首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Outputs from a high-resolution data assimilation system,the global Hybrid Coordinate Ocean Model and Navy Coupled Ocean Data Assimilation (HYCOM+NCODA) 1/12° analysis,were analyzed for the period September 2008 to February 2012.The objectives were to evaluate the performance of the system in simulating ocean circulation in the tropical northwestern Pacific and to examine the seasonal to interannual variations of the western boundary currents.The HYCOM assimilation compares well with altimetry observations and mooring current measurements.The mean structures and standard deviations of velocities of the North Equatorial Current (NEC),Mindanao Current (MC) and Kuroshio Current (KC) also compare well with previous observations.Seasonal to interannual variations of the NEC transport volume are closely correlated with the MC transport volume,instead of that of the KC.The NEC and MC transport volumes mainly show well-defined annual cycles,with their maxima in spring and minima in fall,and are closely related to the circulation changes in the Mindanao Dome (MD) region.In seasons of transport maxima,the MD region experiences negative SSH anomalies and a cyclonic gyre anomaly,and in seasons of transport minima the situation is reversed.The sea surface NEC bifurcation latitude (NBL) in the HYCOM assimilation also agrees well with altimetry observations.In 2009,the NBL shows an annual cycle similar to previous studies,reaching its southernmost position in summer and its northernmost position in winter.In 2010 and 2011,the NBL variations are dominantly influenced by La Ni(n)a events.The dynamics responsible for the seasonal to interannual variations of the NEC-MC-KC current system are also discussed.  相似文献   

2.
E1 Nino Modoki, similar to but different from canonical E1 Nino, has been observed since the late 1970s. In this paper, using HadlSST and NCEP/NCAR wind data, we analyze the relationship between E1 Nifio Modoki and Sea Surface Temperature (SST) in the offshore area of China and its adjacent waters for different seasons. Our results show a significant negative correlation between E1 Nifio Modoki in summer and SST in autumn in the offshore area of China and its adjacent waters, particularly for regions located in the east of the Kuroshio. It is also found that during E1 Nifio Modoki period, anomalous northerlies prevail over the regions from the northern part of the Philippines to the offshore area of China, indicating that the northerlies are unfavorable for the transport of warm water from the western tropical Pacific to the mid-latitude area. Consequently, E1 Nifio Modoki in summer may play a substantial role in cold SST anomalies in the offshore area of China and its adjacent waters in autumn through the influence of the Kuroshio, with a lagged response of the ocean to the atmospheric wind field.  相似文献   

3.
One of the fundamental questions concerning the nature and prediction of the oceanic states in the equatorial eastern Pacific is how the turnabout from a cold water state (La Nina) to a warm water state (El Nino) takes place, and vice versa. Recent studies show that this turnabout is directly linked to the interannual thermocline variations in the tropical Pacific Ocean basin. An index, as an indicator and precursor to describe interannual thermocline variations and the turnabout of oceanic states in our previous paper (Qian and Hu, 2005), is also used in this study. The index, which shows the maximum subsurface temperature anomaly (MSTA), is derived from the monthly 21-year (1980-2000) expendable XBT dataset in the present study. Results show that the MSTA can be used as a precursor for the occurrences of El Nino (or La Nina) events. The subsequent analyses of the MSTA propagations in the tropical Pacific suggest a one-year potential predictability for El Nino and La Nina events by identifying ocean temperature anomalies in the thermocline of the western Pacific Ocean. It also suggests that a closed route cycle with the strongest signal propagation is identified only in the tropical North Pacific Ocean. A positive (or negative) MSTA signal may travel from the western equatorial Pacific to the eastern equatorial Pacific with the strongest signal along the equator. This signal turns northward along the tropical eastern boundary of the basin and then moves westward along the north side of off-equator around 16°N. Finally, the signal returns toward the equator along the western boundary of the basin. The turnabout time from an El Nino event to a La Nina event in the eastern equatorial Pacific depends critically on the speed of the signal traveling along the closed route, and it usually needs about 4 years. This finding may help to predict the occurrence of the El Nino or La Nina event at least one year in advance.  相似文献   

