首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
利用基本气象站观测资料、ECMWF ERA资料和NCEP FNL资料,通过对强降雨时刻的多种物理量场诊断,分析了2015年梅雨期发生在江苏省沿江地区的6月16—17日和27—29日两次大暴雨的形成原因。结果表明,两次大暴雨过程均发生在西太平洋副热带高压稳定维持、西南气流强盛、高层有冷空气不断入侵的大环流背景下,受中低层江淮切变线和西南急流共同影响,冷暖空气一直在沿江一带交汇,造成沿江地区持续强降水过程。两次大暴雨发生时32°N附近梅雨锋很明显,锋面随着高度的升高向北侧冷区倾斜,强降水主要位于梅雨锋南侧的暖区内。该侧700 hPa高度层以下湿位涡为负值表明大气为对流不稳定,且随着降水的发生,中层有弱冷空气入侵,使得大气的对流不稳定性进一步加强。强的降水区主要位于低空急流的左侧和高空急流的入口区右侧,高低空急流的这种配置带来了风场高层辐散、低层辐合,有利于垂直上升运动加强。同时低层暖平流和中高层正的相对涡度平流交汇于32°N附近,也有利于暴雨区的上升运动加强。暴雨区与850 hPa水汽通量散度负值中心相吻合,表明低层西南急流为暴雨区源源不断地提供水汽。  相似文献   

2.
将对流涡度矢量 (CVV) 应用于浅薄系统西南低涡引发的暴雨中,特别是将对流涡度矢量垂直分量 (Cz) 应用在2010年7月16—18日由西南涡引发的一次暴雨过程诊断中。研究了CVV垂直积分的各个分量与6 h累积降水量的关系,尤其是CVV垂直分量在西南涡暴雨过程中的指示意义。诊断结果表明:CVV垂直分量与西南涡引发的暴雨有一定对应关系,强降水发生时段与Cz垂直积分峰值出现的时间对应一致;在对流层低层850 hPa水平分布上,暴雨区位于CVV垂直分量的正值中心附近,偏向其梯度较大处;沿暴雨中心的CVV垂直分量,当对流层低层至高层呈现一致的正值时,暴雨强度会明显加强。  相似文献   

3.
采用常规观测和"973"中国暴雨试验资料,对2002年6月22~23日一次由中尺度对流系统(MCS)发展而产生的低涡,以及伴随其发生发展的对流系统进行了分析和模拟研究.结果表明:MCSA东移到河南西部时,由于对流层中层正涡度中心的强迫和潜热释放产生了气旋,低层的暖平流可能是低涡东移发展的原因之一.模拟结果显示低涡东部的对流系统发生在气旋东部的暖切变上,西部对流系统发生在冷切变附近.在低涡的南部偏南风与偏北风之间形成辐合线,辐合线上有低层偏东风与高层偏西风的垂直切变,对流沿辐合线由西南向东北方向移动形成对流带.对流系统发展强盛时除了低层的强辐合外,高层较深厚的强辐散是其维持的重要原因,当系统倾斜时表明开始减弱.试验加密资料分析也表明:降雨发生前有明显的增湿过程,而降雨开始后,整层可降雨量迅速减少;对流系统南侧强的西南低空急流向对流区输送了大量水汽;气旋东移后,西北风(冷空气)的侵入使降雨结束.  相似文献   

4.
利用NCEP/NCAR再分析资料和中尺度模式MM5V3,对2010年7月造成甘肃东部大暴雨过程的低涡系统进行了诊断分析和数值模拟.结果表明:(1)在低涡发生、发展阶段,假相当位温和比湿的垂直平流在视热源、视水汽汇中占绝对优势,说明垂直平流变化与低涡发生、发展及强降水有很好的正相关;(2)上升运动中心与视热源、视水汽汇大致中心相对应,变化趋势基本一致,最强的凝结潜热加热发生在中层,最强上升运动同样也出现在中层,说明降水过程中大气加热与大气上升运动密切相关,大气热源主要来自于水汽的凝结潜热;(3)低涡发生、发展过程中伴随中低层有西南风急流、强正涡度中心、低层辐合、高层辐散结构、强上升运动及低层水汽通量辐合;(4)低涡区上空对流层低层为对流不稳定层结,中层至中高层为条件对称不稳定层结,对流不稳定层结强度随时间变化不大,而条件对称不稳定层结强度随时间有明显加强,位势不稳定和条件性对称不稳定共存使得假相当位温高值区域的垂直上升运动得以产生和维持.  相似文献   

