首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of urbanization is assessed by comparing values of the radiation parameters at an urban location with those of a rural site. Urban Delhi was divided according to land-use and the effects of urbanization was studied on incoming short-wave (K), albedo, incoming longwave (L, outgoing longwave (L), and net radiation (Q *), were individually studied at four representative sites (Rural, Commercial, Residential and Industrial). MaximumK was observed in the rural and commercial areas whereas highL was observed in the commercial and industrial locations. High depletion ofK of the order of 13% was observed for the industrial location in the winter season. An increase ofL in, the industrial location is of the same order as that of the commercial location, i.e. 20%. The residential location shows quite moderate (4.6%) depletion ofK in comparison with other sites.Nomenclature U Urban - R Rural - K Incoming Short-wave radiation - L Incoming Long-wave radiation - L Outgoing Long-wave radiation - Q * Net Radiation - Albedo - K * Net Short-wave radiation - L * Net Long-wave radiation  相似文献   

2.
Measurements of the surface radiation budgets for three surfaces—grass, soil and a cornfield—are used to evaluate the ‘heating coefficient’β, and its componentsβ (=dL /dR n ) andβ (=dL /dR n ). This resolution permits an analysis of the sensitivity of β to surface and atmospheric influences.β is shown, both theoretically and empirically, to be determined by surface properties. For grass and soil, the parameter functions as an index of surface desiccation.β values are large (even under clear conditions) and variable, accounting for part of the variance in β and the anomalously small and negative values reported in the literature.β values for cloudy conditions may be larger or smaller than those for clear skies. It is concluded that, unless a predictive procedure can be developed forβ , the Monteith and Szeicz model is of limited use for the routine estimation of net radiation.  相似文献   

3.
Summary  A measurement programme was conducted in G?teborg Sweden, to examine the spatial variations of incoming longwave irradiance on calm, cloudless nights. Both regional and local spatial variations were examined. Incoming longwave irradiance data was obtained from mobile car transects, and at a fixed site on a building roof at the city centre. Ancillary data included sky view factor at various transect locations, and balloon soundings of air temperature and humidity on one night. Measurements revealed that on average, incoming longwave irradiance at the fixed urban site was 11 W m −2 higher than at the rural station, with varying differences for intervening sites. Bulk apparent sky emissivity was higher at the most rural station compared to the fixed urban site, by about 0.03 on average. Nighttime balloon measurements and a sensitivity analysis with a radiative transfer model argue that the bulk apparent sky emissivity differences stem mainly from the temperature structure of the lower boundary layer which changes markedly from rural to urban areas. A good relationship was found between sky view factor and incoming longwave irradiance for a range of urban and park locations. The relationship applies to both individual nights and average data. Using a simple obstruction model, canyon wall temperatures are derived, and the relationship between sky view factor and wall temperature is examined. Received December 23, 1999 Revised May 5, 2000  相似文献   

4.
 The diurnal range of surface air temperature (rT a ) simulated for present and doubled CO2 climates by the CSIRO9 GCM is analysed. Based on mean diurnal cycles of temperature and surface heat fluxes, a theory for understanding the results is developed. The cycles are described as the response to a diurnal forcing which is represented well by the diurnal mean flux of net shortwave radiation at the surface (SW) minus the evaporative (E) and sensible (H) fluxes. The response is modified by heat absorbed by the ground, and by the cycle in downward longwave (LW) radiation, but these effects are nearly proportional to the range in surface temperature. Thus in seasonal means, rT a is approximately given by SWEH divided by 6 W m-2/°C. A multiple regression model for (rT a ) is developed, based on quantities known to influence SW, E and H, and applied to both spatial variation in seasonal means, and day-to-day variation at a range of locations. In both cases, rT a is shown to be influenced by cloud cover, snow extent and wind speed. It is influenced by soil moisture, although this effect is closely tied to that of cloud. In seasonal means rT a is also well correlated with precipitable water, apparently because of the latter’s influence on E+H. The regression model describes well the spatial variation in the doubled CO2 change in rT a . The annual mean change in rT a over land on doubling CO2 was −0.36 °C, partly because of a decrease in the mean diurnal forcing (as defined in the theory), but also apparently because of the effect of nonlinearity in T s of the upward longwave emission. A diagnostic radiation calculation indicates that the CO2 and water vapour provide a small increase in rT a through the downward LW response, which partially counters a decrease due to a reduction of SW by the gases. Received: 8 November 1995 / Accepted: 3 January 1997  相似文献   