4.
The Tropical Pacific–Indian Ocean Associated Mode Simulated by LICOM2.0   总被引:2,自引:0,他引:2  
Xin LI  Chongyin LI 《大气科学进展》2017,34(12):1426-1436
Oceanic general circulation models have become an important tool for the study of marine status and change. This paper reports a numerical simulation carried out using LICOM2.0 and the forcing field from CORE. When compared with SODA reanalysis data and ERSST.v3 b data, the patterns and variability of the tropical Pacific–Indian Ocean associated mode(PIOAM) are reproduced very well in this experiment. This indicates that, when the tropical central–western Indian Ocean and central–eastern Pacific are abnormally warmer/colder, the tropical eastern Indian Ocean and western Pacific are correspondingly colder/warmer. This further confirms that the tropical PIOAM is an important mode that is not only significant in the SST anomaly field, but also more obviously in the subsurface ocean temperature anomaly field. The surface associated mode index(SAMI) and the thermocline(i.e., subsurface) associated mode index(TAMI) calculated using the model output data are both consistent with the values of these indices derived from observation and reanalysis data. However, the model SAMI and TAMI are more closely and synchronously related to each other.  相似文献   

5.
Validated satellite-derived sea surface temperatures (SSTs) are widely used for climate monitoring and ocean data assimilation systems. In this study, the Fengyun-3A (FY-3A) SST experimental product is evaluated using Advanced Very High Resolution Radiometer (AVHRR)-merged and in situ SSTs. A comparison of AVHRR-merged SSTs reveals a negative bias of more than 2K in FY-3A SSTs in most of the tropical Pacific and low-latitude Indian and Atlantic Oceans. The error variance of FY-3A SSTs is estimated using three-way error analysis. FY-3A SSTs show regional error variance in global oceans with a maximum error variance of 2.2 K in the Pacific Ocean. In addition, a significant seasonal variation of error variance is present in FY-3A SSTs, which indicates that the quality of FY-3A SST could be improved by adjusting the parameters in the SST retrieval algorithm and by applying regional and seasonal algorithms, particularly in key areas such as the tropical Pacific Ocean. An objective analysis method is used to merge FY-3A SSTs with the drifter buoy data. The errors of FY-3A SSTs are decreased to-0.45K comparing with SST observations from GTSPP.  相似文献   

6.
The development and application of a regional ocean data assimilation system are among the aims of the Global Ocean Data Assimilation Experiment. The ocean data assimilation system in the regions including the Indian and West Pacific oceans is an endeavor motivated by this goal. In this study, we describe the system in detail. Moreover, the reanalysis in the joint area of Asia, the Indian Ocean, and the western Pacific Ocean(hereafter AIPOcean) constructed using multi-year model integration with data assimilation is used to test the performance of this system. The ocean model is an eddy-resolving,hybrid coordinate ocean model. Various types of observations including in-situ temperature and salinity profiles(mechanical bathythermograph, expendable bathythermograph, Array for Real-time Geostrophic Oceanography, Tropical Atmosphere Ocean Array, conductivity–temperature–depth, station data), remotely-sensed sea surface temperature, and altimetry sea level anomalies, are assimilated into the reanalysis via the ensemble optimal interpolation method. An ensemble of model states sampled from a long-term integration is allowed to change with season, rather than remaining stationary. The estimated background error covariance matrix may reasonably reflect the seasonality and anisotropy. We evaluate the performance of AIPOcean during the period 1993–2006 by comparisons with independent observations, and some reanalysis products. We show that AIPOcean reduces the errors of subsurface temperature and salinity, and reproduces mesoscale eddies. In contrast to ECCO and SODA products, AIPOcean captures the interannual variability and linear trend of sea level anomalies very well. AIPOcean also shows a good consistency with tide gauges.  相似文献   

