首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用江西省83个站1970—2010年春季(3—5月)降水资料和NOAA的Ni觡o 3.4区海表温度资料,分析了ENSO事件对江西省春季降水的影响。结果表明,ENSO在衰亡年对江西省春季降水有显著的影响,ElNi觡o衰亡年春季江西地区降水偏多,易发生暴雨天气过程,江西北部和南部降水偏多最为显著;La Ni觡a衰亡年春季江西地区降水偏少,不易发生暴雨天气过程,江西东南部降水偏少最为显著。结合对应天气形势分析发现,El Ni觡o(La Ni觡a)衰亡年春季低层(850 hPa)南海的水汽输送偏强(偏弱)、上升运动偏强(偏弱)以及高层(200 hPa)辐散抽吸偏强(偏弱),是造成江西地区降水偏多(偏少)的主要原因。  相似文献   

2.
Many previous studies have demonstrated that the boreal winters of super El Nino events are usually accompanied by severely suppressed Madden-Julian oscillation(MJO) activity over the western Pacific due to strong descending motion associated with a weakened Walker Circulation. However, the boreal winter of the 2015/16 super El Nino event is concurrent with enhanced MJO activity over the western Pacific despite its sea surface temperature anomaly(SSTA)magnitude over the Nino 3.4 region being comparable to the SSTA magnitudes of the two former super El Nino events(i.e.,1982/83 and 1997/98). This study suggests that the MJO enhanced over western Pacific during the 2015/16 super El Nino event is mainly related to its distinctive SSTA structure and associated background thermodynamic conditions. In comparison with the previous super El Nino events, the warming SSTA center of the 2015/16 super El Nino is located further westward, and a strong cold SSTA is not detected in the western Pacific. Accordingly, the low-level moisture and air temperature(as well as the moist static energy, MSE) tend to increase in the central-western Pacific. In contrast, the low-level moisture and MSE show negative anomalies over the western Pacific during the previous super El Nino events.As the MJO-related horizontal wind anomalies contribute to the further westward warm SST-induced positive moisture and MSE anomalies over the western tropical Pacific in the boreal winter of 2015/16, stronger moisture convergence and MSE advection are generated over the western Pacific and lead to the enhancement of MJO convection.  相似文献   

3.
After compositing three representative ENSO indices,El Nio events have been divided into an eastern pattern(EP) and a central pattern(CP).By using EOF,correlation and composite analysis,the relationship and possible mechanisms between Indian Ocean Dipole(IOD) and two types of El Nio were investigated.IOD events,originating from Indo-Pacific scale air-sea interaction,are composed of two modes,which are associated with EP and CP El Ni o respectively.The IOD mode related to EP El Nio events(named as IOD1) is strongest at the depth of 50 to 150 m along the equatorial Indian Ocean.Besides,it shows a quasi-symmetric distribution,stronger in the south of the Equator.The IOD mode associated with CP El Nio(named as IOD2) has strongest signal in tropical southern Indian Ocean surface.In terms of mechanisms,before EP El Nio peaks,anomalous Walker circulation produces strong anomalous easterlies in equatorial Indian Ocean,resulting in upwelling in the east,decreasing sea temperature there;a couple of anomalous anticyclones(stronger in the south) form off the Equator where warm water accumulates,and thus the IOD1 occurs.When CP El Nio develops,anomalous Walker circulation is weaker and shifts its center to the west,therefore anomalous easterlies in equatorial Indian Ocean is less strong.Besides,the anticyclone south of Sumatra strengthens,and the southerlies east of it bring cold water from higher latitudes and northerlies west of it bring warm water from lower latitudes to the 15° to 25°S zone.Meanwhile,there exists strong divergence in the east and convergence in the west part of tropical southern Indian Ocean,making sea temperature fall and rise separately.Therefore,IOD2 lies farther south.  相似文献   

