88 times, particularly in the winter half-year between November and March, when snow cover albedo may be high. A semi-empirical formula is derived for calculating with sufficient accuracy the monthly totals of global radiation, considering the amount of cloudiness and the surface albedo. In the time series of the monthly total by global radiation a downward trend occurs in winter months. A decrease in global radiation by up to 20% in the past 46 years can be explained primarily by a relatively high negative trend in the snow cover duration and surface albedo (up to − 0.24). As a result, days are growing darker, a new phenomenon associated with climate change, which undoubtedly affects human mood to some extent. Received November 8, 2001; revised January 24, 2002; accepted February 2, 2002  相似文献   

6.
青藏高原地表反照率计算研究   总被引:13,自引:1,他引:13  
根据改进的甚高分辨率扫描辐射仪(AVHRR)5个观测波段的光谱特征,经多次试验,设计了一组从卫星观测的地-气系统的辐射测值中提取晴空资料的多通道门槛值判识法和提取月平均反照率的合成法;并对1992年NOAA-12卫星获取的AVHRR资料进行计算处理,分析提取晴空数据,在此基础上按卫星轨道覆盖周期合成计算得到的晴空行星反照率和地表反照率,并且计算了逐月的地表反照率。对计算结果做了初步分析和认真比较。  相似文献   

7.
 Annual cycles of monthly albedos simulated with a general circulation model (GCM) are compared with surface observations. The data observed at 35 stations are retrieved from the Global Energy Balance Archive (GEBA) and drawn from the soil moisture and meteorological observations in the former Soviet Union. The model data are obtained with the ECHAM4 GCM in a ten-year simulation of the present-day climate at T106 resolution. The model calculated albedo values are modified before they are compared with the surface observations: They are interpolated to the stations and adjusted to account for altitude differences and fractional forest area. During the snow-free period, the model underestimates the albedo by up to 0.05 at the stations (with values between 0.2 and 0.25 measured over short grass) because the albedo for grassland is too low in the model. During the period with seasonal snow cover, the model underestimates the albedo by up to 0.2 at stations in Russia, Scandinavia and Canada, which experience severe winters. This underestimation is due to an oversimplified parameterization of the snow covered grid fraction and an inadequate linear relation between snow albedo and temperature. The derivative of albedo with respect to the forest fraction implemented in ECHAM is in line with the observations, although a small overestimation of the model’s gradient has been detected. Received: 3 July 1998 / Accepted: 24 December 1998  相似文献   

8.
应用MODIS地表反照率产品MCD43C3,结合青藏高原自然带数据、积雪覆盖率和植被指数数据,采用一元线性回归方法分析了2000~2016年青藏高原地表反照率的分布及变化特征,结果表明:1)高原地表反照率空间分布差异大,整体上东南部低、西北部高,受地形和地表覆盖影响较大。2)高原地表反照率四季的空间分布变化明显,高海拔山脉和高寒灌丛草甸是高原地表反照率年内和年际变化的敏感地区。3)高原地表反照率年变化介于0.19~0.26,一定程度上表现为“双峰单谷”型,与地表覆盖类型的季节变化密切相关。4)高原地表反照率年际变化整体呈缓慢波动减小的趋势,平均变率约为-0.4×10-3 a-1,减小的区域约占高原总面积的66%,川西 —藏东针叶林带的西南部地区减小得最快,减小速率超过1.0×10-2 a-1。5)高原地表反照率减小与冰川消融和积雪减少密切相关,高原植被覆盖改善也是一个重要因素。  相似文献   

9.
青藏高原积雪的分布特征及其对地面反照率的影响   总被引:7,自引:3,他引:7  
通过对1983年7月至1990年6月青藏高原主体58个格点积雪资料进行EOF分析发现,青藏高原主体积雪分布以西部兴都库什山脉。天山山脉以及南部喜马拉雅山脉为主;高原中部唐古拉山脉、北部昆仑山脉和东部巴颜喀拉山脉的积雪相对较少,青藏高原西部、南部的积雪变化与中部、北部和东部的积雪变化趋势存在反位相关系。另外,本文还对积雪对高原地面反照率的影响作了简单分析。  相似文献   

10.
Lee  Wei-Liang  Liou  K. N.  He  Cenlin  Liang  Hsin-Chien  Wang  Tai-Chi  Li  Qinbin  Liu  Zhenxin  Yue  Qing 《Theoretical and Applied Climatology》2017,129(3-4):1373-1382