7.
The Argo(Array for Real-time Geostrophic Oceanography) data from 1998 to 2003 were used in the Beijing Climate Center-Global Ocean Data Assimilation System(BCC-GODAS). The results show that the utilization of Argo global ocean data in BCC-GODAS brings about remarkable improvements in assimilation effects. The assimilated sea surface temperature(SST) of BCC-GODAS can well represent the climatological states of observational data. Comparison experiments based on a global coupled atmosphere-ocean general circulation model(AOCGM) were conducted for exploring the roles of ocean data assimilation system with or without Argo data in improving the climate predictability of rainfall in boreal summer. Firstly, the global ocean data assimilation system BCC-GODAS was used to obtain ocean assimilation data under the conditions with or without Argo data. Then, the global coupled atmosphere-ocean general circulation model(AOCGM) was utilized to do hindcast experiments with the two sets of the assimilation data as initial oceanic fields. The simulated results demonstrate that the seasonal predictability of rainfall in boreal summer, particularly in China, increases greatly when initial oceanic conditions with Argo data are utilized. The distribution of summer rainfall in China hindcast by the AOGCM under the condition when Argo data are used is more in accordance with observation than that when no Agro data are used. The area of positive correlation between hindcast and observation enlarges and the hindcast skill of rainfall over China in summer improves significantly when Argo data are used.  相似文献   

8.
The tropical storm day(TSD)is a combined measure of genesis and lifespan.It reflects tropical cyclone(TC)overall activity,yet its variability has rarely been studied,especially globally.Here we show that the global total TSDs exhibit pronounced interannual(3-6 years)and decadal(10 years)variations over the past five-to-six decades without a significant trend.The leading modes of the interannual and decadal variability of global TSD feature similar patterns in the western Pacific and Atlantic,but different patterns in the Eastern Pacific and the Southern Indian Ocean.The interannual and decadal leading modes are primarily linked to El Ni?o-Southern Oscillation(ENSO)and Pacific Decadal Oscillation(PDO),respectively.The TSDs-ENSO relationship has been steady during the entire 55-year period,but the TSDs-PDO relationship has experienced a breakdown in the 1980 s.We find that the decadal variation of TSD in the Pacific is associated with the PDO sea surface temperature(SST)anomalies in the tropical eastern Pacific(PDO-E),while that in the Atlantic and the Indian Ocean is associated with the PDO SST anomalies in the western Pacific(PDO-W).However,the PDO-E and PDO-W SST anomalies are poorly coupled in the 1980 s,and this"destructive PDO"pattern results in a breakdown of the TSDs-PDO relationship.The results here have an important implication for seasonal to decadal predictions of global TSD.  相似文献   

9.
An ocean general circulation model (OGCM) is used to demonstrate remote effects of tropical cyclone wind (TCW) forcing in the tropical Pacific. The signature of TCW forcing is explicitly extracted using a locally weighted quadratic least=squares regression (called as LOESS) method from six-hour satellite surface wind data; the extracted TCW component can then be additionally taken into account or not in ocean modeling, allowing isolation of its effects on the ocean in a clean and clear way. In this paper, seasonally varying TCW fields in year 2008 are extracted from satellite data which are prescribed as a repeated annual cycle over the western Pacific regions off the equator (poleward of 10°N/S); two long-term OGCM experiments are performed and compared, one with the TCW forcing part included additionally and the other not. Large, persistent thermal perturbations (cooling in the mixed layer (ML) and warming in the thermocline) are induced locally in the western tropical Pacific, which are seen to spread with the mean ocean circulation pathways around the tropical basin. In particular, a remote ocean response emerges in the eastern equatorial Pacific to the prescribed off-equatorial TCW forcing, characterized by a cooling in the mixed layer and a warming in the thermocline. Heat budget analyses indicate that the vertical mixing is a dominant process responsible for the SST cooling in the eastern equatorial Pacific. Further studies are clearly needed to demonstrate the significance of these results in a coupled ocean-atmosphere modeling context.  相似文献   

