首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 708 毫秒
1.
The isotope enabled atmospheric water balance model is applied to examine the spatial and temporal variations of δ18O in precipitation, amount effect and meteoric water lines (MWL) under four scenarios with different fractionation nature and surface evaporation inputs. The experiments are conducted under the same weather forcing in the framework of the water balance and stable water isotope balance. Globally, the spatial patterns of mean δ18O and global MWLs simulated by four simulation tests are in reasonably good agreement with the Global Network of Isotopes in Precipitation observations. The results indicate that the assumptions of equilibrium fractionation for simulating spatial distribution in mean annual δ18O and the global MWL, and kinetic fractionation in simulating δ18O seasonality are acceptable. In Changsha, four simulation tests all reproduce the observed seasonal variations of δ18O in precipitation. Compared with equilibrium fractionation, the depleted degree of stable isotopes in precipitation is enhanced under kinetic fractionation, in company with a decrease of isotopic seasonality and inter-event variability. The alteration of stable isotopes in precipitation caused by the seasonal variation of stable isotopes in vapour evaporated from the surface is opposite between cold and warm seasons. Four simulations all produce the amount effect commonly observed in monsoon areas. Under kinetic fractionation, the slope of simulated amount effect is closer to the observed one than other scenarios. The MWL for warm and humid climate in monsoon areas are well simulated too. The slopes and intercepts of the simulated MWLs decrease under kinetic fractionation.  相似文献   

2.
聂锋  廖治杰  徐勇 《气象科学》2016,36(1):20-27
利用NCEP/NCAR再分析数据和中国台站降水资料研究冬季东亚高空副热带急流和温带急流协同变化特征及其与中国南方地区降水的关系,发现冬季东亚高原急流与温带急流同期反向协同变化特征最为显著。即高原急流增强,同时温带急流减弱(SW型)和高原急流减弱,同时温带急流增强(WS型)。当高原急流增强(减弱)而温带急流减弱(增强)时,中国南方地区降水显著增加(减少)。合成分析表明,不同急流协同变化型态下冷暖空气活动特征存在较大差异,高原急流与温带急流的反向协同变化可以真实反映与冬季中国南方地区降水相关联的冷暖空气活动特征,进而导致不同降水形态的产生。  相似文献   

3.
We present new tree-ring width, δ13C, and δ18O chronologies from the Koksu site (49°N, 86° E, 2,200 m asl), situated in the Russian Altai. A strong temperature signal is recorded in the tree-ring width (June-July) and stable isotope (July-August) chronologies, a July precipitation signal captured by the stable isotope data. To investigate the nature of common climatic patterns, our new chronologies are compared with previously published tree-ring and stable isotope data from other sites in the Altai region. The temperature signal preserved in the conifer trees is strongly expressed at local and regional scales for all studied sites, resulting in even stronger temperature and precipitation signals in combined average chronologies compared to separate chronologies. This enables the reconstruction of June-July and July-August temperatures for the last 200 years using tree-ring and stable carbon isotopes. A July precipitation reconstruction based on oxygen isotopic variability recorded in tree-rings can potentially improve the understanding of hydrological changes and the occurrence of extreme events in the Russian Altai.  相似文献   

4.
The series of δ18O values is presented for all precipitation events in Moscow in 2014. Precipitation samples were taken at the observation site of the Meteorological Observatory of Lomonosov Moscow State University (MSU MO), and the isotopic analysis was carried out in the isotopic laboratory of the Department of Geography of MSU. The concentration of stable 18O in precipitation over Moscow in 2014 varied from -0.09 to -26.29‰. The maximum amplitudes of δ18O were registered in March-April and October. The pronounced interrelation was revealed between the oxygen isotopic composition of precipitation and surface air temperature (the correlation coefficient is 0.85). The computation of back trajectories of air masses and the analysis of weather charts demonstrated that the most isotopically light precipitation is typical of relatively cold air masses slowly moving over the continent during the last five days before precipitation. In this case, the ongoing condensation leads to the progressive isotopic depletion of precipitation (more and more isotope-depleted precipitation is registered). On the contrary, fast air transport from the middle and even from high latitudes of the Atlantic Ocean leads to the relatively constant of δ18O values of precipitation.  相似文献   