5.
A direct comparison of urban and rural surface energy balances, as well as a variety of other variables including incoming shortwave/longwave radiation and aerosol optical depth, is conducted for the Beijing metropolitan area. The results indicate that, overall, the urban area receives a smaller amount of incoming shortwave radiation but a larger amount of incoming longwave radiation. However, comparisons in the aerosol optical depth and cloud fraction at the two locations suggest that neither aerosol optical depth nor cloud fraction alone can explain the difference in the incoming shortwave radiation. The urban–rural differences in the incoming longwave radiation are unlikely to be caused by the presence of more abundant greenhouse gases over the urban area, as suggested by some previous studies, given that water vapor is the most dominant greenhouse gas and precipitable water is found to be less in urban areas. The higher incoming longwave radiation observed over the urban area is mostly likely due to the higher temperatures of the ambient air. The urban area is also found to always produce higher sensible heat fluxes and lower latent heat fluxes in the growing season. Furthermore, the urban area is associated with a larger amount of available energy(the sum of sensible and latent heat fluxes) than the rural area, except in May and October when evapotranspiration in the rural area significantly exceeds that in the urban area. This study provides observational evidence of urban–rural contrasts in relevant energy-balance components that plausibly arise from urban–rural differences in atmospheric and land-surface conditions.  相似文献   

6.
Summary  The Linke T L , ?ngstr?m β and Unsworth-Monteith δ a turbidity parameters are investigated for two sites in Egypt: Cairo, a densely populated urban area, and Aswan, an arid unpolluted area. These three turbidity parameters are calculated from broadband pyrheliometric measurements recorded hourly over the period 1992–96. Monthly averages of T L , β and δ a show relatively flat and identical seasonal variations with a marked main maxima during spring at both sites, due to Khamsin depressions coming from the Great Sahara. A secondary maximum is observed at Aswan in summer, due to dust haze which prevails during that season, and at Cairo in autumn, due to the northern extension of the Sudan monsoon trough, which is accompanied by small scale depressions with dust particles. Annual mean values of T L , β and δ a (5.59, 0.250 and 0.372, respectively) at Cairo are larger than at Aswan (3.89, 0.139 and 0.213, respectively). In the same way, the seasonal mean values of T L , β and δ a at Cairo are larger than at Aswan. More generally, the monthly and yearly average turbidity values are significantly larger in Cairo than in Aswan for the whole period 1992–96, which is attributable in part to the urbanization/industrialization effect of Cairo. An estimate of the corresponding overburden is obtained by comparison between the present data and older T L data from 1922–27. It is also shown that turbidity over both sites is largest during 1992, just after the eruption of Mount Pinatubo in 1991. The dependence of β on some meteorological parameters such as wind speed and direction, precipitable water, relative humidity, temperature and visibility, is also analyzed. This reveals in particular that visibility is not a good predictor of turbidity at either site. Conversely, the wind direction and speed have a definite effect on turbidity, and consequently, largest turbidities occur when the wind carries aerosols from the main industrial particle source areas around Cairo. For any season of the year, the average turbidity at the latter site is larger than that at other big cities such as Athens, Rome, and Toronto, but is lower than at Dhahran, Saudi Arabia. Received February 3, 2000 Revised August 25, 2000  相似文献   

7.
Summary In addition to global solar radiationE g , the hourly diffuse componentE d incident on a horizontal surface has been measured from February 1993 to January 1995 at a meteorological station in tropical West Africa. The measured diffuse solar irradiance data was corrected for shadow band effects. The monthly mean diurnal variations of diffuse solar irradiance obtained for identical months in the two years have been compared and found to be generally consistent. The corresponding monthly mean hourly values ofE d for identical months in 1993 and 1994 agreed to within 9% while yielding correlation coefficients greater than 0.960. In addition, the monthly mean daily totals ofE d for identical months were found to agree mostly to within 6% and showed virtually the same annual variations in both years. The monthly mean daily total values of diffuse solar radiation for most months in the two years ranged between 7.94 MJm–2d–1 and 10.50 MJm–2d–1. The monthly mean of daily hourly maximum values ofE d obtained for identical months in the two years have been discussed in relation to the dominant atmospheric conditions during these months. The results been presented here have been compared with those of some investigators within and outside the Africa region.With 8 Figures  相似文献   