We investigate the snow albedo variation in spring over the southern Tibetan Plateau induced by the deposition of light-absorbing aerosols using remote sensing data from moderate resolution imaging spectroradiometer (MODIS) aboard Terra satellite during 2001–2012. We have selected pixels with 100 % snow cover for the entire period in March and April to avoid albedo contamination by other types of land surfaces. A model simulation using GEOS-Chem shows that aerosol optical depth (AOD) is a good indicator for black carbon and dust deposition on snow over the southern Tibetan Plateau. The monthly means of satellite-retrieved land surface temperature (LST) and AOD over 100 % snow-covered pixels during the 12 years are used in multiple linear regression analysis to derive the empirical relationship between snow albedo and these variables. Along with the LST effect, AOD is shown to be an important factor contributing to snow albedo reduction. We illustrate through statistical analysis that a 1-K increase in LST and a 0.1 increase in AOD indicate decreases in snow albedo by 0.75 and 2.1 % in the southern Tibetan Plateau, corresponding to local shortwave radiative forcing of 1.5 and 4.2 W m−2, respectively.

  相似文献   

11.
The variations of albedo and absorptivity of the snow cover are considered caused by the presence of the snow roughness in the form of sastrugi. The numerical modeling is carried out within the framework of statistical approach based on the analytic averaging of the radiative transfer equation and statistically homogeneous model on the basis of Poisson flows of points at the straight lines. The estimates of the influence of 3D-effects of the rough surface are represented depending on optical and geometrical characteristics of sastrugi and on the illumination conditions. It is demonstrated that if the absorption by the snow particles is weak (the single scattering albedo w = 0.9999) the reflection of radiation by snow decreases by ∼ 2–3% when the sastrugi appear. This effect is more significant in near infrared spectral region where w is below 0.99.  相似文献   

12.
We investigate the response of a climate system model to two different methods for estimating snow cover fraction. In the control case, snow cover fraction changes gradually with snow depth; in the alternative scenarios (one with prescribed vegetation and one with dynamic vegetation), snow cover fraction initially increases with snow depth almost twice as fast as the control method. In cases where the vegetation was fixed (prescribed), the choice of snow cover parameterization resulted in a limited model response. Increased albedo associated with the high snow caused some moderate localized cooling (3–5°C), mostly at very high latitudes (>70°N) and during the spring season. During the other seasons, however, the cooling was not very extensive. With dynamic vegetation the change is much more dramatic. The initial increases in snow cover fraction with the new parameterization lead to a large-scale southward retreat of boreal vegetation, widespread cooling, and persistent snow cover over much of the boreal region during the boreal summer. Large cold anomalies of up to 15°C cover much of northern Eurasia and North America and the cooling is geographically extensive in the northern hemisphere extratropics, especially during the spring and summer seasons. This study demonstrates the potential for dynamic vegetation within climate models to be quite sensitive to modest forcing. This highlights the importance of dynamic vegetation, both as an amplifier of feedbacks in the climate system and as an essential consideration when implementing adjustments to existing model parameters and algorithms.  相似文献   

13.
Summary Temporal and spatial variations of albedo in a mid-latitude alpine tundra are assessed in order to develop a classification of surface cover mapping units which is useful for surface climate simulations. The largest temporal changes in albedo result from alterations in moisture conditions at the tundra surface associated with snowpack ripening and precipitation. Surface albedo varies under high atmospheric transmission conditions (clear skies) from 0.168 to 0.205; under low transmission conditions (cloudy) there was little variation in the surface albedo with the solar zenith angle and the value of the albedo was approximately equal to that under clear skies when 45° >z > 30°.Spatial variation of albedo within commonly used alpine surface cover mapping units is large, due to the roughness and heterogeneity of the tundra surface. Small differences between mean albedo among vegetated units (mean values range from 0.15 to 0.19) and large ranges of values within units (average 25% of the mean value) preclude differentiation of the commonly used surface cover mapping units (except snow) on the basis of shortwave reflectivity. Aggregation of the vegetated surface cover units based on height and density of plants yields three classes (krummholz, dense low vegetation, and sparse low vegetation) for which differences between mean albedo among all combinations of pairs of mapping units (4 units, 3 vegetative plus snow) are statistically significant.
Zusammenfassung Zeitliche und räumliche Unterschiede der Albedo einer alpinen Tundra der mittleren Breiten werden herangezogen, um eine kartographische Klassifikation der Oberflächendecke zu entwickeln, die für klimatische Simulationen von Nutzen sein kann.Die auffälligsten zeitlichen Schwankungen der Albedo resultieren aus einer Veränderung der Feuchtigkeitsbedingungen an der Tundraoberfläche in Verbindung mit der Alterung der Schneedecke und Niederschlag. Die Oberflächenalbedo schwankt bei starker atmosphärischer Transmission (klarer Himmel) von 0.168 bis 0.205; bei geringer atmosphärischer Transmission (wolkig) zeigt sich nur wenig Veränderung der Oberflächenalbedo, wobei der Sonnenzenithwinkel und der Albedowert bei 45° >z > 30° in etwa den Werten bei klarem Himmel gleichen.Die räumliche Variation der Albedo innerhalb der üblicherweise herangezogenen kartographischen Einheiten der alpinen Oberflächendecke ist aufgrund der Rauhigkeit und Heterogenität der Tundraoberfläche groß. Bei Vergleich der Vegetationseinheiten untereinander zeigen sich nur geringfügige Unterschiede der durchschnittlichen Albedo (die Durchschnittswerk bewegen sich zwischen 0.15 und 0.19), während die Bandbreite der Werte innerhalb der jeweiligen Einheiten (im Durchschnitt 25% des Mittelwerts) hoch ist. Dies verhindert eine Differenzierung der allgemein angewandten kartographischen Klassifizierung der Oberflächendecke (Schnee ausgenommen) auf der Grundlage kurzwelliger Reflektivität.Eine Einteilung der Vegetationseinheiten hinsichtlich Höhe und Pflanzendichte ergibt drei Klassen (Krummholz, dichter Niederbewuchs und spärlicher Niederbewuchs), wobei die Unterschiede der Albedomittelwerte aller paarweisen Kombinationen der kartographischen Einheiten (4 Einheiten: 3 Vegetationstypen und Schnee) statistische Signifikanz aufweisen.