4.
Warm and cold phases of El Nino–Southern Oscillation (ENSO) exhibit a significant asymmetry in their decay speed. To explore the physical mechanism responsible for this asymmetric decay speed, the asymmetric features of anomalous sea surface temperature (SST) and atmospheric circulation over the tropical Western Pacific (WP) in El Nino and La Nina mature-to-decay phases are analyzed. It is found that the interannual standard deviations of outgoing longwave radiation and 850 hPa zonal wind anomalies over the equatorial WP during El Nino (La Nina) mature-to-decay phases are much stronger (weaker) than the intraseasonal standard deviations. It seems that the weakened (enhanced) intraseasonal oscillation during El Nino (La Nina) tends to favor a stronger (weaker) interannual variation of the atmospheric wind, resulting in asymmetric equatorial WP zonal wind anomalies in El Nino and La Nina decay phases. Numerical experiments demonstrate that such asymmetric zonal wind stress anomalies during El Nino and La Nina decay phases can lead to an asymmetric decay speed of SST anomalies in the central-eastern equatorial Pacific through stimulating di erent equatorial Kelvin waves. The largest negative anomaly over the Nino3 region caused by the zonal wind stress anomalies during El Nino can be threefold greater than the positive Nino3 SSTA anomalies during La Nina, indicating that the stronger zonal wind stress anomalies over the equatorial WP play an important role in the faster decay speed during El Nino.  相似文献   

5.
ENSO多样性研究进展   总被引:2,自引:0,他引:2  
El Ni?o是热带中东太平洋异常偏暖的现象,发展过程具有显著的季节锁相特征。近年来,新形态事件更频繁发生引起了科学界广泛关注。学者们根据空间分布形态或爆发时间将ENSO事件分为两类,虽然选取标准不同,分类结果却有诸多相似点:中太平洋(Dateline、Modoki、CP、WP及SU型)El Ni?o事件发展至成熟时,正SSTA中心位于赤道太平洋中部;东太平洋(传统、EP、CT及SP型)El Ni?o发展至成熟时,正SSTA中心位于赤道东太平洋,低层西风异常更强,向东传输的距离也更远。研究结果显示,东太平洋El Ni?o比中太平洋El Ni?o持续时间更长,强度也更强;两类事件对全球气候的影响模态有很大的差异。近几十年,中太平洋El Ni?o出现频率有所增加,但其原因尚未清楚。关于两类事件生成发展和位相转换的动力原因,目前科学界普遍认为东太平洋El Ni?o是一个海盆尺度的海气耦合过程,其生消过程与温跃层的变化有紧密联系,但对中太平洋El Ni?o的动力机制尚未有统一的认识。   相似文献   

6.
In this paper, the impact of ENSO on the precipitation over China in the winter half-year is investigated diagnostically. The results show that positive precipitation anomalies with statistical significance appear over southern China in El Nio episodes, which are caused by the enhanced warm and humid southwesterlies along the East Asian coast in the lower troposphere. The enhanced southwesterlies transport more water vapor to southern China, and the convergence of water vapor over southern China increases the precipitable water and specific humidity. In La Nia episodes,although atmospheric elements change reversely, they are not statistically significant as those in El Nio periods. The possible physical mechanism of the different impact of ENSO cycle on the precipitation over southern China is investigated by analyzing the intraseasonal oscillations(ISOs) in El Nio and La Nia winter half-years, respectively. By comparing the characteristics of ISOs in El Nio and La Nia, a physical mechanism is proposed to explain the different responses of the precipitation over China to ENSO in the winter half-year. In El Nio episodes, over western North Pacific(WNP) and South China Sea(SCS) the ISOs are inactive and exert little effect on water vapor transport and convergence, inducing positive precipitation anomalies with statistical significance over southern China in El Nio episodes. In La Nia episodes, however, the ISOs are active, which weaken the interannual variation signals of ENSO over WNP and southern China and lead to the insignificance of the interannual signals related to ENSO. Therefore, the different responses of precipitation over China to ENSO in the winter half-year are possibly caused by the difference of intraseasonal oscillations over WNP and SCS between El Nio and La Nia.  相似文献   