5.
The interpretation of stable isotopes in speleothems in terms of past temperature variability or precipitation rates requires a comprehensive understanding of the climatic factors and processes that influence the δ18O signal in the way through the atmosphere to the cave, where carbonate precipitates acquiring its final isotopic composition. This study presents for the first time in the Iberia Peninsula an integrated analysis of the isotopic composition of rainfall (δ18Op) during 2010–2012 years and, through a detailed monitoring survey, the transference of the primary isotopic signal throughout the soil and epikarst into the Molinos cave (Teruel, NE Spain). Both air temperature and amount of precipitation have an important effect on δ18Op values, clearly imprinting a seasonal variability modulated by an amount effect when rainfall events are more frequent or intense. Air mass history and atmospheric circulation influences are considered through the study of weather types, synoptic-scale climate patterns and large-scale atmospheric circulation indexes (North Atlantic Oscillation and Western Mediterranean Oscillation) revealing a dominant source effect on δ18Op values in this region where tropical North Atlantic and Western Mediterranean are the two moisture source regions. A delay of 2–3 months occurs between the dripwater oxygen isotopic composition (δ18Od) respect to δ18Op values as a consequence of large residence time in the epikarst. Limited calcite precipitates are found from winter to spring when δ18Od values are less negative and dripwater rates are constant. This study suggests that NE Iberian δ18Ocalcite proxy records are best interpreted as reflecting a combination of parameters, not just paleotemperature or paleorainfall and, if extending present-day situation towards the recent past, a biased signal towards winter values should be expected in Molinos speleothem records.  相似文献   

6.
The stable isotopic composition of precipitation in different regions reflects climatic factors such as temperature, precipitation, moisture sources, and transport process. However, the isotopic variation in the region is usually much complicated due to the combined influences of these factors. A good understanding of climatic controls on the isotopic composition of precipitation can contribute to the study on isotopic tracer for climate and hydrology. To investigate the isotopic variation of precipitation and its climatic controls in the middle of the Tibetan Plateau, a monitoring station for stable isotope in precipitation has been established in Nagqu region, central Tibetan Plateau. We obtained 79 daily samples at Nagqu Meteorological Station in 2000. The observed δ 18O in precipitation showed a distinctly seasonal pattern with higher values in spring and winter and lower values in summer, despite of individually low values in winter due to extremely low temperature. To further understand this pattern, we evaluated the influence of temperature, precipitation, moisture sources, and moisture transport process on precipitation δ 18O. A multiple linear regression model represents quantitatively the dependence of precipitation δ 18O on precipitation and temperature: δ 18Oppt?=??0.30P???0.11T???14.8 (R 2?=?0.13, n?=?79, P?=?0.005), which indicates δ 18O values in precipitation are more dependent on precipitation amount than on temperature. In contrast, when the temperature is low enough (<2°C), δ 18O values in precipitation are mainly dependent on temperature: δ 18Oppt?=?0.53T???10.2 (R 2?=?0.44, n?=?19, P?=?0.002). The variation of δ 18O in precipitation is also closely related to moisture origins and transport trajectories. A model is set up to trace the trajectories for air masses arriving in the observed region, and the results demonstrated that humid marine air masses from the Indian Ocean generally have significantly lower δ 18O values than dry continental air masses from the north or local re-evaporation. During monsoon precipitation, the distance and depth of moisture transport as well as convective precipitation all lead to the large variability of δ 18O in precipitation.  相似文献   

7.
朱璇  张耀存  尹婧楠 《气象科学》2023,43(3):326-336
利用1981—2020年台站观测的降水和最低气温资料,从长江中下游地区冬季冷空气活动事件中分出"降温有降水"和"降温无降水"两类事件(简称为"冷湿"和"冷干"事件),结合再分析资料,分析两类事件的冷暖空气活动特征和大气环流差异,进而探讨其与急流的联系。结果发现,长江中下游冷空气活动事件发生频次逐年减少,其中冷干事件发生频次逐年减少,冷湿事件发生频次显著增加,且冷湿事件的降温幅度大于冷干事件。冷湿事件发生时,高层副热带急流北移、极锋急流偏弱,中层存在倾斜槽脊、副热带高压偏西,低层西伯利亚高压增强,有来自西南的暖湿气流在长江中下游地区辐合上升;冷干事件发生时,高层副热带急流偏弱、极锋急流偏强,中层槽脊倾斜程度偏弱、副热带高压偏东,低层西伯利亚高压南移,有来自北方的偏干气流在长江中下游地区辐散下沉。此外,与冷湿事件相比,冷干事件过程中急流强度指数和经向风位置指数的波动更加频繁,冷空气活动持续时间更短。  相似文献   

