首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
利用NCEP1°×1°再分析资料、国家气象卫星中心云顶亮温和地面加密观测资料对2013年7月21—22日发生在陕南的暴雨天气过程进行中尺度诊断分析。结果表明:中尺度对流复合体(MesoConvectiveComplex,下简称MCC)是此次暴雨的直接影响系统;500hPa停滞的低槽,配合对流层高层急流分支出口的强辐散及对流层低层西南低涡的动力抬升作用,形成有利于MCC生成、发展的大尺度环流背景;700hPa西南低空急流、850hPa气流的南支分量为MCC的生成、发展提供充足的水汽和能量;西南低涡的东北移动伴随有MCC云团的生消发展,MCC的发展经历了生成、发展、成熟、消散四个阶段,陕南强降水位于云顶亮温等值线密集一侧;MCC发生在高能、弱对流不稳定区;露点锋加强暴雨区的垂直上升运动,系统北部冷空气与南侧西南暖湿气流导致低层锋生,大气斜压性增大,并在陕南地区产生辐合上升,形成次级环流,又触发对流不稳定释放,相互之间有正反馈的作用。  相似文献   

2.
利用Himawari-8卫星红外、水汽云图和FY-2E卫星可见光云图资料,以及多普勒天气雷达拼图和常规气象站、自动气象站、高空观测资料,对2017年9月21日发生在山西境内的一次飑线天气过程进行云图特征及维持机制分析。结果表明:(1)蒙古冷涡是本次飑线过程的大尺度天气影响系统,地面冷锋东移至不稳定潜势区触发了飑线云系的生成;高低空系统配置结构的转变及地面中尺度高压外流冷空气与环境风场形成的中尺度气旋和辐合线,是飑线发展和维持的机制;对流云团在地面冷锋与850 hPa切变线之间合并发展,地面中尺度高压与低压的发展促使气压梯度增大,导致飑线增强,是飑线过境时地面大风形成的原因。(2)初生阶段,飑线形成于云顶亮温低值区后侧梯度大值区、云顶纹理粗糙区、干湿边界偏湿区一侧,冷云盖略超前于飑线;发展阶段,飑线回波在云顶亮温低值区加强,并沿着亮温低值中心移动的方向移动;成熟阶段,飑线雷达回波与云顶亮温低值区重合。(3)弧状云线、上冲云顶和对流云带一侧的暗影是对流云团加强发展的前期征兆。  相似文献   

3.
该文利用常规气象观测资料、NCEP再分析资料以及卫星和雷达资料,通过对环流背景、云图、雷达以及物理量分析研究,对2020年6月30日贵州特大暴雨过程进行诊断分析,发现此次特大暴雨过程是在高空多短波槽活动、中层弱冷空气的入侵、高空急流和低层切变线长期维持以及西南暖湿气流的持续性输送共同影响下形成的。此次MCC对流云团生成于毕节市威宁县附近,在MCC的初始阶段,对流云团由块状向椭圆形发展,冷云罩面积逐步增大,云顶亮温中心不断降低;成熟阶段由椭圆形逐步扩散为多边形,云顶亮温中心维持在-80℃以下;消亡阶段冷云罩面积和云顶亮温绝对值迅速减小。逐小时短时强降雨站数与冷云盖面积有很好的对应关系,在形成、成熟、消亡3个阶段分别呈现逐步上升、明显上升和迅速减小的趋势;最大小时雨量在成熟阶段与最低云顶亮温有较好的对应关系。此次特大暴雨过程中强回波基本集中在4 km以下,中低层越靠近地面回波越强,强回波接地,质心低。初始阶段强回波强度强,移速快,但生命史短,呈现单峰值分布;成熟阶段的强回波范围大,持续时间长,移速慢,呈现多峰值分布。TI≥44℃的大值区长期维持,低层的暖平流和上升气流以及正涡度辐合,配合高层的冷平流和下沉气流以及负涡度辐散,为此次特大暴雨过程提供了有利的能量和动力条件。  相似文献   

4.
基于葵花-8卫星红外通道资料和地面降水数据,对2017年5—9月宁夏暴雨过程进行云团识别、特征参数(云顶平均亮温、最低亮温、亮温梯度、冷云面积和降温率)计算及监测预警指标分析.结果表明:所选云团特征参数在不同类暴雨过程中有较明显的表现特征.暴雨发生时,云顶平均亮温和最低亮温分别介于213~228 K和199~227 K...  相似文献   