7.
基于NCEP、SODA等再分析资料,采用合成分析和2.5层简化海洋模型数值模拟等方法,分析了El Ni?o和正印度洋偶极子(IOD)事件不同配置情形下印度洋海温异常的演变特征,并重点探讨了联合IOD和独立IOD事件中,关键海区海温异常的发展演变及其可能机制。对于联合IOD事件,初期马里沿岸的增暖可能对其发生起主要的激发作用;而对于独立IOD事件的发生,则可能是赤道东南印度洋的降温起主导作用。不同类型IOD事件中,热带印度洋海表温度异常(SSTA)和海面高度异常(SSHA)的演变特征有明显差别,孟加拉湾上空降水异常所起的作用也不一样,印度洋不同海区混合层温度异常的演变机制也有显著不同。基于2.5层简化海洋模式结果的分析表明,各个海区的热力、动力过程在不同IOD事件有着不同的作用。例如在索马里沿岸海区:对于联合IOD事件,西印度洋赤道东风异常和索马里沿岸东北风异常,有利于该海区出现纬向平流热输送和海表热通量正异常,从而增暖。而对于独立IOD事件,阿拉伯海上空的强西南风异常,加强了索马里沿岸底层冷水的上翻和海表的热通量损失,导致前期纬向平流和夹卷混合的负异常以及后期海表热通量的负异常,使得该海区变冷。   相似文献   

8.
Record-breaking heavy and persistent precipitation occurred over the Yangtze River Valley (YRV) in June-July (JJ) 2020. An observational data analysis has indicated that the strong and persistent rainfall arose from the confluence of southerly wind anomalies to the south associated with an extremely strong anomalous anticyclone over the western North Pacific (WNPAC) and northeasterly anomalies to the north associated with a high-pressure anomaly over Northeast Asia. A further observational and modeling study has shown that the extremely strong WNPAC was caused by both La Ni?a-like SST anomaly (SSTA) forcing in the equatorial Pacific and warm SSTA forcing in the tropical Indian Ocean (IO). Different from conventional central Pacific (CP) El Ni?os that decay slowly, a CP El Ni?o in early 2020 decayed quickly and became a La Ni?a by early summer. This quick transition had a critical impact on the WNPAC. Meanwhile, an unusually large area of SST warming occurred in the tropical IO because a moderate interannual SSTA over the IO associated with the CP El Ni?o was superposed by an interdecadal/long-term trend component. Numerical sensitivity experiments have demonstrated that both the heating anomaly in the IO and the heating anomaly in the tropical Pacific contributed to the formation and maintenance of the WNPAC. The persistent high-pressure anomaly in Northeast Asia was part of a stationary Rossby wave train in the midlatitudes, driven by combined heating anomalies over India, the tropical eastern Pacific, and the tropical Atlantic.  相似文献   

9.
The relationship between summer rainfall anomalies in northeast China and two types of El Ni?o events is investigated by using observation data and an AGCM. It is shown that, for different types of El Ni?o events, there is different rainfall anomaly pattern in the following summer. In the following year of a typical El Ni?o event, there are remarkable positive rainfall anomalies in the central-western region of northeast China, whereas the pattern of more rainfall in the south end and less rainfall in the north end of northeast China easily appears in an El Ni?o Modoki event. The reason for the distinct differences is that, associated with the different sea surface temperature anomalies (SSTA) along the equatorial Pacific, the large-scale circulation anomalies along east coast of East Asia shift northward in the following summer of El Ni?o Modoki events. Influenced by the anomalous anticyclone in Philippine Sea, southwesterly anomalies over eastern China strengthens summer monsoon and bring more water vapor to Northeast China. Meanwhile, convergence and updraft is strengthened by the anomalous cyclone right in Northeast China in typical El Ni?o events. These moisture and atmospheric circulation conditions are favorable for enhanced precipitation. However, because of the northward shift, the anomalous anticyclone which is in Philippine Sea in typical El Ni?o cases shifts to the south of Japan in Modoki years, and the anomalous cyclone which is in the Northeast China in typical El Ni?o cases shifts to the north of Northeast China, leading to the “dipole pattern” of rainfall anomalies. According to the results of numerical experiments, we further conform that the tropical SSTA in different types of El Ni?o event can give rise to observed rainfall anomaly patterns in Northeast China.  相似文献   