8.
汪宁  许遐祯  王莹  张耀存  吴伟 《大气科学》2017,41(3):461-474
利用NCEP/NCAR再分析资料和我国地面735站气温和降水资料,首先分析了欧亚遥相关型的时间演变和结构特征,在此基础上探讨了欧亚遥相关型不同位相时东亚大气环流的差异,并进一步研究了欧亚遥相关型影响我国冬季气温和降水过程中东亚高空急流的重要作用。从结构上看,欧亚遥相关型位势高度异常中心位于250 hPa高度,表现出准正压的结构。欧亚遥相关型位于正位相时,东亚温带急流强度偏弱且位置向北移动;副热带急流强度偏强,两支急流在45°N附近有明显分界;西伯利亚高压和阿留申低压强度增强;东亚大槽加深,槽线倾斜不明显。负位相时则相反。欧亚遥相关型与东亚高空急流的联系是其影响我国气温降水的重要原因。正欧亚遥相关型时,偏弱的温带急流区较强的北风分量有利于北方冷空气南下,从而造成我国气温偏低;偏强的副热带急流区增强的南风将副热带地区暖湿空气向北输送,两支急流协同变化,影响我国冬季降水异常的分布。去掉温带急流或副热带急流偏强的年份,欧亚遥相关型与我国温度、降水的相关性显著减弱,说明欧亚遥相关型是通过东亚高空急流协同变化的桥梁,对我国温度和降水异常产生影响。进一步研究发现,欧亚遥相关型与副热带急流的关系不如其与温带急流稳定,导致在欧亚遥相关型同一位相时东亚高空急流存在两种不同的配置,这种高空急流配置的不唯一性使得东亚高空急流能对欧亚遥相关型的气候效应起到调控作用。  相似文献   

9.
For the first time we present a multi-proxy data set for the Russian Altai, consisting of Siberian larch tree-ring width (TRW), latewood density (MXD), δ13C and δ18O in cellulose chronologies obtained for the period 1779–2007 and cell wall thickness (CWT) for 1900–2008. All of these parameters agree well between each other in the high-frequency variability, while the low-frequency climate information shows systematic differences. The correlation analysis with temperature and precipitation data from the closest weather station and gridded data revealed that annual TRW, MXD, CWT, and δ13C data contain a strong summer temperature signal, while δ18O in cellulose represents a mixed summer and winter temperature and precipitation signal. The temperature and precipitation reconstructions from the Belukha ice core and Teletskoe lake sediments were used to investigate the correspondence of different independent proxies. Low frequency patterns in TRW and δ13C chronologies are consistent with temperature reconstructions from nearby Belukha ice core and Teletskoe lake sediments showing a pronounced warming trend in the last century. Their combination could be used for the regional temperature reconstruction. The long-term δ18O trend agrees with the precipitation reconstruction from the Teletskoe lake sediment indicating more humid conditions during the twentieth century. Therefore, these two proxies could be combined for the precipitation reconstruction.  相似文献   