10.
The western North Pacific anomalous anticyclone(WNPAC) is an important atmospheric circulation system that conveys El Ni?o impact on East Asian climate. In this review paper, various theories on the formation and maintenance of the WNPAC, including warm pool atmosphere–ocean interaction, Indian Ocean capacitor, a combination mode that emphasizes nonlinear interaction between ENSO and annual cycle, moist enthalpy advection/Rossby wave modulation, and central Pacific SST forcing, are discussed. It is concluded that local atmosphere–ocean interaction and moist enthalpy advection/Rossby wave modulation mechanisms are essential for the initial development and maintenance of the WNPAC during El Ni?o mature winter and subsequent spring. The Indian Ocean capacitor mechanism does not contribute to the earlier development but helps maintain the WNPAC in El Ni?o decaying summer.The cold SST anomaly in the western North Pacific, although damped in the summer, also plays a role. An interbasin atmosphere–ocean interaction across the Indo-Pacific warm pool emerges as a new mechanism in summer. In addition, the central Pacific cold SST anomaly may induce the WNPAC during rapid El Ni?o decaying/La Ni?a developing or La Ni?a persisting summer. The near-annual periods predicted by the combination mode theory are hardly detected from observations and thus do not contribute to the formation of the WNPAC. The tropical Atlantic may have a capacitor effect similar to the tropical Indian Ocean.  相似文献   

11.
Utilizing the NCEP/NCAR reanalysis monthly datasets,and based on the filter and standarddeviation calculation,the interannual variability of sea surface temperature(SST)and 1000 hPawind field for the tropical Pacific,Indian and Atlantic Oceans is investigated for the past 20 years(1979—1998).The characters of space-time evolution in SST anomalies(SSTA)for each oceanand corresponding wind anomaly field are acquired by using rotated principal component(RPC)and linear regression analysis methods.Using the method of correlation analysis.the characters ofthree tropical oceans correlated with ENSO are investigated.The contemporary correlationbetween the SSTA in the Indian Ocean and in the equatorial eastern Pacific is positive,and there isa weak negative correlation between the SSTA in the equatorial east Atlantic Ocean and in theequatorial eastern Pacific.The lead-lag correlation analysis indicates that the SSTA in theequatorial Indian Ocean lags the dominant Pacific ENSO mode by 3 months,and the SSTA in theequatorial Atlantic Ocean leads ENSO mode by 6 months.The ENSO-correlated components intropical Indian Ocean and tropical Atlantic Ocean display much the same amount of total variance ineach ocean,i.e..14% in the Indian Ocean and 12% in the Atlantic Ocean and the maximums areall above 40%.  相似文献   

12.
The Walker circulation is one of the major components of the large-scale tropical atmospheric circulation and variations in its strength are critical to equatorial Pacific Ocean circulation.It has been argued in the literature that during the 20th century the Walker circulation weakened,and that this weakening was attributable to anthropogenic climate change.By using updated observations,we show that there has been a rapid interdecadal enhancement of the Walker circulation since the late 1990s.Associated with this enhancement is enhanced precipitation in the tropical western Pacific,anomalous westerlies in the upper troposphere,descent in the central and eastern tropical Pacific,and anomalous surface easterlies in the western and central tropical Pacific.The characteristics of associated oceanic changes are a strengthened thermocline slope and an enhanced zonal SST gradient across the tropical Pacific.Many characteristics of these changes are similar to those associated with the mid-1970s climate shift with an opposite sign.We also show that the interdecadal variability of the Walker circulation in the tropical Pacific is inversely correlated to the interdecadal variability of the zonal circulation in the tropical Atlantic.An enhancement of the Walker circulation in the tropical Pacific is associated with a weakening zonal circulation in the tropical Atlantic and vise versa,implying an inter-Atlantic-Pacific connection of the zonal overturning circulation variation.Whether these recent changes will be sustained is not yet clear,but our research highlights the importance of understanding the interdecadal variability,as well as the long-term trends,that influence tropical circulation.  相似文献   

