首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Askervein Hill Project: Wind-tunnel simulations at three length scales   总被引:1,自引:1,他引:1  
Wind-tunnel simulations of neutrally-stable atmospheric boundary-layer flow over an isolated, low hill (Askervein) have been carried out at three different length scales in two wind-tunnel facilities. The objectives of these simulations were to assess the reliability with which changes in mean wind and turbulence structure induced by the prototype hill on boundary-layer flow can be reproduced in the wind tunnel, and to determine the relative impact of certain modelling approaches (surface roughness, model scale, measurement techniques, etc.) on the quality of the simulations. The wind-tunnel results are compared with each other and with full-scale data and are shown in general to model the prototype flow very well. The effects of relaxing the criterion of aerodynamic roughness of the model surface were limited to certain regions in the lee of the hill and were linked to separation phenomena.  相似文献   

2.
Summary Surface wind patterns and air flows within the planetary boundary layer over a large three-dimensional hill of moderate slope are grouped according to Froude number classes. An evolution of flow patterns is shown to occur as the Froude number increases.Separation of the surface flow begins at the base of the lee side of the mountain near the centerline, moving upward on the lee slope as the Froude number increases. Recirculating eddies follow the separation of the lee flow. Eventually the separation line moves forward to the windward side as the Froude number becomes very large. The recirculating eddy becomes unsteady, with indication of an intermittent counterrolating eddy near the lee surface in neutral flow. The lee-side turbulence is enhanced with respect to the windward side due to the large eddies in high Froude number regimes.The concept of a critical height for the approach flow is generally supported. The integral form of the Froude number does not appear to be superior to a bulk Froude calculation in representing a particular airflow pattern.With 6 FiguresDeceased.  相似文献   

3.
4.
Flow over the summit of an isolated hill   总被引:5,自引:0,他引:5  
Observations of the mean flow and turbulence statistics over the summit of an isolated, roughly circular hill, Nyland hill, are presented, Nyland hill rises 70 m above the surrounding terrain and has a base diameter of about 500 m. The summit of the hill is very smooth and allows representative measurements to be made close to the surface. The flow speed 8 m above the summit is increased by a factor of 2 over the upstream speed 8 m above level terrain, and flow separation occurs in the lee of the hill. The mean velocity profile over the summit shows an increase in velocity with height up to about 2 m and then a near constant velocity between 2 and 16 m. The flow perturbation relative to the upstream profile is thus a maximum at about 2 m. The measurements of turbulence structure show how the influence of the hill depends on the length scale of the turbulent eddies involved. Scales greater than the scale of the hill are modified through the flow speed-up whilst scales shorter than the hill suffer complex changes. The short-scale turbulence over the summit is only in local equilibrium in the lowest fraction of a metre. Above this equilibrium region, there is a complex adjustment towards the rapid distortion dynamics which appear to dominate at heights above about 8 m. The detailed results are compared with previous studies and available theories.  相似文献   

5.
Atmospheric flow over complex terrain, particularly recirculation flows, greatly influences wind-turbine siting, forest-fire behaviour, and trace-gas and pollutant dispersion. However, there is a large uncertainty in the simulation of flow over complex topography, which is attributable to the type of turbulence model, the subgrid-scale (SGS) turbulence parametrization, terrain-following coordinates, and numerical errors in finite-difference methods. Here, we upgrade the large-eddy simulation module within the Weather Research and Forecasting model by incorporating the immersed-boundary method into the module to improve simulations of the flow and recirculation over complex terrain. Simulations over the Bolund Hill indicate improved mean absolute speed-up errors with respect to previous studies, as well an improved simulation of the recirculation zone behind the escarpment of the hill. With regard to the SGS parametrization, the Lagrangian-averaged scale-dependent Smagorinsky model performs better than the classic Smagorinsky model in reproducing both velocity and turbulent kinetic energy. A finer grid resolution also improves the strength of the recirculation in flow simulations, with a higher horizontal grid resolution improving simulations just behind the escarpment, and a higher vertical grid resolution improving results on the lee side of the hill. Our modelling approach has broad applications for the simulation of atmospheric flows over complex topography.  相似文献   