10.
11.
 We test the climate effects of changes in the tropical ocean by imposing three different patterns of tropical SSTs in ice age general circulation model simulations that include water source tracers and water isotope tracers. The continental air temperature and hydrological cycle response in these simulations is substantial and should be directly comparable to the paleoclimatic record. With tropical cooling imposed, there is a strong temperature response in mid- to high-latitudes resulting from changes in sea ice and disturbance of the planetary waves; the results suggest that tropical/subtropical ocean cooling leads to significant dynamical and radiative feedbacks that might amplify ice age cycles. The isotopes in precipitation generally follow the temperature response at higher latitudes, but regional δ18O/air temperature scaling factors differ greatly among the experiments. In low-latitudes, continental surface temperatures decrease congruently with the adjacent SSTs in the cooling experiments. Assuming CLIMAP SSTs, 18O/16O ratios in low-latitude precipitation show no change from modern values. However, the experiments with additional cooling of SSTs produce much lower tropical continental δ18O values, and these low values result primarily from an enhanced recycling of continental moisture (as marine evaporation is reduced). The water isotopes are especially sensitive to continental aridity, suggesting that they represent an effective tracer of the extent of tropical cooling and drying. Only one of the tropical cooling simulations produces generalized low-latitude aridity. These results demonstrate that the geographic pattern of cooling is most critical for promoting much drier continents, and they underscore the need for accurate reconstructions of SST gradients in the ice age ocean. Received: 26 July 1999 / Accepted: 10 July 2000  相似文献   

12.
The South American Summer Monsoon (SASM) is a prominent feature of summertime climate over South America and has been identified in a number of paleoclimatic records from across the continent, including records based on stable isotopes. The relationship between the stable isotopic composition of precipitation and interannual variations in monsoon strength, however, has received little attention so far. Here we investigate how variations in the intensity of the SASM influence δ18O in precipitation based on both observational data and Atmospheric General Circulation Model (AGCM) simulations. An index of vertical wind shear over the SASM entrance (low level) and exit (upper level) region over the western equatorial Atlantic is used to define interannual variations in summer monsoon strength. This index is closely correlated with variations in deep convection over tropical and subtropical South America during the mature stage of the SASM. Observational data from the International Atomic Energy Agency-Global Network of Isotopes in Precipitation (IAEA-GNIP) and from tropical ice cores show a significant negative association between δ18O and SASM strength over the Amazon basin, SE South America and the central Andes. The more depleted stable isotopic values during intense monsoon seasons are consistent with the so-called ’‘amount effect‘’, often observed in tropical regions. In many locations, however, our results indicate that the moisture transport history and the degree of rainout upstream may be more important factors explaining interannual variations in δ18O. In many locations the stable isotopic composition is closely related to El Niño-Southern Oscillation (ENSO), even though the moisture source is located over the tropical Atlantic and precipitation is the result of the southward expansion and intensification of the SASM during austral summer. ENSO induces significant atmospheric circulation anomalies over tropical South America, which affect both SASM precipitation and δ18O variability. Therefore many regions show a weakened relationship between SASM and δ18O, once the SASM signal is decomposed into its ENSO-, and non-ENSO-related variance.  相似文献   

13.
任荣彩 《气象学报》2012,70(3):520-535
基于1950—2009年60a月平均Nino3指数和NCEP/NCAR第一套等压面再分析资料,关注3—5a时间尺度的强ENSO过程与平流层环流年际异常的时空联系及其机理,通过对此期间出现在3次持续强ENSO阶段中的11次3—5a时间尺度的强ENSO过程的诊断表明,平流层环流的年际尺度异常与3—5a时间尺度的强ENSO循环过程密切耦合。极夜急流强度趋于在ENSO暖/冷峰值之后减弱/加强,最大异常值多滞后ENSO峰值约1/4周期(接近1a),出现在ENSO峰值之后的下一年冬季;且3—5a时间尺度的ENSO峰值愈强,滞后约1/4周期出现的热带外平流层纬向风的年际异常也愈强;平均而言,这种年际时间尺度的耦合关系,也对实际的季节尺度平流层极涡振荡的强度和性质有显著的调制作用。进一步研究这种滞后耦合关系与年际时间尺度的行星波活动异常的联系发现,在暖ENSO峰值所在的当年冬季,对流层高层被强迫出年际时间尺度的太平洋-北美(PNA)型异常环流,而与冷ENSO峰值相对应的是相反的太平洋-北美异常型;这种太平洋-北美型与平流层热带外地区的行星波1波的发展相联系;在ENSO峰值之后的下一年冬季,太平洋-北美型环流减弱但对流层高层的主要异常分布在中高纬度,多对应着平流层行星波2波的显著增强,与平流层极区最强的高度异常相联系。行星波活动所引起的经向动量通量和经向热量通量的辐合、辐散异常对平流层滞后异常响应的贡献,存在显著的阶段性差异,在不同的阶段两者可以共同起作用,也可以分别起作用。  相似文献   