13.
The effects of the sea surface temperature (SST) anomalies in the tropical western Pacific on the atmospheric circulation anomalies over East Asia are simulated by the IAP-GCM with an observed and idealized distributions of the SST anomalies in the tropical western Pacific,respectively.Firstly,the atmospheric circulation anomalies during July and August,1980 are simulated by three anomalous experiments including the global SST anomaly experiment,the tropical SST anomaly experiment and the extratropical SST anomaly experiment,using the observed SST anomalies in 1980.It is shown that the SST anomalies in the tropical ocean greatly influence the formation and maintenance of the blocking high over the northeastern Asia,and may play a more important role than the SST anomalies in the extratropical ocean in the influence on the atmospheric circulation anomalies.Secondly,the effects of the SST anomalies in the tropical western Pacific on the atmospheric circulation anomalies over East Asia are also simulated w  相似文献   

14.
A general form of an equation that "explicitly" diagnoses SST change is derived. All other equations in wide use are its special case. Combining with the data from an ocean general circulation model (MOM2) with an integration of 10 years (1987-1996), the relative importances of various processes that determine seasonal variations of SST in the tropical Indian Ocean are compared mainly for January, April, July and October. The main results are as follows. (1) The net surface heat flux is the most important factor affecting SST over the Arabian Sea, the Bay of Bengal and the region south of the equator in January; in April, its influence covers almost the whole region studied; whereas in July and October, this term shows significance only in the regions south of 10°S and north of the equator, respectively. (2) The horizontal advection dominates in the East African-Arabian coast and the region around the equator in January and July; in October, the region is located south of 10°S. (3) The entrainment is s  相似文献   

15.
By using the simulation results of an AGCM, which had been run from 1945 to 1993 forced by COADS SST, the interdecadal variability of the model atmosphere was investigated and compared with that of NCEP reanalysis data. It was found that, interdecadal variability exists significantly in both the tropical Pacific wind fields and the mid-high latitude atmospheric circulation of the model atmosphere. The tendency of time variation and spatial distributions of the interdecadal variability of the model atmosphere are basically consistent with observation. Relative to the mid-high latitude atmospheric circulation, the simulation of tropical Pacific wind is more satisfying, which suggests that anomalous variation of SST is still the main factor for the interdecadal variability of tropical Pacific wind. It might have more significant influence on the tropical wind than on the mid-high latitude atmosphere. However, there is still obvious difference between the simulation and observation. They could be attributed to both the simulation capability of the model and absence of other factors in the model which are important for the interdecadal climate variation.  相似文献   

16.
亚印太交汇区的海洋再分析系统   总被引:1,自引:0,他引:1       下载免费PDF全文
An ocean reanalysis system for the joining area of Asia and Indian-Pacific Ocean (AIPO) has been developed and is currently delivering reanalysis data sets for study on the air-sea interaction over AIPO and its climate variation over China in the inter-annual time scale.This system consists of a nested ocean model forced by atmospheric reanalysis,an ensemble-based multivariate ocean data assimilation system and various ocean observations.The following report describes the main components of the data assimilation system in detail.The system adopts an ensemble optimal interpolation scheme that uses a seasonal update from a free running model to estimate the background error covariance matrix.In view of the systematic biases in some observation systems,some treatments were performed on the observations before the assimilation.A coarse resolution reanalysis dataset from the system is preliminarily evaluated to demonstrate the performance of the system for the period 1992 to 2006 by comparing this dataset with other observations or reanalysis data.  相似文献   

17.
With the IAP/LASG GOALS model, the heavy rainfall of the summer of 1999 in the Yangtze River valley is simulated with observational sea surface temperature (SST). Comparing the simulations of 1999 with the corresponding ones of 1998 and the sensitivity experiments with different sea surface temperature anomalies (SSTA) at different ocean regions, the relationships between the floods in the Yangtze River valley and the SSTA in the Pacific and Indian Oceans are studied. The results show that the positive SSTA in the tropical Indian Ocean are a major contributor to the heavy rainfall and may be a very important index to predict the heavy rainfall over the Yangtze River valley in the summer. The simulations also show that the relationships between the SSTA in the tropical eastern Pacific and the heavy rainfall in the Yangtze River valley are very complicated, and the heavy rainfall in the Yangtze River valley can occur in both a decaying and an intensifying E1 Nino event and also in a La Nifia event. However, the different SSTA of different periods in the above three cases play different partd.  相似文献   