6.
Numerical simulations of flow over hills that are partially covered with a forest canopy are performed. This represents a much more realistic situation than previous studies that have generally concentrated on hills that are fully-forested. The results show that the flow over the hill is sensitive to where on the hill the forest is positioned. In particular, for low slopes flow separation is predominantly located within the forest on the lee slope. This has implications for the transport of scalars in the forest canopy. For large hills the results show more variability in scalar concentrations within the canopy compared to either a fully-forested hill or a patch of forest over flat terrain. These results are likely to have implications for a range of applications including the siting and interpretation of flux measurements over forests in complex terrain, predicting wind damage to trees and wind-farm developments. Calculation of the hill-induced pressure drag and canopy-plus-surface stress shows a strong sensitivity to the position of the forest relative to the hill. Depending on the position of the forest the individual drag terms may be strongly enhanced or reduced and may even change sign. The net impact is generally to reduce the total drag compared to an equivalent fully-forested hill, but the amount of the reduction depends strongly on the position of the forest canopy on the hill. In many cases with large, wide hills there is a clear separation of scales between the adjustment of the canopy to a forest edge (of order 6 ? 8L c, where L c is the canopy adjustment length scale) and the width of the hill. This separation means that the hill-induced pressure and flow fields and the forest-edge induced pressure and flow fields can in some sense be considered as acting separately. This provides a means of explaining the combined effects of partial forestation and terrain. It also offers a simple method for modelling the changes in drag over a hill due to partial forest cover by considering the impact of the hill and the partial canopy separately. Scaling arguments based on this idea successfully collapse the modelled drag over a range of different hill widths and heights and for different canopy parameters. This offers scope for a relatively simple parametrization of the effects of partial forest cover on the drag over a hill.  相似文献   

7.
Water-Tank Studies of Separating Flow Over Rough Hills   总被引:1,自引:1,他引:0  
The present work investigates the lower boundary condition for flows over a steep, rough hill. Simple asymptotic arguments together with the mixing-length hypothesis are used to derive a local analytical solution that is tested against three different flow conditions. In all, 36 velocity profiles are compared with the proposed expression. The experiments were carried out in a water channel and velocity measurements were made through laser Doppler anemometry. The extent of separated flow was made to vary as a function of the roughness and the Reynolds number. The analysis includes regions of attached as well as separated flow. In particular, the solution of Stratford is studied at the points of separation and re-attachment and found to apply equally well in rough walls.  相似文献   

8.
Large-eddy Simulations of Flow Over Forested Ridges   总被引:4,自引:4,他引:0  
Large-eddy simulations (LES) of flow over a series of small forested ridges are performed, and compared with numerical simulations using a one-and-a-half order mixing length closure scheme. The qualitative and quantitative similarity between these results provides some confidence in the results of recent analytical and numerical studies of flow over forested hills using first-order mixing length schemes. Time series of model velocities at various locations within the canopy allow the application of various experimental techniques to study the turbulence in the LES. The application of conditional analysis shows that the structure of the turbulence over a forested hill is broadly similar to that over flat ground, with sweeps and ejections dominating. Differences are seen across the hill, particularly associated with regions of mean flow separation and recirculation near the summit and in the lee of the hill. Detailed comparison of derived mixing lengths from the LES with the assumed values used in mixing-length closure schemes show that the mixing length varies with location across the hill and with height in the canopy. This is consistent with previous wind-tunnel measurements, and demonstrates that a constant mixing-length assumption is not strictly valid within the canopy. Despite this, the first-order mixing-length schemes do give similar results both for the mean flow and the turbulence in such situations.  相似文献   

9.
Large-eddy and mixing length model simulations of convective flows over hills have been performed for a range of hill slopes and stabilities. For low hills, the fractional speed-up and normalized pressure drag are shown to decrease with increasing instability. For hills steep enough to cause separation in neutral conditions, the effect of convection is to reduce the size and strength of the separated bubble, although the normalized pressure drag is found to be almost independent of stability. Finally, the ability of effective roughness length parametrizations to represent the effects of the hills in convective conditions is assessed.  相似文献   

10.
Using the operational model(B model)of Beijing Meteorological Center,we do some of numerical experi-ments of crossing and rounding mountains in all velocity adjustment scheme,and study dynamic effect ofQinghai-Xizang Plateau and Rocky Mountains on lee cyclones.The results show that due to air flow roundthe Qinghai-Xizang Plateau,divergence is distributed in the shape of confluence which matches cyclogenesisarea and cyclonic track in East Asia.In the downstream of the Qinghai-Xizang Plateau,convergence inthe upper troposphere restrains cyclone development in the east of China mainland.In North America,air flow primarily crosses over Rocky Mountains.Air is adiabatically cooled when it flows upward in thewest flank of Rocky Mountains,while air is warmed when it flows downward in the lee side.The fact isimportant for the lee cyclogenesis and the lee frontogenesis of Rocky Mountains.Air flow crossing over RockyMountains is also the main cause for forming dryline in the mid-west of United States.  相似文献   