8.
Profiles of wind and turbulence over an urban area evolve with fetch in response to surface characteristics. Sodar measurements, taken on 22 April 2002 during the Salford Experiment in the UK (Salfex), are here related to upstream terrain. A logarithmic layer up to z = 65m was observed in all half-hour averaged profiles. Above this height the profile showed a different vertical gradient, suggesting a change in surface cover upstream. The drag coefficient varied by a factor of two over only a 20° direction change. Turbulence intensity (σ x ) for each wind component (x) decreased with height, but the ratio suggested an underestimate of σ u compared to previous results. Mean urban and suburban cover fraction within the source area for each height decreased sharply between z = 20 and 50m, increasing slightly above. The near-convergence of cover fractions thus occured for source areas of minimum length ≈ 2,200 m. In comparison, the mean length scale of heterogeneity L P was calculated from surface cover data to be 1,284 m, and the corresponding mean blending height h b was 175 m. Finally, the mean streamline angle, α, was negative and the magnitude decreased with height. An exponential fit to α for z ≤ 65m gave an e-folding height scale of 159 m. A simple relationship between this height scale and L P was assumed, giving L P ≈ 1,080 m, which is in reasonable agreement with the estimate from surface cover type. The results suggest that more emphasis is required on modelling and measuring surface-layer flow over heterogeneous urban canopies.  相似文献   

9.
The main goal of this work is to describe the diurnal and seasonal variations of the radiation balance components at the surface in the city of S?o Paulo based on observations carried out during 2004. Monthly average hourly values indicate that the amplitudes of the diurnal cycles of net radiation (Q*), downwelling and upwelling shortwave radiation (SWDW, SWUP), and longwave radiations (LWDW, LWUP) in February were, respectively, 37%, 14%, 19%, 11%, and 5% larger than they were in August. The monthly average daily values indicate a variation of 60% for Q*, with a minimum in June and a maximum in December; 45% for SWDW, with a minimum in May and a maximum in September; 50% for SWUP, with a minimum in June and a maximum in September; 13% for LWDW, with a minimum in July and a maximum in January; and 9% for LWUP, with a minimum in July and a maximum in February. It was verified that the atmospheric broadband transmissivity varied from 0.36 to 0.57; the effective albedo of the surface varied from 0.08 to 0.10; and the atmospheric effective emissivity varied from 0.79 to 0.92. The surface effective emissivity remained approximately constant and equal to 0.96. The albedo and surface effective emissivity for S?o Paulo agreed with those reported for urban areas in Europe and North America cities. This indicates that material and geometric effects on albedo and surface emissivity in S?o Paulo are similar to ones observed in typical middle latitudes cities. On the other hand, it was found that S?o Paulo city induces an urban heat island with daytime maximum intensity varying from 2.6°C in July (16:00 LT) to 5.5°C in September (15:00 LT). The analysis of the radiometric properties carried out here indicate that this daytime maximum is a primary response to the seasonal variation of daily values of net solar radiation at the surface.  相似文献   

10.
The mixing ratios of surface O3 were measured at St. John's College, Agra, an urban and traffic influenced area for the period of 2000–2002. The monthly averaged O3 mixing ratios ranged between 8 to 40 ppb with an annual average of 21 ppb. Strong diurnal and seasonal variations in O3 mixing ratios were observed throughout the year except for monsoon season. The mixing ratios of O3 follow the surface temperature cycle and solar radiation (r = 0.72 and r = 0.65 with temperature and solar radiation, respectively). Concentrations were higher with winds associated with NE and NW direction indicating the impact of pollution sources on surface O3 concentration. Exceedance of ozone critical level was calculated using the AOT 40 index and found to be 840 ppb.h and 2430 ppb.h for summer and winter seasons, respectively. The present O3 exposures are lower than the critical level of O3 and suggest that the present level of O3 does not have any impact on reduction in crop yields.  相似文献   