5.
一次MCC红外云图演变特征及成因分析   总被引:1,自引:0,他引:1  
利用FY-2E红外云图及TBB资料,结合环境形势及物理量,对2011年8月15日夜间发生在河北南部和山东北部的强降水过程进行了分析。结果表明,冷锋触发的云团与地面中尺度辐合线触发的云团合并形成MCC:冷锋触发对流云团,云团脱离冷锋东移、发展、加强,形成MβCCS;MβCCS前侧有对流云团沿地面中尺度辐合线生成、发展、少动,与冷锋触发形成的MβCCS合并发展,形成MCC。MCC系统维持阶段,其西侧有新的对流云团生成,合并到MCC主体,使其向低压中心一侧发展。小时强降水并不是产生在MCC云团的冷中心,而是基本产生在TBB冷中心的西侧,实测小时强降水发生在MCC形成前2个小时以及发展成熟阶段的前4个小时之内,MCC减弱阶段的降水量明显减小。MCC成熟阶段,TBB基本维持在-73℃以下,最低达-78℃。华北南部上空明显的上升运动及低层强的正涡度区为强降水的产生提供了动力条件。低空东北气流及低空西南气流在华北南部形成辐合,超低空东北急流和超低空西南急流的形成与维持使得辐合进一步加强,维持强的辐合上升运动导致了强降水形成。  相似文献   

6.
利用FY-2E卫星数据获取的强对流云团面积、重心、长短轴比、重心与形心距离、移动速度、移动角度和最低亮温等属性的变化可作为动态特征,利用慢特征分析方法提取云团中具有一定连续性和稳定性的动态特征对强对流云团不同阶段进行识别和追踪.结果表明,动态特征与强对流云团的不同发展阶段具有很好的对应关系:在初生阶段,云团的移动方向和速度不稳定,但是面积呈现出缓慢增长态势,云顶亮温缓慢下降,此时云团的慢特征为面积和云顶亮温;在成熟阶段,云团的移动路径趋于稳定,云顶亮温达到最低,云团重心和形心基本重合;在消散阶段,存在云团分裂和云团的重心与形心分离特征.云团长短轴比的变化与云团最低亮温的变化趋势一致,移速缓慢的对流云团更容易造成集中强降水,快速移动的对流云团大多造成地面大风.  相似文献   

7.
利用常规天气观测资料、ERA5的0.5°×0.5°再分析资料、地面自动站加密资料和卫星云图产品,对2020年8月12日四川省自贡市短时强降雨天气过程产生的原因和多尺度特征进行研究。结果表明:高空低槽与中低层辐合系统结合低空急流是本次暴雨天气过程的大尺度环流系统。低空急流为强降雨区提供了充足的水汽和能量;辐合上升动力作用增强、水汽含量的迅速增长、不稳定能量的增加,为对流性强降雨提供了条件;强烈发展的两个对流云团合并加强,形成强的中β尺度MCC,强降雨区位于MCC云顶亮温最低值中心附近,云顶亮温最低值达到-82℃;地面的中小尺度辐合线在短时强降雨中起到了对对流系统触发和加强的作用。  相似文献   

8.
应用常规、加密气象资料及卫星云图,分析了2004年7月16~17日沙澧河流域特大暴雨成因.结果表明:高、低空急流耦合区中西南低涡及MCC特征云团的形成和维持是造成此次特大暴雨的直接影响系统.提出利用逐时的中尺度辐合中心、卫星红外云图云顶亮温及雷达回波降水率做中尺度雨团量级预测思路.  相似文献   