10.
钱代丽  管兆勇 《气象学报》2018,76(3):394-407
利用NCEP/NCAR再分析资料、GODAS海洋资料、哈得来中心海表温度(SST)以及中国国家气候中心(NCC)环流指数数据,依据美国气候预测中心的厄尔尼诺事件标准筛选出1980-2016年的超强与普通厄尔尼诺事件,对比了两类事件的不同生命阶段内海表及次表层温度特征的差异,并探讨了其对西太平洋副热带高压(西太副高)的不同影响。结果表明,对超强厄尔尼诺事件而言,海表温度正距平发展早且迅速,其大值中心偏东,纬向梯度强,但对普通厄尔尼诺事件而言,海表温度正距平中心偏西,纬向梯度小。厄尔尼诺事件的发展源于次表层海温距平(SOTA)随开尔文波东传并沿温跃层上升到达海表,其波动前部区域异常垂直海流对次表层海温距平的变化起重要作用;当海气激烈耦合时,可在温跃层激发出更强的海洋波动,使得次表层变暖更明显,激发出强的厄尔尼诺事件。海温异常强迫出的大气异常环流的强度与强迫源的强度关系密切。两类厄尔尼诺均能通过异常的沃克环流引起大气Gill型响应,使得西太副高偏强、西伸,且当超强厄尔尼诺发生时,异常沃克环流更强,海洋性大陆区域上空的异常强辐散导致Gill型响应而产生的反气旋更强,对西太副高的影响更甚。印度洋海表温度对厄尔尼诺的滞后变暖所带来的影响在上述亚太大气环流的持续异常中起重要作用。这些结果有利于加深对不同类型厄尔尼诺事件及影响西太副高机理的认识。   相似文献   

11.
利用1979—2007年NOAA重建海温逐月资料和中国160站夏季降水资料,使用扩展奇异值分解(extended singular value decomposition,ESVD)方法,研究了冬季热带太平洋海温异常与次年夏季中国降水异常季节内演变型之间的关系,指出前冬El Nino事件是与次年夏季中国降水季节内变化相联系的最重要的热带太平洋海温异常模态。相应的降水异常季节内变化情况为:6月在长江以南为正异常,江淮流域有负异常;7月在华南沿海有负降水异常,而正异常北进到长江流域,华北地区也出现正降水异常;8月在长江南北分别为少雨和多雨。进一步研究前冬El Nino事件与次年春夏印度洋、太平洋海温异常、对流层低层风场异常以及副热带高压等的联系,结果表明:El Nio事件发生的次年春夏,热带西太平洋周边存在东负西正的海温异常分布;西太平洋反气旋异常较强;副高在6月、7月偏西偏北,但在8月迅速南退。虽然与El Nino事件相联系的6月与7月、8月的降水型不同,但是西太平洋反气旋异常带来的充沛水汽造成7月长江流域雨季多雨,8月副高迅速南退带来的又一次长江流域降水,造成了El Nino事件发生次年夏季长江流域涝而华南沿海旱的夏季平均降水异常型。  相似文献   

12.
采用CAM3(Community Atmosphere Model Version3)模式中海气湍流通量参数化原方案和改进方案,利用观测海温驱动CAM3模式进行气候模拟,以分析模式对厄尔尼诺事件影响气候变化的模拟能力。结果表明,采用CAM3模式海气湍流通量参数化改进方案,模式能够更好地模拟出由厄尔尼诺事件引起的北太平洋和北美地区大气环流的变化,尤其是对厄尔尼诺年冬季阿留申低压强度和与PNA遥相关型有关的500hPa位势高度异常的模拟。  相似文献   