11.
青藏高原和落基山对气旋的动力影响   总被引:4,自引:2,他引:4       下载免费PDF全文
盛华  陶诗言 《气象学报》1988,46(2):130-141
本文利用北京气象中心的业务预报模式(B模式),采用全风速调整方案,进行了绕流、爬坡等各种数值试验,研究青藏高原和落基山对气旋的动力影响。结果表明,气流绕青藏高原而行,产生的散度场与东亚的气旋生成区和路径匹配;在青藏高原主体下游,高层辐合,抑制了我国大陆东部的气旋发展。在北美,落基山对大气的动力影响以爬坡为主,由于气流在迎风坡上升,空气绝热冷却,在背风面大规模下沉增温,对流层低层形成暖脊,这对背风锋生和背风气旋的发生发展有着直接的影响;另外爬坡作用也是美国中西部干线形成的主要原因。  相似文献   

12.
The flows over four two-dimensional triangular hills and three two-dimensional bell-shaped hills have been investigated in a simulated rural atmospheric boundary layer modelled to a scale of 1:300: Further measurements were made over two of the triangular hills in a simulated rural boundary layer of 1: 3000 scale and in a simulated urban boundary layer modelled to a scale of 1:400. The effect of the model hill surface roughness was also investigated. Flow measurements were restricted to the mean velocity U, RMS velocity fluctuations u and the energy spectra for the streamwise velocity component Measurements were made at a number of longitudinal positions in the approach flow, over the model hills and downstream of the model hills. For each model hill, the crest was the region of largest mean velocity and smallest velocity fluctuations. The largest mean velocities over the model hills occurred for hills of intermediate slope rather than for the steepest hills. A decrease in the scale of the simulated atmospheric boundary layer led to a reduction in the amplification factors at the hill crests, whereas an increase in the surface roughness of the approach flow resulted in increased amplification factors at the hill crests.  相似文献   

13.
The present work investigates the role of different treatments of the lower boundary condition on the numerical prediction of flows over two-dimensional, smooth, steep hills. Four different law of the wall formulations are tested when a large recirculating region is formed on the lee side of the hill. Numerical implementation of the near-wall functions was made through a finite elements code. The standard κ–ε model was used to close the averaged Navier–Stokes equations. Results are validated through original data obtained in a water tank. Measurements resorted to laser Doppler anemometry. The experiment provide detailed data for the characterization of the reverse flow in the region between the separation and the reattachment points, with emphasis on the near wall region. The experimental wall shear stress distribution is compared with the results provided by the different laws of the wall showing good agreement. The numerical predictions are shown to vary markedly between different formulations.  相似文献   

14.
Airflow over two-dimensional hills was investigated in a wind tunnel using particle image velocimetry. We focus on the flow separation behaviour. A trapezoidal hill shape was used in most of the experimental runs, but the critical slope angle for flow separation was approximately the same as that established for smooth hill shapes. The re-attachment point of the separated flow became farther from the hill as the slope angle $\theta $ increased, reaching a saturation of about seven times the hill height for $\theta \gtrsim 60^\circ $ . Increasing the upwind surface roughness length was found to suppress flow separation. This tendency is analogous to the previous experimental results for turbulent boundary layers on flat plates. The boundary-layer thickness varied by the presence or absence of Counihan-type spires and a castellated fence at the test-section entrance had negligible effect on the flow separation.  相似文献   

15.
How the spatial perturbations of the first and second moments of the velocity and pressure fields differ for flow over a train of gentle hills covered by either sparse or dense vegetation is explored using large-eddy simulation (LES). Two simulations are investigated where the canopy is composed of uniformly arrayed rods each with a height that is comparable to the hill height. In the first simulation, the rod density is chosen so that much of the momentum is absorbed within the canopy volume yet the canopy is not dense enough to induce separation on the lee side of the hill. In the second simulation, the rod density is large enough to induce recirculation inside the canopy on the lee side of the hill. For this separating flow case, zones of intense shear stress originating near the canopy-atmosphere interface persist all the way up to the middle layer, ‘contaminating’ much of the middle and outer layers with shear stress gradients. The implications of these persistent shear-stress gradients on rapid distortion theory and phase relationships between higher order velocity statistics and hill-induced mean velocity perturbations (Δu) are discussed. Within the inner layer, these intense shear zones improve predictions of the spatial perturbation by K-theory, especially for the phase relationships between the shear stress (~ ?Δu/?z) and the velocity variances, where z is the height. For the upper canopy layers, wake production increases with increasing leaf area density resulting in a vertical velocity variance more in phase with Δu than with ?Δu/?z. However, background turbulence and inactive eddies may have dampened this effect for the longitudinal velocity variance. The increase in leaf area density does not significantly affect the phase relationship between mean surface pressure and topography for the two simulations, though the LES results here confirm earlier findings that the minimum mean pressure shifts downstream from the hill crest. The increase in leaf area density and associated flow separation simply stretches this difference further downstream. This shift increases the pressure drag, the dominant term in the overall drag on the hill surface, by some 15%. With regards to the normalized pressure variance, increasing leaf area density increases ${\sigma_p/u_{*}^{2}}$ near the canopy top, where u * is the longitudinally averaged friction velocity at the canopy top and σ p is the standard deviation of the pressure fluctuations. This increase is shown to be consistent with a primitive scaling argument on the leading term describing the mean-flow turbulent interaction. This scaling argument also predicts the spatial variations in σ p above the canopy reasonably well for both simulations, but not inside the canopy.  相似文献   