11.
Summary Adaptive geometrical configurations are presented, which aim to create intelligent urban forms, and which include screening methods applicable to the linear- and grid-type building layouts. They are especially suitable for mid-latitude cities characterized by seasonally swinging climates which necessitate heating in winter and cooling in summer. The screens are envisaged as shading devices in the summer blocking the incoming solar radiation during day-time (that is, on-position), while being removed at night to enhance nocturnal radiative cooling (that is, off-position). In winter they are assumed to be in off-position during sunshine hours to promote the access of solar radiation and in on-position at night to obstruct the sky energy sink and reduce radiant heat losses. Their implications for the urban street canyon climate and the thermal performance of the built environment are simulated using the cluster thermal time constant (CTTC) model. The diurnal variation of both the ambient air temperature and net radiant flux within the urban canopy layer serve as criteria by which the climatetempering effectiveness of the screens is assessed.With 9 Figures  相似文献   

12.
The parameterization of the energy balance from a residential and commercial neighborhood of Mexico City was investigated using direct measurements of radiative and heat fluxes carried out during the MILAGRO/MCMA-2006 field campaign as a reference. The measured fluxes were used to evaluate different models of the energy balance based on parameterizations that require standard meteorological observations: ambient temperature, relative humidity, atmospheric pressure and cloudiness. It was found that these models reproduce with reasonable accuracy the diurnal features of the radiative and heat fluxes. The largest differences between modeled and observed fluxes correspond to the incoming longwave radiation, mainly due to errors in the cloudiness data. This paper contributes to the understanding of the energy partitioning in (sub)tropical urban environments, particularly in the developing world, where energy balance models have not been evaluated.  相似文献   

13.
We report on field observations in January 2009 (austral summer) of atmospheric dust devils in the northern part of the Atacama Desert in South America (≈20S). An extremely high level of dust-devil activity over the study site has been observed, dependent on local meteorological conditions. We found a high correlation between the dust-devil frequency of occurrence and the Obukhov length scale, L, calculated from meteorological gradient measurements, with a clear tendency for this frequency to increase with decreasing −L. The upper threshold values of −L ≈ 20–30 m, and the 2-m mean wind speed, V 2 ≈ 8m s−1, for dust-devil occurrence have been found, but the minimal V 2 threshold was not observed. Parallel routine meteorological measurements enabled us to calculate the main constituents of the surface energy balance, to obtain direct estimates of the surface albedo (α ≈ 0.21 at the solar noon) and to summarize the local conditions.  相似文献   

14.
We present a series of sensitivity studies conducted using a one-dimensional Mars model (hereafter 1D model) of the University of Helsinki (UH). The reference case was the Pathfinder simulation for the second Martian day. Pathfinder temperatures and new wind speed observations from near the surface were available for validation. The Monin–Obukhov similarity parametrization for surface-layer turbulence was tested with various forms for the stability functions, and compared with the Pathfinder observations. The Dyer–Businger (DB) forms proved appropriate in the highly turbulent daytime Martian boundary layer. An iterative surface-layer treatment was introduced; this did not significantly change the results but showed that the Obukhov length L was about –30 m during daytime and +%5 m during nighttime. The importance of including water vapour and dust in the radiative transfer was tested in the Pathfinder simulations. Water vapour seems to have a significant effect, especially on the nighttime surface temperatures, by increasing the downwelling longwave radiation. Dust acts similarly and has an even greater longwave effect. It also extinguishes solar radiation strongly, thereby damping the surface temperature cycle. The sensitivity of the diurnal surface temperature variation on various physical properties of the soil (regolith) was studied. Thermal inertia and thermal conductivity had the largest effects. The Beagle 2 Lander of the European Space Agency (ESA) landed unsuccessfully on Mars at the end of the year 2003. The selected landing site was in the Northern Hemisphere tropics where seasonal variations are small, and the landing time corresponded roughly to early spring (Ls = 330°). The expected weather conditions at the site were simulated for four approximate Martian months consisting of 60 Martian solar days each. The driving conditions for the simulations were taken from the Mars climate database.  相似文献   