14.
Greenland ice cores offer seasonal to annual records of δ18O, a proxy for precipitation-weighted temperature, over the last few centuries to millennia. Here, we investigate the regional footprints of the North Atlantic weather regimes on Greenland isotope and climate variability, using a compilation of 22 different shallow ice-cores and the atmospheric pressure conditions from the twentieth century reanalysis (20CR). As a first step we have verified that the leading modes of winter and annual δ18O are well correlated with oceanic (Atlantic multidecadal oscillation) and atmospheric [North Atlantic oscillation (NAO)] indices respectively, and also marginally with external forcings, thus confirming earlier studies. The link between weather regimes and Greenland precipitation, precipitation-weighted temperature and δ18O is further explored by using an isotope simulation from the LMDZ-iso model, where the 3-dimensional wind fields are nudged to those of 20CR. In winter, the NAO+ and NAO? regimes in LMDZ-iso produce the largest isotopic changes over the entire Greenland region, with maximum anomalies in the South. Likewise, the Scandinavian blocking and the Atlantic ridge also show remarkable imprints on isotopic composition over the region. To assess the robustness and model dependency of our findings, a second isotope simulation from the isotopic model is also explored. The percentage of Greenland δ18O variance explained by the ensemble of weather regimes is increased by a factor near two in both LMDZ-iso and IsoGSM when compared to the contribution of the NAO index only. Similarly, weather regimes provide a net gain in the δ18O variance explained of similar magnitude for the whole set of ice core records. Greenland δ18O also appears to be locally affected by the low-frequency variations in the centres of action of the weather regimes, with clearer imprints in the LMDZ-iso simulation. This study opens the possibility for reconstructing past changes in the frequencies of occurrence of the weather regimes, which would rely on the sensitive regions identified here, and the use of additional proxies over the North Atlantic region.  相似文献   

15.
We measured the annual variation in the stable isotopes of oxygen (δ18O) and hydrogen (δD) in tree rings of Abies georgei on the Batang–Litang Plateau of western China. Although correlations between tree-ring δ18O and δD are relatively weak in semi-arid regions, we found a strong correlation between the δ18O and δD time series from 1755 to 2009 under the wetter environment. Tree-ring δ18O and δD time series are both significantly and negatively correlated with moisture conditions from June to August, including relative humidity and total precipitation, respectively, from 1960 to 2009. Considering the difference in low-frequency domain between the two isotopes, the relative humidity histories from June to August, reconstructed separately from the tree-ring δ18O and δD data with instrumental climate data, reveal a persistent drying trend since 1850s, especially since the early 1970s. There is an obvious offset of reconstructed relative humidity from tree-ring δ18O and δD in the period 1755–1820, despite the strong similarity in their 21-year moving averages. The decreased relative humidity since the 1850s may be associated with the thermal contrast between the sea surface temperature of the Indian Ocean and the Qinghai-Tibetan Plateau, which determines the strength of moisture transfer via the Indian summer monsoon.  相似文献   

16.
Samples of surface snow were collected for stable isotope analysis along the traverse route from Zhongshan to Dome A (East Antarctica) from Dec 28th, 2007 to Feb. 8th, 2008. The local relationship between δD and surface temperature is established to be 6.4 ± 0.2 ‰ per °C, very similar to the average for East Antarctic. The deuterium excess shows a pattern of high values over Antarctica, particularly at Dome A. We compare our data with an atmospheric general circulation model which includes stable water isotopes (ECHAM5-wiso). The model simulation captures the right levels of δD, but overestimates δ18O. This study provides support for the ongoing deep ice core project at Dome A.  相似文献   

