首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Turbulence measurements above a pine forest   总被引:1,自引:0,他引:1  
Eddy fluxes of momentum, sensible and latent heat, and turbulence spectra measured over the Thetford Forest during 10 days in the Spring of 1973 are described. The measured total heat flux (H + E) for 122 20-min periods agreed closely on average with independent estimates from an energy balance method. There was evidence that the energy balance data gave small systematic overestimates of available energy during the hours before noon, compensated by slight underestimates for the remainder of the day. A comparison of measured wind speeds and friction velocities in neutral stability confirmed the validity of the aerodynamic method for estimating momentum fluxes at heights of a few roughness lengths above the canopy. In stable conditions the log-linear wind profileU = (u */k)(ln ((z -d)/z o) + (z -d -z o)/L) with = 3.4 ± 0.4 provided a good fit to the data. Spectra in unstable conditions were generally more sharply peaked than those measured by other workers over smoother terrain: differences were less marked in the case of vertical velocity in stable conditions. Temperature spectra in these stable conditions showed high energy at relatively low wavenumbers, andwT cospectra showed a cospectral gap; both of these results were associated with an intermittent sawtooth structure in the temperature fluctuations.Now at the Meteorological Office, Bracknell  相似文献   

2.
Profile and eddy-correlation (heights of 4 and 10 m) measurements performed on the Pasterze glacier (Austria) are used to study the characteristics of the stable boundary layer under conditions of katabatic and large-scale forcing. We consider cases where large-scale forcing results in a downslope (or following) ambient wind. The analysis of averaged spectra and cospectra reveals low frequency perturbations that have a large influence on the variances of temperature and horizontal wind components and also alter the cospectra of momentum and sensible heat flux. Only the spectrum of the vertical wind speed is comparable to universal spectra. The low frequency perturbations occur as brief intermittent events and result in downward entrainment of ambient air thereby producing enhanced downward sensible heat fluxes and downward as well as upward momentum fluxes with various magnitudes and timescales. After the variances were high pass filtered, the normalised standard deviations of wind speed and temperature compare favourably to findings in the literature within the range 0>z/L>0.5. For larger z/L they deviate as a result of an increased influence from low frequency perturbations and thus non-stationarity. In line with this, the turbulent kinetic energy budget (at 4 m height) indicates that production (shear) is in balance with destruction (buoyancy and dissipation) within the range 0>z/L>0.3. Non-dimensional gradients of wind speed within the range 0>z/L>0.3 have a slope of about 3.5. The scatter for the dimensionless temperature gradient is quite large, and the slope is comparable to that for wind speed gradients. For z/L>0.3 the imbalance in the turbulent kinetic energy budget grows and non-dimensional gradients for wind speed and temperature deviate considerably from accepted values as a result of increased non-stationarity. Average roughness lengths for momentum and sensible heat flux derived from wind speed and temperature profiles are respectively 1 × 10-3 m and 6 × 10-5 m, consistent with the literature. The ratio (z0h/z0m) compares to those predicted by surface renewal models. A variation of this ratio with the roughness Reynolds number is not indicated by our data.  相似文献   

3.
An extensive meteorological observational dataset at Dome C, East Antarctic Plateau, enabled estimation of the sensitivity of surface momentum and sensible heat fluxes to aerodynamic roughness length and atmospheric stability in this region. Our study reveals that (1) because of the preferential orientation of snow micro-reliefs (sastrugi), the aerodynamic roughness length \(z_{0}\) varies by more than two orders of magnitude depending on the wind direction; consequently, estimating the turbulent fluxes with a realistic but constant \(z_{0}\) of 1 mm leads to a mean friction velocity bias of \(24\,\%\) in near-neutral conditions; (2) the dependence of the ratio of the roughness length for heat \(z_{0t}\) to \(z_{0}\) on the roughness Reynolds number is shown to be in reasonable agreement with previous models; (3) the wide range of atmospheric stability at Dome C makes the flux very sensitive to the choice of the stability functions; stability function models presumed to be suitable for stable conditions were evaluated and shown to generally underestimate the dimensionless vertical temperature gradient; as these models differ increasingly with increases in the stability parameter z / L, heat flux and friction velocity relative differences reached \(100\,\%\) when \(z/L > 1\); (4) the shallowness of the stable boundary layer is responsible for significant sensitivity to the height of the observed temperature and wind data used to estimate the fluxes. Consistent flux results were obtained with atmospheric measurements at heights up to 2 m. Our sensitivity study revealed the need to include a dynamical parametrization of roughness length over Antarctica in climate models and to develop new parametrizations of the surface fluxes in very stable conditions, accounting, for instance, for the divergence in both radiative and turbulent fluxes in the first few metres of the boundary layer.  相似文献   