15.
Summary  Surface radiative fluxes play a major role in the energy exchange process between the atmosphere and earth surface and are thus very crucial to climatic processes within the atmospheric boundary layer. Based on four years REKLIP (REgio-KLIma-Project) data set of measured radiative fluxes and additional supporting meteorological variables, the surface radiation regime for selected lowland site (Bremgarten 212 m a.s.l.) and mountain sites (Geiersnest at 870 m a.s.l.; Feldberg 1489 m a.s.l.) in the southern Upper Rhine valley region (south-west Germany) has been reported. Time series of radiative fluxes and surface albedo showed significant inter-site differences. Possible reasons for the observed differences have been made. Downward atmospheric radiation A l at the study sites was parameterised in terms of air temperature, vapour pressure and cloud amount, all of which strongly govern the variation of A l . Effective terrestrial radiation amounted to about 50% of absorbed shortwave radiation at the study sites annually. During clear sky conditions, global solar irradiance G s constituted about 76.0% of the incident extraterrestrial solar irradiance at Feldberg mountain site but only 68.5% of that at Bremgarten lowland site. Annual cumulative of net radiative flux R n amounted to 1722 MJm−2 yr−1 at the lowland site, while that at Geiersnest and Feldberg mountain sites constituted 84% and 73% respectively of the corresponding magnitude for the lowland site. In the same vein, annual mean of radiation efficiency (defined here as R n /G s ) amounted to 0.32 in Feldberg, 0.37 in Geiersnest and 0.41 in Bremgarten. Consequently the annual available energy, of which net radiative flux is representative, was smaller at the mountain ous sites relative to the lowland site during the study period. Inter-annual variability of net radiative flux, its constituent variables and derivatives at the study sites were generally below 10%, with longwave fluxes showing the lowest fluctuation. This renders the measured data quite suitable for modelling purposes. In winter, mean daily sums of R n showed a slow rise with cloud amount N at the lowland site but a sharp rise with N at Feldberg mountain site. In summer however, mean daily sums of R n declined significantly with N as well as Linke turbidity factor at the study sites. Received June 24, 1999 Revised November 2, 2000  相似文献   

16.
A good understanding of radiation fluxes is important for calculating energy, and hence, mass exchange at glacier surfaces. This study evaluates incoming longwave radiation measured at two nearby glacier stations in the high Andes of the Norte Chico region of Chile. These data are the first published records of atmospheric longwave radiation measurements in this region. Nine previously published optimised parameterisations for clear sky emissivity all produced results with a root mean square error (RMSE) ~20 W?m?2 and bias within ±5 W m?2, which is inline with findings from other regions. Six optimised parameterisations for incoming longwave in all sky conditions were trialled for application to this site, five of which performed comparably well with RMSE on daytime data <18 W?m?2 and bias within ±6 W?m?2 when applied to the optimisation site and RMSE <20 W?m?2 and bias within ±10 W m?2 when applied to the validation site. The parameterisation proposed by Mölg et al. (J Glaciol 55:292-302, 2009) was selected for use in this region. Incorporating the proposed elevation modification into the equation reduced the bias in the modelled incoming longwave radiation for the validation site. It was found that applying the parameterisation optimised in the original work at Kilimanjaro produced good results at both the primary and validation site in this study, suggesting that this formulation may be robust for different high mountain regions.  相似文献   

17.
利用2013年我国西北戈壁、沙漠和黄土塬区三类典型裸土下垫面野外观测试验资料,探究了上述地区地表向下、向上长波辐射(DLR&ULR)、地表温度(LST)和地表宽波段发射率(LSBE)的变化特征,结果表明:黄土站地表ULR和LST明显比戈壁和沙漠站偏低;戈壁宽波段发射率(GbBE)、沙漠宽波段发射率(DeBE)和黄土宽波段发射率(LoBE)具有明显的变化特征,尤其是日变化特征;观测期内GbBE、DeBE和LoBE平均值分别约为0.926±0.0452、0.916±0.0419和0.881±0.049。三站点地表宽波段发射率的数值大小和变化特征与陆面模式中所指定的参数化情况不符。地表发射率会受站点周围环境和当时气象条件等因素的影响,表层土壤湿度被认为是一个非常重要的影响因子,将来的野外观测试验中需加强相关影响要素的观测与分析。  相似文献   