9.
云南一次秋季雷暴过程的闪电特征及形成条件分析   总被引:3,自引:0,他引:3  
张腾飞  张杰  尹丽云 《高原气象》2013,32(1):268-277
利用NCEP/NCAR资料、雷达回波、卫星云图和闪电定位系统等新一代探测资料对2010年9月21-23日的云南雷暴过程进行了分析.结果表明,西移的热带低压“凡亚比”为这次雷暴云团发展提供了热带偏东风辐合及低层暖(300~302 K)、中层湿(相对湿度≥80%)等有利环流背景条件.中尺度雷暴云团负闪电占主导地位,发展阶段云顶亮温下降,均为负闪电,负闪电频数高达1 245次·(30min)-1;从成熟阶段到消散阶段,云顶亮温逐渐上升,负闪电逐渐减少,有少量的正闪电出现并逐渐增加.另外,雷暴云团结构和闪电空间分布不均匀,具有前部为主对流区而后部为云砧或高云的结构特征,云顶亮温前部较后部低且梯度大.密集负闪电主要出现在云顶亮温≤-60℃附近和前部大的云顶亮温梯度区,稀疏正闪电分散在密集负闪电后部和云团中部.多普勒天气雷达显示,雷暴云团前部云区表现为具有不均匀结构的中尺度带状回波,后部云区属于无回波区;密集负闪电主要出现在带状回波上强度≥40 dBz和顶高≥10 km的强回波区内及中尺度不均匀风场附近,且回波强度越强、顶高越高,负闪电越密集;发展后期稀疏的正闪电分散在强回波的后部边缘或者后部弱的对流回波和层状云回波上.  相似文献   

10.
中尺度对流复合体的降水特征和预报   总被引:6,自引:2,他引:6  
利用增强红外卫星云图和逐时雨量预测资料,分析了中国大陆上中尺度对流复合体(MCC)的降水强度、范围与MCC云区的亮度温度值、不同亮温区云面积、云区面积随时间的变化率之间的关系。指出在MCC生成-云发展到最强盛阶段之前,降水呈逐渐增加的趋势,最大降水出现在-53℃、云面积达到最大之前1小时左右和MCC中心最冷云顶面积达到最大的时候。出现在长江流域和华南地区的MCC系统降水特征有显著的差异。最后根据MCC云系演变规律提出了MCC的降水预报思路。  相似文献   

11.
一次西南涡引发MCC暴雨的卫星云图和多普勒雷达特征分析   总被引:4,自引:1,他引:3  
利用常规观测资料、自动站资料、卫星资料和多普勒雷达资料,对2008年6月30日至7月1日发生在滇东北和四川盆地南部一次暴雨天气过程的分析发现,850hPa四川盆地南部西南涡引发的中尺度对流复合体(mesoscale convective complex,MCC)是暴雨的直接影响系统,700hPa青藏高原东南侧西南涡引发的中尺度对流云团并入MCC后导致MCC迅速加强并向西移动。MCC生成于对流层高层急流出口区左侧强辐散区和低层强辐合区。雷达回波上“人”字形回波、平行短带回波和逆风区的出现说明MCC内部存在多个β中尺度对流系统,直接造成多个暴雨中心。MCC成熟阶段表现出中低层辐合和高层辐散的动力特征,其前沿中层以下有强气流流入,以上则有强气流流出。MCC消散阶段从低层到高层都有强西南气流进入,相应气流辐合减弱,失去中尺度组织结构。  相似文献   

12.
一次MCC的云图特征及成因分析   总被引:5,自引:1,他引:4       下载免费PDF全文
使用风云2号红外云图和TBB资料、 多要素自动气象站资料及NECP 1°×1°再分析资料, 对造成河北中部区域性暴雨的MCC云图特征、 天气尺度环境场和动力特征等进行了分析。结果表明, 构成MCC的α中尺度对流云团, 在其成熟时期, 在均匀的α中尺度砧状系统中仍有2~3个β中尺度的对流活动; MCC发生、 发展在对流层中层的短波槽、 高低空急流有利配置以及大气层结为中性或弱对流不稳定的环境条件下, 暖湿平流成为其发生、 发展的主要强迫因子; MCC形成阶段, 中层出现暖中心并且气旋性涡度增大, 辐合辐散运动随高度交替出现, 量级相当, 上升运动的层次较厚。  相似文献   

13.
The presence of embedded convection in stratiform clouds strongly affects ice microphysical properties and precipitation formation. In situ aircraft measurements, including upward and downward spirals and horizontal penetrations, were performed within both embedded convective cells and stratiform regions of a mixedphase stratiform cloud system on 22 May 2017. Supercooled liquid water measurements, particle size distributions, and particle habits in different cloud regions were discussed with the intent of characterizing the riming process and determining how particle size distributions vary from convective to stratiform regions. Significant amounts of supercooled liquid water, with maxima up to 0.6 g m~(-3), were observed between -3℃ and-6℃ in the embedded convective cells while the peak liquid water content was generally less than 0.1 g m~(-3) in the stratiform regions.There are two distinct differences in particle size distributions between convective and stratiform regions.One difference is the significant shift toward larger particles from upper -15℃ to lower -10℃ in the convective region, with the maximum particle dimensions increasing from less than 6000 μm to over 1 cm. The particles larger than 1 cm at -10℃ are composed of dendrites and their aggregates. The other difference is the large concentrations of small particles(25–205 μm) at temperatures between -3℃ and-5℃ in the convective region, where rimed ice particles and needles coexist. Needle regions are observed from three of the five spirals, but only the cloud conditions within the convective region fit into the Hallett-Mossop criteria.  相似文献   