With 3 Figures  相似文献   

14.
利用MODIS地表双向反照率产品(MOD43B1),结合地表海拔高度和地表覆盖类型资料,计算并分析了中国地区晴空反照率的时空分布,以及地表反照率与地形和地表覆盖的关系.首先,利用改则自动气象站的地基观测对MODIS地表反照率进行了对比验证.验证结果表明卫星观测可以较好地反映反照率随时间的变化,MODIS地表反照率与地表实测反照率符合较好.年平均地表反照率与海拔高度有很好的相关,反照率的高值出现在高海拔山区.冬春季节,我国高海拔山区因积雪覆盖成为反照率的高值区;夏秋季节,地表反照率主要受地表土壤湿度和植被盖度的影响,沙地和沙漠地带反照率最高.最后,计算了中国典型地表类型的反照率随时间的变化,结果表明大部分地表类型的反照率具有较大的时间变化,地表反照率在春秋季节较大,夏季反照率较小.  相似文献   

15.
青藏高原地表特征时空分布   总被引:12,自引:3,他引:9  
通过利用地理信息数据库、卫星反演参数、气象观测数据,分析了我国青藏高原地区地表植被覆盖、地表反照率分布、地表蒸发分布、地表积雪分布.结果显示,随着青藏高原地表年平均气温的显著升高,青藏高原部分区域地表覆盖特征也发生了改变.在青藏高原南缘湿润大区降水充分地区,地表反照率相对较低,潜热蒸发量最大,1982~2000年期间地表植被覆盖呈明显增加趋势.青藏高原地区积雪覆盖在各个气候区域也呈现同步变化特征,自1970~1989期间,降雪量呈持续增加趋势,但之后至2000年期间,全区降雪量呈下降趋势,其中积雪覆盖变化最强烈的时段发生在10月~4月之间,变化幅度最大的区域位于青藏高原的东南部区域.  相似文献   

16.
Uncertainties in the climate response to a doubling of atmospheric CO2 concentrations are quantified in a perturbed land surface parameter experiment. The ensemble of 108 members is constructed by systematically perturbing five poorly constrained land surface parameters of global climate model individually and in all possible combinations. The land surface parameters induce small uncertainties at global scale, substantial uncertainties at regional and seasonal scale and very large uncertainties in the tails of the distribution, the climate extremes. Climate sensitivity varies across the ensemble mainly due to the perturbation of the snow albedo parameterization, which controls the snow albedo feedback strength. The uncertainty range in the global response is small relative to perturbed physics experiments focusing on atmospheric parameters. However, land surface parameters are revealed to control the response not only of the mean but also of the variability of temperature. Major uncertainties are identified in the response of climate extremes to a doubling of CO2. During winter the response both of temperature mean and daily variability relates to fractional snow cover. Cold extremes over high latitudes warm disproportionately in ensemble members with strong snow albedo feedback and large snow cover reduction. Reduced snow cover leads to more winter warming and stronger variability decrease. As a result uncertainties in mean and variability response line up, with some members showing weak and others very strong warming of the cold tail of the distribution, depending on the snow albedo parametrization. The uncertainty across the ensemble regionally exceeds the CMIP3 multi-model range. Regarding summer hot extremes, the uncertainties are larger than for mean summer warming but smaller than in multi-model experiments. The summer precipitation response to a doubling of CO2 is not robust over many regions. Land surface parameter perturbations and natural variability alter the sign of the response even over subtropical regions.  相似文献   