13.
除正常的El Nio事件外,赤道中东太平洋存在一些类似但又显著不同的海水增暖事件。以1993年为例,海水增暖事件发生在3月,5月最强,但随后迅速衰减,在此称之为El Nio的夭折。通过与典型El Nio事件的对比分析,研究了1993年暖水事件的演变特征及其夭折原因。研究发现,1993年暖水事件是一种发生在热带中东太平洋的局地海气作用现象。由于1991~1992年发生了一次较强的El Nio事件,造成1992~1993年热带西太平洋暖池持续偏冷,使得1993年缺乏发生正常El Nio事件所需要的热力条件。在此背景下,虽然在春季出现赤道西风异常自西太平洋向东太平洋扩展,满足了El Nio事件发生的动力条件,但由于暖池偏冷,不能引发海盆尺度的Bjerknes型正反馈,使得赤道中东太平洋的海水增暖只是一种短期现象,并迅速衰减,造成ElNio事件的夭折。  相似文献   

14.
Many features of the El Niño-Southern Oscillation (ENSO) display significant interdecadal changes. These include general characteristics such as amplitude, period, and developing features, and also nonlinearities, especially the El Niño-La Niña asymmetry. A review of previous studies on the interdecadal changes in the ENSO nonlinearities is provided. In particular, the methods for measuring ENSO nonlinearities, their possible driving mechanisms, and their interdecadal changes are discussed. Two methods for measuring ENSO nonlinearities are introduced; the maximum potential intensity, which refers to the upper and lower bounds of the cold tongue temperature, and the skewness, which represents the asymmetry of a probability density function. For example, positive skewness (a strong El Niño vs. a weak La Niña) of the tropical Pacific sea surface temperature (SST) anomalies is dominant over the eastern tropical Pacific, with an increase seen during recent decades (e.g., 1980–2000). This positive skewness can be understood as a result of several nonlinear processes. These include the warming effect on both El Niño and La Niña by nonlinear dynamic heating (NDH), which intensifies El Niño and suppresses La Niña; the asymmetric negative feedback due to tropical oceanic instability waves, which has a relatively stronger influence on the La Niña event; the nonlinear physics of the ocean mixed layer; the Madden-Julian-Oscillation/Westerly-Wind-Burst and ENSO interaction; the biological-physical feedback process; and the nonlinear responses of the tropical atmospheric convection to El Niño and La Niña conditions. The skewness of the tropical eastern Pacific SST anomalies and the intensities of the above-mentioned mechanisms have both experienced clear decadal changes in a dynamically associated manner. In particular, there is a dynamic linkage between the decadal changes in the El Niño-La Niña asymmetry and those in NDH. This linkage is based on the recent decadal changes in mean climate states, which provided a favorable condition for thermocline feedback rather than for zonal advection feedback, and thus promoted the eastward propagation of the ENSO-related atmospheric and oceanic fields. The eastward propagating ENSO mode easily produces a positive NDH, resulting in asymmetric ENSO events in which El Niño conditions are stronger than La Niña conditions.  相似文献   

15.
By using the observed monthly mean data over 160 stations of China and NCAR/NCEP reanalysis data, the generalized equilibrium feedback assessment(GEFA) method, combined with the methods of EOF analysis, correlation and composite analysis, is used to explore the influence of different SST modes on a wintertime air temperature pattern in which it is cold in the northeast and warm in the southwest in China. The results show that the 2009/2010 winter air temperature oscillation mode between the northern and southern part of China is closely related to the corresponding sea surface temperature anomalies(SSTA) and its associated atmospheric circulation anomalies. Exhibiting warming in Northeast China and cooling in Southwest China, the mode is significantly forced by the El Nio mode and the North Atlantic SSTA mode, which have three poles. Under the influence of SSTA modes, the surface northerly flow transported cold air to North and Northeast China, resulting in low temperatures in the regions. Meanwhile, the mid-latitude westerlies intensify and the polar cold air stays in high latitudes and cannot affect the Southwest China, resulting in the warming there.  相似文献   