4.
Surface energy balance closure has been examined using eddy covariance measurements and other observations at one industrial and three agricultural sites near the Nakdong River during daytime. Energy balance closure was evaluated by calculating the long-term averaged energy balance ratio (EBR), the ratio of turbulent energy fluxes to available energy, and the statistical regression of turbulent energy fluxes against available energy using half-hourly data. The EBR of all sites ranges from 0.46 to 0.83 while the coefficient of determination (R 2) ranges from 0.37 to 0.77. The energy balance closure was relatively poor compared to homogeneous sites, indicating the influence of surface heterogeneity. Unmeasured heat storage terms also seem to play a role in the surface energy budget at the industrial and irrigated sites. The energy balance closure was better in conditions of high wind speed, low downward short wave radiation, and high friction velocity, which suggests the role of heat storage term and surface heterogeneity in surface energy balance at these sites. Spectrum analysis shows a sharp roll-off at the low frequency in co-spectrum, which indicates that low-frequency motions do not significantly contribute to turbulent fluxes. Both the spectra and cospectra in unstable conditions show a broad peak indicating the influence of multiple sizes of large eddies over heterogeneous sites. Most of ogive curves for the kinematic latent and sensible heat fluxes reach an asymptote within 30 minutes regardless of the EBR value, indicating that low frequency motion is not a main factor for energy imbalance. However, stationary eddies due to landscape heterogeneity still remains as a possible cause for energy imbalance.  相似文献   

5.
Abstract

A physically‐based numerical model was developed to estimate the temporal course of the surface energy flux densities and the soil temperatures in dry and wet bare soils. Aerodynamic heat, vapour and momentum transfer theory was used to calculate the sensible and latent heat flux densities at the surface under diabatic and adiabatic conditions. A finite‐difference solution of the differential equation describing one‐dimensional heat transfer was used to calculate the surface soil heat flux density and soil profile temperatures. The surface temperature was determined iteratively by the simultaneous solution of equations describing radiative, heat and momentum transfer at the surface. The model was tested with measurements from energy balance studies conducted on a dry, sandy soil and a wet, silt loam soil, and was found to predict accurately the surface energy fluxes and soil temperatures over three‐day periods under conditions of potential and negligible evaporation. The sensitivity of the model to uncertainties in the aerodynamic roughness lengths for momentum (z0) and heat (zT) is reported. Values for z0 and Z0/ZT of 0.5 mm and 3.0, respectively, resulted in the best agreement between modelled and measured values of the fluxes and temperatures for both soils.  相似文献   

6.
Direct measurements of the air–sea turbulent fluxes of momentum and heat, along with surface currents, waves and supporting meteorological variables, were acquired during a recent field campaign. Surface currents, measured from a very high frequency radar, were found to steer the stress away from the mean wind direction. Although this effect has been reported in a recent scatterometer study, this is the first time it has been observed in an in situ study with co-located flux, wind and surface current measurements. Data collected during a week of stationary conditions are used to investigate and quantify the sampling variability of the air–sea fluxes of momentum and sensible heat.  相似文献   