14.
“0811”暴雨过程中MCC与一般暴雨云团的对比分析   总被引:3,自引:0,他引:3  
利用T639 1°×1°分析场、FY-2红外云图、红外辐射亮温(TBB)、闪电定位和气柱水汽总量等资料,对2010年8月11日发生在山西南部暴雨过程(即"0811"暴雨过程)中的中尺度对流复合体(MCC)和其北部的一般暴雨云团进行了对比分析,结果表明,(1)山西北部暴雨带主要由6个β中尺度对流云团生成、发展及合并造成;山西南部区域性暴雨则由MCC的生成、发展、东移所引发。(2)山西北部的暴雨云团在850hPa暖切变线南部生成和发展,并在地面切变线附近合并;山西南部的MCC由3个β中尺度对流云团发生、发展及合并形成,该对流云团在700hPa次天气尺度切变线上触发生成;MCC发展、成熟阶段,α中尺度云团沿925hPa暖切变线东移;减弱阶段,随西太平洋副热带高压的南退而南压。(3)在西太平洋副热带高压西进北抬的背景下,同一次暴雨过程中,MCC发生在5 880gpm边缘弱的斜压环境中,高层则出现在高压北侧的反气旋环流中;一般暴雨云团发生在5 840gpm边缘较强的斜压环境中,高层则出现在急流入口区的右侧。(4)MCC作为大型的中尺度对流系统,不但对低层高温高湿能量的需求比一般暴雨云团更多,而且在垂直方向上,要求湿层、高能舌及暖温结构更深厚。(5)山西南部MCC影响区和5 880gpm线边缘为负地闪覆盖区,正地闪主要出现在其北部一般暴雨云团影响区和5 840gpm线附近。与MCC相比,一般暴雨云团影响下,局地闪电开始及闪电峰值的出现较降水的开始及降水峰值的出现有更多的提前量。(6)山西北部暴雨云团出现在气柱水汽总量梯度的大值区及水汽锋上;山西南部MCC则出现在水汽锋南侧气柱水汽总量的大值区。气柱水汽总量对"0811"暴雨过程有36h的提前量,对暴雨的落区有很好的指示意义。  相似文献   

15.
利用常规气象观测数据、吉林省加密自动站观测数据、NCEP的1°×1°再分析资料和卫星云顶亮温数据,对2018年8月13—15日吉林省一次暴雨过程成因进行分析。结果表明:“三带”(西风带、副热带和热带环流)是暴雨产生的大尺度环流背景。大气整层水汽通量显示副热带高压外围的西南气流与远距离台风外围东南气流共同为暴雨输送充沛的水汽。降水有两个主要阶段,大气层结特征均为高层有正值位涡扰动并沿假相当位温锋区下滑,大气层结不稳定,水汽充沛,不稳定能量较大。降水第二阶段水汽输送、动热力条件、不稳定能量均小于第一阶段。云图表现特征为中尺度对流辐合体和中尺度对流云团,中尺度对流辐合体云团发展旺盛时,低层呈现气旋式涡度、中尺度辐合,高层呈反气旋式涡度、中尺度辐散。925 hPa低空切变线和地面辐合线是暴雨发生的中尺度触发条件。  相似文献   

16.
利用地面气象观测资料、雷达卫星资料和FNL再分析资料,对2018年6月22日攀西地区南部的一次暴雨天气过程进行分析。结果表明:本次暴雨天气过程由MCC导致,低层的辐合区和高层的南亚高压脊线是产生暴雨的主要影响天气系统;MCC发生于弱环境风场条件下的高能高温高湿环境中,但对垂直风切变的要求较低;MCC生成发展区域中低层温度和露点较周边区域高,MCC区域大气表现出明显的低层辐合,高层辐散,辐合(散)成熟阶段较发展阶段强。   相似文献   