5.
利用基本气象站观测资料、ECMWF ERA资料和NCEP FNL资料,通过对强降雨时刻的多种物理量场诊断,分析了2015年梅雨期发生在江苏省沿江地区的6月16—17日和27—29日两次大暴雨的形成原因。结果表明,两次大暴雨过程均发生在西太平洋副热带高压稳定维持、西南气流强盛、高层有冷空气不断入侵的大环流背景下,受中低层江淮切变线和西南急流共同影响,冷暖空气一直在沿江一带交汇,造成沿江地区持续强降水过程。两次大暴雨发生时32°N附近梅雨锋很明显,锋面随着高度的升高向北侧冷区倾斜,强降水主要位于梅雨锋南侧的暖区内。该侧700 hPa高度层以下湿位涡为负值表明大气为对流不稳定,且随着降水的发生,中层有弱冷空气入侵,使得大气的对流不稳定性进一步加强。强的降水区主要位于低空急流的左侧和高空急流的入口区右侧,高低空急流的这种配置带来了风场高层辐散、低层辐合,有利于垂直上升运动加强。同时低层暖平流和中高层正的相对涡度平流交汇于32°N附近,也有利于暴雨区的上升运动加强。暴雨区与850 hPa水汽通量散度负值中心相吻合,表明低层西南急流为暴雨区源源不断地提供水汽。  相似文献   

6.
一次西南涡东北移对川陕大暴雨影响的分析   总被引:3,自引:0,他引:3  
利用常规观测资料、NCEP再分析资料、自动站资料、卫星云图和雷达资料,对2010年7月16-19日西南涡东北移造成川陕大暴雨天气过程的影响系统、高空急流、流场和对流涡度矢量等方面进行了诊断分析,探讨了大暴雨的发生、发展机制及其天气学特征和物理量特征.结果表明,鞍形场的稳定存在为西南低涡的发生、发展及其东北移提供了环流背景,“北槽南涡”形势是西南涡长时间维持的原因.东北一西南急流中心南侧的东北气流和南亚高压东北侧的东南气流构成的分流区对四川东北部和陕南大暴雨的产生提供了有利的上升动力条件.在台风和副热带高压外围之间强气压梯度力产生的偏南暖湿气流为暴雨区带来了丰沛的水汽.西南涡增强阶段的降水强度明显大于减弱阶段,对流涡度矢量(CVV)的垂直分量和气柱云水量中心值的重合区是大暴雨的发生区.  相似文献   

7.
沙澧河流域两场大暴雨过程的对比分析   总被引:4,自引:0,他引:4  
利用常规观测资料、自动站资料和NCEP1°×1°再分析资料对2007年7月5日和14日沙澧河流域两场大暴雨过程进行了诊断对比分析.结果表明:不同影响系统下产生的大暴雨过程其动力机制有所差异.垂直螺旋度计算结果显示:两次过程700hPa等压面上正垂直螺旋度中心的移向和强度变化与降水落区及趋势变化有很好的对应关系,暴雨区出现在正垂直螺旋度中心移动的前方,对流域大暴雨的落区有一定的指示意义.5日呈现中低层正、高层负的垂直螺旋度配置,动力条件更有利于大暴雨的发生.湿位涡演变分析发现,5日中低层既存在对流不稳定,又存在对称不稳定,有利于垂直对流和倾斜对流发生,造成流域大暴雨.14日中低层大气处于对流稳定状态,但边界层和中层存在对流不稳定,同时中层还存在较强的对称不稳定,垂直涡度得到较大增长,导致上升运动的加强和水汽的垂直输送,有利于降水增幅.  相似文献   