7.
Aircraft turbulence data from the Autonomous Ocean Sampling Network project were analyzed and compared to the Coupled Ocean–Atmosphere Response Experiment (COARE) bulk parametrization of turbulent fluxes in an ocean area near the coast of California characterized by complex atmospheric flow. Turbulent fluxes measured at about 35 m above the sea surface using the eddy-correlation method were lower than bulk estimates under unstable and stable atmospheric stratification for all but light winds. Neutral turbulent transfer coefficients were used in this comparison because they remove the effects of mean atmospheric conditions and atmospheric stability. Spectral analysis suggested that kilometre-scale longitudinal rolls affect significantly turbulence measurements even near the sea surface, depending on sampling direction. Cross-wind sampling tended to capture all the available turbulent energy. Vertical soundings showed low boundary-layer depths and high flux divergence near the sea surface in the case of sensible heat flux but minimal flux divergence for the momentum flux. Cross-wind sampling and flux divergence were found to explain most of the observed discrepancies between the measured and bulk flux estimates. At low wind speeds the drag coefficient determined with eddy correlation and an inertial dissipation method after corrections were applied still showed high values compared to bulk estimates. This discrepancy correlated with the dominance of sea swell, which was a usually observed condition under low wind speeds. Under stable atmospheric conditions measured sensible heat fluxes, which usually have low values over the ocean, were possibly affected by measurement errors and deviated significantly from bulk estimates.  相似文献   

8.
Observations collected between 2000 and 2008 at the Cabauw meteorological measurement platform in the Netherlands were conditionally sampled to select nights with stably stratified atmospheric conditions, clear skies and weak horizontal wind speeds (<3 m s−1). For these conditions the eddy-correlation latent heat fluxes are found to be negligibly small, while the conditionally sampled surface energy balance exhibits a maximum residual. However, inspection of the specific humidities for these conditions reveals systematic drying trends that are a maximum at the lowest measurement level above the surface. These drying trends occur for any prevailing wind direction. Latent heat fluxes are calculated from the humidity budget equation and from a Penman-Monteith dewfall model, with the results suggesting that during clear, stable nights the observed latent heat fluxes as obtained from the eddy-correlation technique are erroneously small.  相似文献   

9.
采用2009—2013年CFSR(Climate Forecast System Reanalysis)大气和海洋再分析资料对黄海海气间热量通量和动量通量的特征进行统计分析,并通过FVCOMSWAVE浪流耦合模式对典型寒潮过程中风浪的影响效果进行模拟研究与对比分析。统计结果显示,通量受海表大风、海气温差及海洋环流等因子影响,秋冬季节强烈,春夏季节相对较弱,在寒潮活跃的冷季该海域的海流处于弱流期,风浪对海面通量的作用明显增强。海温特征也显示冷季的不稳定性显著强于暖季,因此该海域冷季具有更强的海气热量通量。沿岸站点的比较显示,南部吕泗站面向更开阔的东海海域,其平均波高高出北部20%左右。这与沿海南部通量强于北部特征对应。数值模拟显示,在寒潮过程中,海气界面热量通量和动量通量输送比多年月平均状态显著增强,动量通量增大1~5倍,热量通量增大1~6倍。寒潮过程入海冷锋走向、强度、移动方向显著影响海面热量通量和动量通量大值区的分布。偏北路寒潮纬向型冷锋入海,其强度东部大于西部,造成通量大值区形成在黄海东北部,而偏西路寒潮经向型冷锋入海,其强度南部大于北部,造成通量大值区形成在黄海南部。同时偏北路径寒潮强度大于偏西路径,海气动量通量响应较偏西路径强约25%,热量通量强约50%。耦合风浪作用的模拟显示,海气间热量通量和动量通量明显增大,对不同强度风浪,浪高增加1.5倍,动量通量最大值增大约2倍,热量通量增大10~160 W/m2;浪高减弱至0.5倍,动量通量最大值则减弱约40%,热量通量减小10~55 W/m2。冷锋及其驱动的风浪强烈影响区域海气通量时空特征。  相似文献   

10.
Based on measurements at Sodankylä Meteorological Observatory the regional (aggregated) momentum and sensible heat fluxes are estimated for two days over a site in Finnish Lapland during late winter. The forest covers 49% of the area. The study shows that the forest dominates and controls the regional fluxes of momentum and sensible heat in different ways. The regional momentum flux is found to be 10–20% smaller than the measured momentum flux over the forest, and the regional sensible heat flux is estimated to be 30–50% of the values measured over a coniferous forest.The regional momentum flux is determined in two ways, both based on blending height theory. One is a parameterised method, the other represents a numerical solution of an aggregation model. The regional sensible heat flux is determined from the theory of mixed-layer growth. At near neutral conditions the regional momentum flux can be determined independently of the regional sensible heat flux. At unstable conditions the two models become coupled.The information that is needed by the parameterised blending height method and by the mixed-layer evolution method in order to derive the regional fluxes of momentum and sensible heat can be obtained from radiosonde profiles of wind speed and temperature.  相似文献   