17.
Albedo influences vegetation structure, permafrost thawing, etc., in particular, after wildfires in Picea mariana forests in Alaska, USA, while albedo changes with plant succession. To understand interactions between albedo and ecosystem recovery after wildfire, surface albedo was measured in the spring and summer of 2005 at Poker Flat, interior Alaska, where P. mariana forest was dominant. The ground surface was mostly covered with Sphagnum moss before the 2004 wildfire, and was variously burned by the fire. The measured wavelengths ranged from 0.3 to 3.0 μm. We measured four independent variables, incidence, plant cover on the forest floor, cover of burned ground surface, canopy openness and incidence, to examine the determinants on surface albedo. Multiple regression analysis showed that total plant cover positively and mostly determines albedo, indicating that plant recovery is prerequisite to return high albedo. When the ground surface was damaged by fire, changes in albedo were mostly derived from decrease in reflectance wavelengths between 0.7 and 1.4 μm. The fluctuations of reflectance wavelengths did not differ greatly between damaged-moss and burned surfaces. We must mention the dynamics of Sphagnum to understand various environmental changes including surface albedo.  相似文献   

18.
The combination of field experiments and satellite observations is the fundamental way tounderstand the characteristics of spatial-temporal variation in surface albedo over the Tibetan(Qinghai-Xizang) Plateau. Under the condition without snow cover, the relatively regular annualvariation cycle of the surface albedo can be expressed by an empirical formula. The effect of snowcover on the surface albedo in winter can be expressed by introducing two variables of snow forcingand sensitivity parameter. The existing satellite retrieved results of surface albedo may provide thedigital grid data for describing the geographical distribution. However, some satellite retrievedsurface albedos available over the Tibetan Plateau are obviously too low in winter. Taking thesatellite derived results in summer as the background field representative of geographicaldistribution and combining the empirical formula of annual cycle based on the surface observations,a dynamic model of surface albedo is developed for the need of modeling the climatic influence ofthe underlying surface forcing of the Tibetan Plateau.  相似文献   

19.
The combination of field experiments and satellite observations is the fundamental way to understand the characteristics of spatial-temporal variation in surface albedo over the Tibetan(Qinghai-Xizang) Plateau. Under the condition without snow cover, the relatively regular annual variation cycle of the surface albedo can be expressed by an empirical formula. The effect of snow cover on the surface albedo in winter can be expressed by introducing two variables of snow forcing and sensitivity parameter. The existing satellite retrieved results of surface albedo may provide the digital grid data for describing the geographical distribution. However, some satellite retrieved surface albedos available over the Tibetan Plateau are obviously too low in winter. Taking the satellite derived results in summer as the background field representative of geographical distribution and combining the empirical formula of annual cycle based on the surface observations,a dynamic model of surface albedo is developed for the need of modeling the climatic influence of the underlying surface forcing of the Tibetan Plateau.  相似文献   

20.
The Met Office Hadley Centre Unified Model (HadAM3) with the tiled version of the Met Office Surface Exchange Scheme (MOSES2) land surface scheme is used to assess the impact of a comprehensive imposed vegetation annual cycle on global climate and hydrology. Two 25-year numerical experiments are completed: the first with structural vegetation characteristics (Leaf Area Index, LAI, canopy height, canopy water capacity, canopy heat capacity, albedo) held at annual mean values, the second with realistic seasonally varying vegetation characteristics. It is found that the seasonalities of latent heat flux and surface temperature are widely affected. The difference in latent heat flux between experiments is proportional to the difference in LAI. Summer growing season surface temperatures are between 1 and 4 K lower in the phenology experiment over a majority of grid points with a significant vegetation annual cycle. During winter, midlatitude surface temperatures are also cooler due to brighter surface albedo over low LAI surfaces whereas during the dry season in the tropics, characterized by dormant vegetation, surface temperatures are slightly warmer due to reduced transpiration. Precipitation is not as systematically affected as surface temperature by a vegetation annual cycle, but enhanced growing season precipitation rates are seen in regions where the latent heat flux (evaporation) difference is large. Differences between experiments in evapotranspiration, soil moisture storage, the timing of soil thaw, and canopy interception generate regional perturbations to surface and sub-surface runoff annual cycles in the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号