16.
El Ni?o(厄尔尼诺)事件对东亚和南亚次年夏季降水影响及其机理已经得到充分研究,但其对夏季青藏高原降水是否有显著影响还不清楚。本研究根据1950年后El Ni?o事件次年衰减期演变速度,对比分析衰减早型与晚型El Ni?o事件对南亚季风区与青藏高原夏季(6~9月)季节平均和月平均气候影响差异。结果显示在衰减早型次年夏季热带太平洋海温转为La Ni?a(拉尼娜)型且持续发展,引起Walker环流上升支西移,印度洋和南亚季风区上升运动加强,同时激发异常西北太平洋反气旋(NWPAC),阿拉伯海异常气旋和伊朗高原异常反气旋性环流响应,增加7~9月对流层偏南气流和印度洋水汽输送,导致南亚和高原西南侧降水偏多。衰减晚型次年6~8月热带太平洋El Ni?o型海温仍维持,印度洋暖异常海温显著,对应的印度洋和南亚季风区上升运动较弱,NWPAC西伸控制南亚季风区,阿拉伯海和中西亚分别呈现异常反气旋和气旋性环流,导致青藏高原西风加强,水汽输送减少,南亚北部和高原降水一致偏少。结果表明:(1)El Ni?o显著影响次年青藏高原西南部夏季季节和月平均降水与温度,是印度和高原西南部夏季降水显著相关的重要原因;(2)El Ni?o衰减快慢速度对南亚和青藏高原西南部夏季季节内降水的影响有着重要差异。  相似文献   

17.
利用逐月台站观测降水、HadISST1.1海温和ERA5大气再分析资料,研究了前冬印度洋海盆一致模(Indian Ocean Basin,IOB)对华南春季降水(SCSR)与ENSO关系的影响,并分析了IOB通过调控ENSO环流异常进而影响SCSR的可能机制。结果表明:当前冬El Ni?o(La Ni?a)与IOB暖(冷)位相同时发生时,SCSR显著增多(减少);而当El Ni?o或La Ni?a单独发生而IOB处于中性时,SCSR并无明显多寡倾向。其原因在于,当El Ni?o与IOB暖相位并存时,前冬热带印度洋和赤道中东太平洋均为正海温异常(Sea-Surface Temperature Anomaly,SSTA),且印度洋SSTA强度可一直维持至春季。在对流层低层,春季赤道中东太平洋的正SSTA激发出异常西北太平洋反气旋(Western North Pacific Anticyclone,WNPAC)。而热带印度洋的正SSTA在副热带印度洋激发出赤道南北反对称环流,赤道以北的东风异常有利于异常WNPAC西伸;赤道以南的西风异常与来自赤道西太平洋的东风异常在东印度洋辐合上升,气流至西北太平洋下沉,形成经向垂直环流,有利于春季WNPAC维持。在对流层高层,印度洋的正SSTA在热带印度洋上空激发出位势高度正异常,随之形成的气压经向梯度加强了东亚高空副热带西风急流,进而在华南上空形成异常辐散环流。WNPAC的西伸和加强可为华南提供充足的水汽,同时高空辐散在华南引发水汽上升运动,共同导致SCSR正异常。而若El Ni?o发生时IOB处于中性状态,El Ni?o相关的SSTA衰减较快,春季WNPAC不显著,SCSR无明显多寡趋势。   相似文献   