11.
We investigate the evolution of the early-morning boundary layer in a low-mountain valley in south-western Germany during COPS (convective and orographically induced precipitation study) in summer 2007. The term low-mountain refers to a mountainous region with a relief of gentle slopes and with an absolute altitude that remains under a specified height (usually 1,500 m a.s.l.). A subset of 23 fair weather days from the campaign was selected to study the transition of the boundary-layer flow in the early morning. The typical valley atmosphere in the morning hours was characterized by a stable temperature stratification and a pronounced valley wind system. During the reversal period—called the low wind period—of the valley wind system (duration of 1–2 h), the horizontal flow was very weak and the conditions for free convection were fulfilled close to the ground. Ground-based sodar observations of the vertical wind show enhanced values of upward motion, and the corresponding statistical properties differ from those observed under windless convective conditions over flat terrain. Large-eddy simulations of the boundary-layer transition in the valley were conducted, and statistical properties of the simulated flow agree with the observed quantities. Spatially coherent turbulence structures are present in the temporal as well as in the ensemble mean analysis. Thus, the complex orography induces coherent convective structures at predictable, specific locations during the early-morning low wind situations. These coherent updrafts, found in both the sodar observations and the simulation, lead to a flux counter to the gradient of the stably stratified valley atmosphere and reach up to the heights of the surrounding ridges. Furthermore, the energy balance in the surface layer during the low wind periods is closed. However, it becomes unclosed after the onset of the valley wind. The partition into the sensible and the latent heat fluxes indicates that missing flux components of sensible heat are the main reason for the unclosed energy balance in the considered situations. This result supports previously published investigations on the energy balance closure.  相似文献   

12.
Atmospheric surface layer meteorological observations obtained from 20-m-high meteorological tower at Mangalore, situated along the west coast of India are used to estimate the surface layer scaling parameters of roughness length (z o) and drag coefficient (C D), surface layer fluxes of sensible heat and momentum. These parameters are computed using the simple flux–profile relationships under the framework of Monin–Obukhov (M–O) similarity theory. The estimated values of z o are higher (1.35–1.54 m) than the values reported in the literature (>0.4–0.9 m) probably due to the undulating topography surrounding the location. The magnitude of C D is high for low wind speed (<1.5 m s?1) and found to be in the range 0.005–0.03. The variations of sensible heat fluxes (SHF) and momentum fluxes are also discussed. Relatively high fluxes of heat and momentum are observed during typical days on 26–27 February 2004 and 10–11 April 2004 due to the daytime unstable atmospheric conditions. Stable or near neutral conditions prevail after 1700 h IST with negative SHF. A mesoscale model PSU/NCAR MM5 is run using a high-resolution (1 km) grid over the study region to examine the influence of complex topography on the surface layer parameters and the simulated fluxes are compared with estimated values. Spatial variations of the frictional velocity (u *), C D, surface fluxes, planetary boundary layer (PBL) height and surface winds are noticed according to the topographic variations in the simulation.  相似文献   

13.
Turbulence structures in the katabatic flow in the stable boundary layer (SBL) over the ice sheet are studied for two case studies with high wind speeds during the aircraft-based experiment KABEG (Katabatic wind and boundary layer front experiment around Greenland) in the area of southern Greenland. The aircraft data allow the direct determination of turbulence structures in the katabatic flow. For the first time, this allows the study of the turbulence structure in the katabatic wind system over the whole boundary layer and over a horizontal scale of 80 km.The katabatic flow is associated with a low-level jet (LLJ), with maximum wind speeds up to 25 m s-1. Turbulent kinetic energy (TKE) and the magnitude of the turbulent fluxes show a strong decrease below the LLJ. Sensible heat fluxes at the lowest level have values down to -25 W m-2. Latent heat fluxes are small in general, but evaporation values of up to +13 W m-2 are also measured. Turbulence spectra show a well-defined inertial subrange and a clear spectral gap around 250-m wavelength. While turbulence intensity decreases monotonously with height above the LLJ for the upper part of the slope, high spectral intensities are also present at upper levels close to the ice edge. Normalized fluxes and variances generally follow power-law profiles in the SBL.Terms of the TKE budget are computed from the aircraft data. The TKE destruction by the negative buoyancy is found to be very small, and the dissipation rate exceeds the dynamical production.  相似文献   