8.
引发暴雨天气的中尺度低涡的数值研究   总被引:1,自引:1,他引:0  
2008年7月17—19日发生在山东的大到暴雨天气是由“海鸥”台风和副热带高压共同向山东输送水汽,与弱冷空气相互作用造成的。对流层低层的中尺度低涡是暴雨天气的直接制造者。利用常规观测资料和中尺度模式WRF(Weather Research and Forecasting)的模拟资料对该中尺度低涡的结构及形成机制进行了分析研究。结果表明,数值模拟可以清楚地捕捉到中尺度低涡东移过程中有新的涡旋中心形成,并与原来的涡旋中心合并的过程,而不是简单的沿切变线东移。中尺度低涡形成在增温增湿明显、上升运动为主的对流区内;中尺度低涡形成后其中心转为下沉运动,对流区东移,降水区位于低涡的东北和东南象限。中尺度低涡上空近地面层的冷池、600~400hPa的弱冷空气堆、900~850hPa的弱风区及高低空急流耦合发展是中尺度低涡形成和发展阶段的重要特征。中尺度低涡减弱阶段,下沉运动变强,低空急流和高空出流都明显减弱。涡度方程的收支表明,对流层低层的散度项、倾侧项及对流层中层的水平平流项和铅直输送项是正涡度的主要贡献者。中低层的水平辐合、涡度由低层向高层的垂直输送都有利于中尺度低涡的形成和发展。倾侧项对中尺度低涡的形成也有重要贡献。中尺度低涡形成后期,低层辐合、高层辐散及垂直输送的减弱导致正涡度制造的减弱,从而使中尺度低涡减弱。  相似文献   

9.
应用常规资料、自动站雨量资料、卫星云图及雷达资料,对2009年5月9-10日发生在鲁西北和鲁中北部的一次区域性大暴雨进行分析。分析发现,低层冷式切变线是引发大暴雨的主要系统,暴雨主要产生在低空冷式切变线右侧、西南低涡的东北象限以及低空急流的左前方,也是高低空急流耦合区。副高西侧的西南急流建立起从南海到华北中部的水汽通道,为大暴雨的发生发展提供暖湿空气和能量,使得低涡辐合加强,是低层切变线长时间停滞的必要条件。地面锋面气旋则是暴雨开始的启动机制,锋后东北冷空气与西南暖湿空气在山东上空交汇,促使对流发展和不稳定能量释放产生暴雨。在低层辐合、高层弱辐散的情况下,暴雨区低涡的涡动作用使得水汽块运动加强。多个对流单体合并形成的中尺度对流系统(MCS)经过大暴雨区,雷达回波表现为层状云为主的混合回波带,说明对流并不旺盛。  相似文献   

10.
利用NCEP 1°×1°格距逐6 h再分析资料、FY-2F逐时云顶亮温(TBB)资料、国家气象站常规探空和地面气象观测资料、湖北省区域气象自动站资料,对2019年5月25日湖北省东部一次大暴雨过程进行诊断分析。结果表明:500 hPa中高纬低槽不断分裂南下,盆地低槽稳定维持,中低层低涡扰动,切变线和低空急流维持,是本次大暴雨的有利天气背景;有西南向的水汽输送通道并在暴雨区强烈辐合,水汽辐合中心位于900~950 hPa,500 hPa以下整层温度露点差都在4℃以下;暴雨区在150 hPa以下为正平均涡度;400 hPa以上为正平均散度,其下为负平均散度,最强降水时段高层辐散低层辐合的配置明显向对流层下层压缩,高层负涡度低层正涡度的配置催生了高层辐散低层辐合的散度配置,有利于垂直上升运动加强;暴雨区上升运动从1 000 hPa延伸到200 h Pa,整层以上升运动为主,在最强降水时段上升运动中心明显下移;有明显的上冷下暖层结结构,形成低层暖平流高层冷平流的温度平流配置,有利于产生对流不稳定;降水云顶亮温TBB≤-50℃区域与降水区对应,近似圆形的中尺度对流系统对湖北东部强降水十分有利。  相似文献   

11.
一次华北暴雨过程中边界层东风活动及作用   总被引:7,自引:0,他引:7       下载免费PDF全文
利用常规气象观测资料、NCEP 1°×1°逐6 h分析资料、微波辐射计资料及FY-2E气象卫星及雷达探测资料,针对2013年6月4日发生在北京及周边地区的一次暴雨过程中边界层东风活动及作用进行了天气学诊断分析,结果表明:对流性暴雨过程伴随有源自东北平原的边界层东风活动,东风活动具有尺度小、降温明显和湿度大等特点。暴雨过程是边界层东风和中低空暖式切变线、偏南风急流和500 hPa短波槽共同作用的结果;东风湿冷空气的锋面抬升和地形抬升作用共同加强了中低层暖湿气流的辐合上升运动,同时东风冷垫和地形抬升作用触发了雷暴的再次发生,相应雷暴具有高架对流特点。东风气流起到了边界层水汽输送作用,中低层偏南暖湿气流为暴雨的产生提供了充足的水汽和不稳定层结条件。  相似文献   