18.
On the basis of 10-year series of observations at 30 stations in Eastern Siberia and Far East, features are analyzed of annual and diurnal changes in vertical gradient of refractive index g n , and of its rms deviation σ in the lower 900-m layer of the atmosphere. It is found that the main type of annual variations of g n and σ is represented by the annual cycle with two maxima (in winter and summer) and two minima (in spring and fall). The annual cycle with a single high winter maximum of g n and σ is, for the first time, revealed in the northeastern border region of Russia. The largest amplitude of g n annual cycle is observed in the northeastern part of the area. The diurnal variations of g n exhibit maximum amplitudes in spring and summer; diurnal changes of σ are not pronounced but in several stations in the northern part of the area.  相似文献   

19.
An urban canopy model is developed for use in mesoscale meteorological and environmental modelling. The urban geometry is composed of simple homogeneous buildings characterized by the canyon aspect ratio (h/w) as well as the canyon vegetation characterized by the leaf aspect ratio (σ l ) and leaf area density profile. Five energy exchanging surfaces (roof, wall, road, leaf, soil) are considered in the model, and energy conservation relations are applied to each component. In addition, the temperature and specific humidity of canopy air are predicted without the assumption of thermal equilibrium. For radiative transfer within the canyon, multiple reflections for shortwave radiation and one reflection for longwave radiation are considered, while the shadowing and absorption of radiation due to the canyon vegetation are computed by using the transmissivity and the leaf area density profile function. The model is evaluated using field measurements in Vancouver, British Columbia and Marseille, France. Results show that the model quite well simulates the observations of surface temperatures, canopy air temperature and specific humidity, momentum flux, net radiation, and energy partitioning into turbulent fluxes and storage heat flux. Sensitivity tests show that the canyon vegetation has a large influence not only on surface temperatures but also on the partitioning of sensible and latent heat fluxes. In addition, the surface energy balance can be affected by soil moisture content and leaf area index as well as the fraction of vegetation. These results suggest that a proper parameterization of the canyon vegetation is prerequisite for urban modelling.  相似文献   

20.
Air samples were collected covering a full diurnal cycle during each month of the year 2002 at a mountaintop of Mt. Abu (24.6^∘ N, 72.7^∘ E, 1680 amsl). These samples were analyzed for C2−C4 NMHCs using a gas chromatograph (GC) equipped with flame ionization detector (FID). The seasonally averaged diurnal distributions of these NMHCs do not show significant variations in the summer season. While sharp peaks in the diurnal variation of some species during evening hours are additional features apart from higher levels in all NMHCs in the winter season. The seasonal variations in relatively long lived species (e.g. ethane, propane and acetylene) are observed to be more pronounced compared to those in reactive species (e.g. ethene, propene and butanes). The seasonal changes in transport patterns seem to be more dominant factor at this site for the observed variations in NMHCs than changes in OH radical concentration. The annual mean mixing ratios of ethane, ethene, propane, propene, i-butane, acetylene, and n-butane are 1.22 ± 0.58, 0.34 ± 0.24, 0.46 ± 0.20, 0.17 ± 0.14, 0.21 ± 0.18, 0.41 ± 0.43, and 0.31 ± 0.35 ppbv, respectively. Only few pairs of NMHCs are observed to show good correlations, mainly due to transport of air masses with different degree of photochemical processing. A comparison of this measurement with data reported for other remote sites of the globe indicates lower levels of light NMHCs in the tropical sites. The annual mean mixing ratios of various C2−C4 NMHCs at Mt. Abu are lower by factors ranging between 3 to 9 compared to a nearest urban site of Ahmedabad. The annual mean propylene (propene) equivalent concentrations of about 1.12 and 8.62 ppbC were calculated for Mt. Abu and Ahmedabad, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号