16.
The effect of variable roughness length upon the flow characteristics over hills is investigated. The changes considered herein cover a range of flow configurations such as the change from a forested (rough) valley with a moderately smooth hilltop to a grassy valley (smooth) with a “spiky” (rough) mountain top. The effect of moving the roughness with respect to the hill is also considered. Although many of the flow features change when the position of the roughness change is varied with respect to the hill these changes have very little impact upon the global properties used within orographic drag parametrization schemes.  相似文献   

17.
Turbulence data from experiments conducted over a staggered cube array, modelling a neutrally stable atmospheric boundary layer in an urban environment, are presented. The results support the contention that organised eddy structures in the near-wall region differ significantly from those in regular smooth-wall flows or in rough-wall boundary layers with much smaller h/δ ratios (where δ and h are the boundary-layer thickness and the height of the roughness elements, respectively). Attention is concentrated on spatial correlations, spectra (and thus the dominant length and time scales), maps of anisotropy invariants and quadrant analyses of the stress tensor. Results are obtained within both the roughness sublayer (i.e. the region above the roughness but within which the flow is spatially inhomogeneous) and the canopy region (i.e. below the height of the roughness elements) and discussion includes consideration of the turbulence kinetic energy balance at various heights.  相似文献   

18.
19.
20.
Summary Numerical experiments are performed for inviscid flow past an idealized topography to investigate the formation and development of lee mesolows, mesovortices and mesocyclones. For a nonrotating, low-Froude number flow over a bell-shaped moutain, a pair of mesovortices form on the lee slope move downstream and weaken at later times. The advection speed of the lee vortices is found to be about two-thirds of the basic wind velocity, which is due to the existence of a reversed pressure gradient just upstream of the vortices. The lee vortices do not concur with the upstream stagnation point in time, but rather form at a later time. It is found that a pair of lee vortices form for a flow withFr=0.66, but take a longer time to form than in lower-Froude number flows. Since the lee vortices are formed rather progressively, their formation may be explained by the baroclinically-induced vorticity tilting as the mountain waves become more and more nonlinear.A stationary mesohigh and mesolow pressure couplet forms across the mountain and is produced in both high and low-Froude number flows. The results of the high Froude number simulations agree well with the classical results predicted by linear, hydrostatic mountain wave theory. It is found that the lee mesolow is not necessarily colocated with the lee vortices. The mesolow is formed by the downslope wind associated with the orographically forced gravity waves through adiabatic warming. The earth's rotation acts to strengthen (weaken) the cyclonic (anticyclonic) vortex and shifts the lee mesolow to the right for an observer facing downstream. The cyclonic vortex then develops into a mesocyclone with the addition of planetary vorticity at later times. For a flow over a steeper mountain, the disturbance is stronger even though the Froude number is kept the same.For a southwesterly flow past the real topography of Taiwan, there is no stagnation point or lee vortices formed because the impinging angle of the flow is small. A major mesoscale low forms to the southeast of the Central Mountain Range (CMR), while a mesohigh forms upstream. For a westerly flow past Taiwan, a stagnation point forms upstream of the mountain and a pair of vortices form on the lee and move downstream at later times. The cyclonic vortex then develops into a mesocyclone. A mesolow also forms to the southeast of Taiwan. For a northeasterly flow past Taiwan, the mesolow forms to the northwest of the mountain. Similar to flows over idealized topographies, the Taiwan mesolow is formed by the downslope wind associated with mountain waves through adiabatic warming. A conceptual model of the Taiwan southeast mesolow and mesocyclone is proposed.With 16 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号