17.
Precipitation isotope ratios (O and H) record the history of water phase transitions and fractionation processes during moisture transport and rainfall formation. Here, we evaluated the isotopic composition of precipitation over the central-southeastern region of Brazil at different timescales. Monthly isotopic compositions were associated with classical effects (rainfall amount, seasonality, and continentality), demonstrating the importance of vapor recirculation processes and different regional atmospheric systems (South American Convergence Zone-SACZ and Cold Fronts-CF). While moisture recycling and regional atmospheric processes may also be observed on a daily timescale, classical effects such as the amount effect were not strongly correlated (δ18O-precipitation rate r ≤ –0.37). Daily variability revealed specific climatic features, such as δ18O depleted values (~ –6‰ to –8‰) during the wet season were associated with strong convective activity and large moisture availability. Daily isotopic analysis revealed the role of different moisture sources and transport effects. Isotope ratios combined with d-excess explain how atmospheric recirculation processes interact with convective activity during rainfall formation processes. Our findings provide a new understanding of rainfall sampling timescales and highlight the importance of water isotopes to decipher key hydrometeorological processes in a complex spatial and temporal context in central-southeastern Brazil.  相似文献   

18.
The variation of the East Asian jet stream(EAJS) associated with the Eurasian(EU) teleconnection pattern is investigated using 60-yr NCEP–NCAR daily reanalysis data over the period 1951–2010. The EAJS consists of three components: the polar front jet(PFJ); the plateau subtropical jet(PSJ); and the ocean subtropical jet(OSJ). Of these three jets over East Asia,the EU pattern exhibits a significant influence on the PFJ and OSJ. There is a simultaneous negative correlation between the EU pattern and the PFJ. A significant positive correlation is found between the EU pattern and the OSJ when the EU pattern leads the OSJ by about 5 days. There is no obvious correlation between the EU pattern and the PSJ. The positive EU phase is accompanied by a weakened and poleward-shifted PFJ, which coincides with an intensified OSJ. A possible mechanism for the variation of the EAJS during different EU phases is explored via analyzing the effects of 10-day high-and low-frequency eddy forcing. The zonal wind tendency due to high-frequency eddy forcing contributes to the simultaneous negative correlation between the EU pattern and the PFJ, as well as the northward/southward shift of the PFJ. High- and low-frequency eddy forcing are both responsible for the positive correlation between the EU pattern and the OSJ, but only high-frequency eddy forcing contributes to the lagged variation of the OSJ relative to the EU pattern. The negative correlation between the EU pattern and winter temperature and precipitation anomalies in China is maintained only when the PFJ and OSJ are out of phase with each other. Thus, the EAJS plays an important role in transmitting the EU signal to winter temperature and precipitation anomalies in China.  相似文献   

19.
We here present a reconstruction (1725–1999) of the winter Pacific North American (PNA) pattern based on three winter climate sensitive tree ring records from the western USA. Positive PNA phases in our record are associated with warm phases of ENSO and PDO and the reorganization of the PNA pattern towards a positive mode is strongest when ENSO and PDO are in phase. Regime shifts in our PNA record correspond to climatic shifts in other proxies of Pacific climate variability, including two well-documented shifts in the instrumental period (1976 and 1923). The correspondence breaks down in the early 19th century, when our record shows a prolonged period of positive PNA, with a peak in 1800–1820. This period corresponds to a period of low solar activity (Dalton Minimum), suggesting a ‘positive PNA like’ response to decreased solar irradiance. The distinct 30-year periodicity that dominates the PNA reconstruction in the 18th century and again from 1875 onwards is disrupted during this period.  相似文献   

20.
China experienced significant flooding in the summer of 2020 and multiple extreme cold surges during the winter of 2020/21. Additionally, the 2020 typhoon season had below average activity with especially quiet activity during the first half of the season in the western North Pacific(WNP). Sea surface temperature changes in the Pacific, Indian, and Atlantic Oceans all contributed to the heavy rainfall in China, but the Atlantic and Indian Oceans seem to have played dominant roles. Enhancement and movement of the Siberian High caused a wavier pattern in the jet stream that allowed cold polar air to reach southward, inducing cold surges in China. Large vertical wind shear and low humidity in the WNP were responsible for fewer typhoons in the first half of the typhoon season. Although it is known that global warming can increase the frequency of extreme weather and climate events, its influences on individual events still need to be quantified.Additionally, the extreme cold surge during 16–18 February 2021 in the United States shares similar mechanisms with the winter 2020/21 extreme cold surges in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号