14.
Turbulent fluxes have been evaluated for clear sunny days over the Indian Antarctic station, Maitri, using the basic meteorological data recorded at four levels of a 28 m tower. The data are supplemented with radiation data. The surface layer over Maitri remains thermally stratified during the hours of minimum solar insolation, the so-called nighttime period. The surface winds during this period are generally very strong resulting in high momentum fluxes. In particular, for high winds (>12 m s–1), the temperature gradient is found to be less positive than for moderate winds (4 to 7 m s–1). Solar insolation provided the daytime heating necessary for the diurnal variation of atmospheric stability, and hence, for the turbulent fluxes. Thus, on clear days daytime conditions are marked by upward transport of heat with reduced momentum flux, while stable nighttime conditions are marked by a downward heat flux with increased momentum fluxes.  相似文献   

15.
Turbulence measurements taken at a Swedish lake are analyzed. Although the measurements took place over a relatively large lake with several km of undisturbed fetch, the turbulence structure was found to be highly influenced by the surrounding land during daytime. Variance spectra of both horizontal velocity and scalars during both unstable and stable stratification displayed a low frequency peak. The energy at lower frequencies showed a daily variation, increasing in the morning and decreasing in the afternoon. This behaviour is explained by spectral lag, where the low frequency energy due to large eddies that originate from the convective boundary layer above the surrounding land. When the air is advected over the lake the small eddies rapidly equilibrate with the new surface forcing. However, the large eddies remain for an appreciable distance and influence the turbulence in the developing lake boundary layer. The variances of the horizontal velocity and scalars are increased by these large eddies, while the turbulent fluxes are mainly unaffected. The drag coefficient, Stanton number and Dalton number used to parametrize the momentum flux, heat flux and latent heat flux respectively all compare well with current parametrizations developed for open sea conditions. The diurnal cycle of the partial pressure of methane, $p\mathrm{CH}_{4}$ , observed at this site is closely related to the diurnal cycle of the lake-air methane flux. An idealized two-dimensional model simulation of the boundary layer at a lake site indicates that the strong response of $p\mathrm{CH}_{4}$ to the surface methane flux is due to the shallow internal boundary layer that develops above the lake, allowing methane to accumulate in a relatively small volume.  相似文献   

16.
We report the spatio-temporal variability of surface-layer turbulent fluxes of heat, moisture and momentum over the Bay of Bengal (BoB) and the Arabian Sea (AS) during the Integrated Campaign for Aerosols, gases Radiation Budget (ICARB) field experiment. The meteorological component of ICARB conducted during March – May 2006 onboard the oceanic research vessel Sagar Kanya forms the database for the present study. The bulk transfer coefficients and the surface-layer fluxes are estimated using a modified bulk aerodynamic method, and then the spatio-temporal variability of these air-sea interface fluxes is discussed in detail. It is observed that the sensible and latent heat fluxes over the AS are marginally higher than those over the BoB, which we attribute to differences in the prevailing meteorological conditions over the two oceanic regions. The values of the wind stress, sensible and latent heat fluxes are compared with those obtained for the Indian Ocean Experiment (INDOEX) period. The variation of drag coefficient (C D ), exchange coefficients of sensible heat and moisture (C H = C E ) and neutral drag coefficient (C DN ) with wind speed is also discussed.
  相似文献   

17.
Quantifying the energy balance above plant canopies is critical for better understanding of water balance and changes in regional weather patterns. This study examined temporal variations of energy balance terms for contrasting canopies [corn (Zea mays L.) and soybean (Glycine max L. Merr.)]. We monitored energy balance for 4 years using eddy-covariance systems, net radiometers, and soil heat flux plates in adjacent production fields near Ames, Iowa. On an annual basis, soybean exhibited 20% and 30% lower sensible heat flux (H) and Bowen ratio than corn, respectively. As canopies developed, a gradual shift in turbulent fluxes occurred with decreasing H and increasing latent heat flux (LE), but with a more pronounced effect for corn. Conversely, during mid-growing season and as both canopies progressively senesced, H in general increased and LE decreased; however, soybean exhibited slightly greater LE and much lower H than corn. These temporal variations in magnitude and partitioning of turbulent fluxes translated into a pronounced energy imbalance for soybean (0.80) and an enhanced closure for corn (0.98) in August and September. These discrepancies could be directly associated with differences in momentum transport as shown by friction velocities of 0.34 and 0.28 m s?1 for corn and soybean, respectively. These results support influential roles of plant canopy on intensity and mode of surface energy exchange processes.  相似文献   