18.
The mechanism for asymmetric atmospheric responses to the central Pacific(CP) El Ni?o and La Ni?a over the western North Pacific(WNP) is studied in this paper. The negative anomalies of rainfall over the key region of WNP are explained by diagnosing the column-integrated equations of moisture and moist static energy(MSE). It is revealed that the nonlinear advection of moist enthalpy is critical to introduce negative rainfall anomalies over the region. The anomalous easterly(westerly) in La Ni?a(CP El Ni?o) causes negative advection of anomalous moist enthalpy, inducing negative heating anomaly and an anticyclone anomaly in the WNP, which weakens(strengthens) the cyclone(anticyclone) in La Ni?a(CP El Ni?o). The MSE budget analysis shows a larger nonlinear term in CP El Ni?o than in eastern Pacific(EP) El Ni?o, inconsistent with the amplitudes of sea surface temperature anomalies. The reason is that the nonlinear term transforms to positive above 700 h Pa in EP El Ni?o, offsetting the negative advection below 700 h Pa and thus making the nonlinear term smaller. The nonlinear term is negative at low levels in CP El Ni?o, resulting in a larger nonlinear term. The stronger precipitation anomalies in the WNP during EP El Ni?o can be attributed to the linear moist enthalpy advection. The mean easterly wind at mid levels causes a larger(smaller) positive moist enthalpy advection in CP(EP) El Ni?o, due to a larger(smaller) moist enthalpy gradient, resulting in a positive(negative) linear moist enthalpy advection, which weakens(strengthens) the negative precipitation anomalies in the key region.  相似文献   

19.
STUDY OF A COMPREHENSIVE MONITORING INDEX FOR TWO TYPES OF ENSO EVENTS   总被引:1,自引:1,他引:0  
Some recent studies presented two existing types of ENSO events, one is the Eastern-Pacific(EP) type and the other the Central-Pacific(CP) type. This study examined the monitoring ability of several current operational ENSO indices. The results indicated that a single index could not distinguish the EP and CP in the historical ENSO events during 1950-2009. The Nio 3 index may only be suitable for monitoring the EP-type ENSO, while the Nio 4 index works only for the CP-type ENSO. In order to capture the occurrence of ENSO events and distinguish the type, we considered a new monitoring index group using Nio 3 and Nio 4 indices. Further analysis confirmed that this index group can monitor different types of historical ENSO events with different spatial distribution of sea surface temperature. It has a good performance in determining the characteristics of the ENSO events, including peak intensity, onset,decay, and mature phase.  相似文献   

20.
Interannual variations of the Bay of Bengal summer monsoon (BOBSM) onset in association with El Ni?o?Southern Oscillation (ENSO) are reexamined using NCEP1, JRA-55 and ERA20C atmospheric and Hadley sea surface temperature (SST) reanalysis datasets over the period 1900?2017. Decadal changes exist in the dependence of the BOBSM onset on ENSO, varying with the Pacific Decadal Oscillation (PDO). A higher correlation between the BOBSM onset and ENSO arises during the warm PDO epochs, with distinct late (early) onsets following El Ni?o (La Ni?a) events. In contrast, less significant correlations occur during the cold PDO epochs. The mechanism for the PDO modulating the ENSO?BOBSM onset relationship is through the variations in SST anomaly (SSTA) patterns. During the warm PDO epochs, the superimpositions of the PDO-related and ENSO-related SSTAs lead to the SSTA distribution of an El Ni?o (La Ni?a) event exhibiting significant positive (negative) SSTAs over the tropical central?eastern Pacific and Indian Ocean along with negative (positive) SSTAs, especially over the tropical western Pacific (TWP), forming a strong zonal interoceanic SSTA gradient between the TWP and tropical Indian Ocean. Significant anomalous lower tropospheric easterlies (westerlies) together with upper-tropospheric westerlies (easterlies) are thus induced over the BOB, favoring an abnormally late (early) BOBSM onset. During the cold PDO epochs, however, the superimpositions of PDO-related SSTAs with El Ni?o-related (La Ni?a-related) SSTAs lead to insignificant SSTAs over the TWP and a weak zonal SSTA gradient, without distinct circulation anomalies over the BOB favoring early or late BOBSM onsets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号