18.
The climatology and interannual variability of sea surface salinity(SSS) and freshwater flux(FWF) in the equatorial Pacific are analyzed and evaluated using simulations from the Beijing Normal University Earth System Model(BNU-ESM).The simulated annual climatology and interannual variations of SSS, FWF, mixed layer depth(MLD), and buoyancy flux agree with those observed in the equatorial Pacific. The relationships among the interannual anomaly fields simulated by BNU-ESM are analyzed to illustrate the climate feedbacks induced by FWF in the tropical Pacific. The largest interannual variations of SSS and FWF are located in the western-central equatorial Pacific. A positive FWF feedback effect on sea surface temperature(SST) in the equatorial Pacific is identified. As a response to El Ni ?no–Southern Oscillation(ENSO),the interannual variation of FWF induces ocean processes which, in turn, enhance ENSO. During El Ni ?no, a positive FWF anomaly in the western-central Pacific(an indication of increased precipitation rates) acts to enhance a negative salinity anomaly and a negative surface ocean density anomaly, leading to stable stratification in the upper ocean. Hence, the vertical mixing and entrainment of subsurface water into the mixed layer are reduced, and the associated El Ni ?no is enhanced. Related to this positive feedback, the simulated FWF bias is clearly reflected in SSS and SST simulations, with a positive FWF perturbation into the ocean corresponding to a low SSS and a small surface ocean density in the western-central equatorial Pacific warm pool.  相似文献   

19.
A new hybrid coupled model(HCM) is presented in this study, which consists of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model. The ocean component is the intermediate ocean model(IOM)of the intermediate coupled model(ICM) used at the Institute of Oceanology, Chinese Academy of Sciences(IOCAS). The atmospheric component is ECHAM5, the fifth version of the Max Planck Institute for Meteorology atmospheric general circulation model. The HCM integrates its atmospheric and oceanic components by using an anomaly coupling strategy. A100-year simulation has been made with the HCM and its simulation skills are evaluated, including the interannual variability of SST over the tropical Pacific and the ENSO-related responses of the global atmosphere. The model shows irregular occurrence of ENSO events with a spectral range between two and five years. The amplitude and lifetime of ENSO events and the annual phase-locking of SST anomalies are also reproduced realistically. Despite the slightly stronger variance of SST anomalies over the central Pacific than observed in the HCM, the patterns of atmospheric anomalies related to ENSO,such as sea level pressure, temperature and precipitation, are in broad agreement with observations. Therefore, this model can not only simulate the ENSO variability, but also reproduce the global atmospheric variability associated with ENSO, thereby providing a useful modeling tool for ENSO studies. Further model applications of ENSO modulations by ocean–atmosphere processes, and of ENSO-related climate prediction, are also discussed.  相似文献   

20.
The influence of the tropical Indo-Pacific Ocean heat content on the onset of the Bay of Bengal summer monsoon(BOBSM) onset was investigated using atmospheric data from the NCEP and ocean subsurface temperature data from the Japan Metorology Agency(JMA).Results showed that the onset time of the BOBSM is highly related to the tropical Pacific upper ocean heat content(HC),especially in the key region of the western Pacific warm pool(WPWP),during the preceding winter and spring.When the HC anomalies in the WPWP are positive(negative),the onset of the BOBSM is usually early(late).Accompanied by the variation of the convection activity over the WPWP,mainly induced by the underlying ocean temperature anomalies,the Walker circulation becomes stronger or weaker.This enhances or weakens the westerly over the tropical Indian Ocean flowing into the BOB in the boreal spring,which is essential to BOBSM onset.The possible mechanism of influence of cyclonic/anti-cyclonic circulation over the northwestern tropical Pacific on BOBSM onset is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号