18.
A bulk model for the atmospheric planetary boundary layer   总被引:1,自引:0,他引:1  
The integrated momentum and thermodynamic equations through the planetary boundary layer (PBL) are solved numerically to predict the mean changes of wind and potential temperature from which surface fluxes are computed using bulk transfer coefficients of momentum and heat. The second part of the study involves a formulation and testing of a PBL height model based on the turbulent energy budget equation where turbulent fluxes of wind and heat are considered as the source of energy. The model exhibits capability of predicting the PBL height development for both stable and unstable regimes of observed conditions. Results of the model agree favourably with those of Deardorff's (1974a) and Tennekes' (1973) models in convective conditions.Contribution number 396.  相似文献   

19.
Sonic anemometer and profile mast measurements made in Wahlenbergfjorden, Svalbard Arctic archipelago, in May 2006 and April 2007 were employed to study the atmospheric boundary layer over sea-ice. The turbulent surface fluxes of momentum and sensible heat were calculated using eddy correlation and gradient methods. The results showed that the literature-based universal functions underestimated turbulent mixing in strongly stable conditions. The validity of the Monin-Obukhov similarity theory was questionable for cross-fjord flow directions and in the presence of mesoscale variability or topographic effects. The aerodynamic roughness length showed a dependence on the wind direction. The mean roughness length for along-fjord wind directions was (2.4 ± 2.6) × 10−4 m, whereas that for cross-fjord directions was (5.4 ± 2.8) × 10−3 m. The thermal stratification and turbulent fluxes were affected by the synoptic situation with large differences between the 2 years. Channelling effects and drainage flows occurred especially during a weak large-scale flow. The study periods were simulated applying the Weather Research and Forecasting (WRF) model with 1-km horizontal resolution in the finest domain. The results for the 2-m air temperature and friction velocity were good, but the model failed to reproduce the spatial variability in wind direction between measurement sites 3 km apart. The model suggested that wind shear above the stable boundary layer provided a non-local source for the turbulence observed.  相似文献   

20.
The impact of sea waves on sensible heat and momentum fluxes is described. The approach is based on the conservation of heat and momentum in the marine atmospheric surface layer. The experimental fact that the drag coefficient above the sea increases considerably with increasing wind speed, while the exchange coefficient for sensible heat (Stanton number) remains virtually independent of wind speed, is explained by a different balance of the turbulent and the wave-induced parts in the total fluxes of momentum and sensible heat.Organised motions induced by waves support the wave-induced stress which dominates the surface momentum flux. These organised motions do not contribute to the vertical flux of heat. The heat flux above waves is determined, in part, by the influence of waves upon the turbulence diffusivity.The turbulence diffusivity is altered by waves in an indirect way. The wave-induced stress dominates the surface flux and decays rapidly with height. Therefore the turbulent stress above waves is no longer constant with height. That changes the balance of the turbulent kinetic energy and of the dissipation rate and, hence the diffusivity.The dependence of the exchange coefficient for heat on wind speed is usually parameterized in terms of a constant Stanton number. However, an increase of the exchange coefficient with wind speed is not ruled out by field measurements and could be parametrized in terms of a constant temperature roughness length. Because of the large scatter, field data do not allow us to establish the actual dependence. The exchange coefficient for sensible heat, calculated from the model, is virtually independent of wind speed in the range of 3–10 ms-1. For wind speeds above 10 ms-1 an increase of 10% is obtained, which is smaller than that following from the constant roughness length parameterization.The investigation was in part supported by the Netherlands Geosciences Foundation (GOA) with financial aid from the Netherlands Organization for Scientific Research (NWO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号