17.
应用常规观测资料、FY2C卫星TBB资料、多普勒雷达资料、风廓线雷达、加密自动站以及NCEP1°×1°再分析资料分析海河流域切变线类暴雨成因。结果表明:暴雨过程是低空切变线与高低空急流构成有利配置条件下发生的, 系统空间结构和冷空气移动路径的不同,造成了暴雨落区和强度的不同;沿切变线有带状中-α尺度对流云团形成和发展,并有中-β尺度MCS沿带状有组织的发展、移动、合并、加强,沿低空切变线如有低涡形成,带状对流云系内将有MCC形成,强降雨在MCS或MCC移动方向的前侧、TBB等值线梯度最大处;强降雨之前都有水汽辐合从地面向高层伸展,伸展高度越高,降雨强度越大,强降雨中心对应西南与偏东两个大水汽通量造成的辐合且等值线密集处;VAD风廓线和风廓线雷达资料都显示出对流层低空急流和超低空急流的先后形成,造成雨强也两度加强。  相似文献   

18.
本文利用风廓线雷达数据反演了降水云体的大气垂直速度、雨滴下落末速度等云动力特征和云水混合比、雨水混合比等云微物理参数,并结合天气雷达、探空、自动站、雨滴谱仪和微波辐射计等数据对2020年5月7~8日发生在北京市海淀区的一次夏季降水过程进行垂直综合观测.结果表明:垂直探测仪器观测及其反演的数据可以获得降水云体的详细动力参...  相似文献   

19.
李金辉  田显  岳治国 《大气科学》2020,44(4):748-760
利用探空火箭、新一代天气雷达和气象探测资料对2015年7月17日延安宝塔区冰雹云进行了综合探测,结果表明:(1)当日08:00(北京时,下同)500 hPa河套低涡分裂东移,有较强冷平流且移动速度较快,地面14:00升温明显造成了这次降雹。(2)偏后位置的冰雹云内部温、湿条件以及对流指数(Tg)、整层比湿积分(IQ)、总指数(TT)均小于外部的自然大气;层结稳定度指数(K)、抬升指数(LI)、沙氏指数(SI)冰雹云内部比外部自然大气偏小;热力参数风暴强度指数(SSI)冰雹云内部低于外部自然大气;冰雹云内部能量参数(CAPE)明显低于自然大气;冰雹云内部0°C层高度低于冰雹云外部自然大气。(3)火箭探测的位置偏冰雹云后部,冰雹云由低层到高层风向呈逆时针变化,探空仪摆动明显,?20°C温度层偏高,气流较强,整层偏下沉气流。(4)冰雹云0°C附近,在温度区间?1.8~5.0°C、厚度1.0 km范围内有最大湿度区,湿度达80%以上,最大湿度87.1%,为冰雹的形成提供了水汽条件。(5)紧贴0°C下正温区,有最大水平风速为19 m s?1急流,厚度为0.022 km。在温度区间?4.8~5.0°C、厚度1.6 km范围内维持13 m s?1以上水平风速,为冰雹的形成提供了动力场条件。(6)在温度区间?8.7~?9.2°C、厚度0.2 km,有小于或等于2 m s?1弱风区;弱风区下方,在温度区间?4.6~?8.8°C、厚度0.889 km有上升气流,平均上升速度1.79 m s?1,最大上升速度4 m s?1,这种配置为冰雹的生长提供了环境场。  相似文献   

20.
针对2007年7月8~10日四川盆地南部的特大暴雨天气过程,利用逐小时红外云顶黑体亮度温度结合地面加密雨量资料对其进行了对比分析。分析指出此次特大暴雨是由西南低涡内几个中尺度对流云团连续生消造成的,在其开始阶段有一中尺度对流复合体沿基本气流方向强烈发展,此阶段云团虽发展旺盛,但由于雨团随系统移动较快,并未造成洪灾。此云团减弱后,低涡环流仍维持并少动,又依次触发了3个中尺度对流的生成,这3个中尺度对流云团逆基本气流向SSW方向缓慢移动,造成的降水落区集中,中心雨强大,持续时间长,由此导致了暴雨洪涝的产生。强降水位置对于前向传播系统,一是在其发展的前端,二是在冷云中心的略偏后的位置,最大雨强出现在云团成熟之前发展最剧烈时,而后向传播的低涡云团强降水主要在冷云中心附近,最大雨强出现在云团发展最旺盛(冷云中心TBB最低)时。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号