12.
对流涡度矢量在暴雨诊断分析中的应用研究   总被引:9,自引:5,他引:4  
赵宇  高守亭 《大气科学》2008,32(3):444-456
位涡在诊断分析中是一个常用且有效的物理量, 但在深对流系统中由于湿等熵面的倾斜变得较弱。因此, 本文利用高守亭等(2004)提出的新矢量——对流涡度矢量(简称CVV)来研究深对流系统, 并用对流涡度矢量诊断华北一次大范围的大到暴雨天气过程。结果表明, CVV垂直分量在中纬度对流性暴雨中有很好的指示性, 它的高值区与云中水凝物和地面降水有较好的对应关系, 暴雨区位于CVV垂直分量高值区附近及其北侧的梯度大值区内。CVV垂直分量是与云相联系的参数, 暴雨区垂直积分和区域平均的CVV垂直分量和云中水凝物混合比的相关系数为0.92, 与降水率的相关系数为0.71, 比湿位涡与云中水凝物的相关系数高很多。CVV垂直分量反映了水平涡度和水平相当位温梯度的相互作用, 可以把中纬度深对流系统中的中尺度动力过程和热力过程与云微物理过程密切联系起来, 有助于理解环流和云相互作用促使对流发展的机制, 可以很好地追踪暴雨系统的发展和演变。  相似文献   

13.
利用常规天气资料及地面自动站、风廓线雷达、新一代天气雷达资料和ERA-Interim逐6 h 0.125°×0.125°再分析资料,分析2015年5月19日福建西部山区一次极端降水的中尺度特征。结果表明:(1)极端降水分为锋前暖区降水和锋面降水两个阶段,暴雨区位于低空西南急流轴左侧,水汽充足,冷暖空气交汇,不稳定能量大,抬升凝结高度和自由对流高度低,大气可降水量大及中等强度的垂直风切变形成有利于中尺度对流系统(mesoscale covective system, MCS)发展的环境条件。(2)锋前暖区降水期间,西南气流携带高能量和水汽充足的空气移入暴雨区被中尺度边界附近的冷出流空气抬升,不断产生新的对流单体,对流单体向东北偏东方向移动,排列形成短雨带;若干条东北—西南向长度不等的短雨带在中尺度出流边界北侧建立,缓慢向东移动,依次重复影响关键区;暴雨关键区存在辐合线和风速辐合,为降水提供了良好的动力抬升条件;向西南开口的河谷地形加强了对流的发展;对流单体不断后部建立和东北西南向多个短雨带重复影响同一地区的列车效应是此阶段MCS主要发展方式。(3)锋面降水期间,对流单体在低涡切变南侧风速辐合、水汽和能量大值区发展东移南压,中高层先于低层转偏北气流,表现出前倾特征,垂直风切变加大,冷空气从中高层先扩散南下,与低层暖湿空气交汇使对流加强,冷暖气流的交汇叠加风速辐合使得强降水加强并维持。对流单体后向传播向东移动产生的列车效应是此阶段MCS主要发展方式。  相似文献   

14.
2013年5月14—16日江西暴雨过程成因及非常规资料特征分析   总被引:1,自引:0,他引:1  
利用常规观测资料、NCEP/NCAR 1°×1°再分析资料、风廓线雷达、GPS/MET可降水量等非常规资料,对2013年5月14—16日江西区域性暴雨的成因进行了分析。结果表明:1)此次暴雨过程较强的动力条件和水汽条件是在高空低槽、中低层切变线、西南急流、低涡的共同作用下形成的。2)低层暖湿气流与高层干冷空气的配置有利于热力不稳定能量积聚;稳定度(θse500-850)密集区有利于激发中尺度对流云团发生发展;较强的垂直风切变对不稳定能量的释放和对流性暴雨的产生起到了触发的作用。3)风廓线雷达监测的超低空西南急流脉动与下风方地区的强降水相对应;该雷达监测的中低层风场特征对辅助分析天气尺度系统演变有一定的参考;风廓线雷达特征表现的强信噪比、较大的垂直向下运动与本站的强降水对应。4)强降水落区基本与可降水量(PWV)等值线密集带相对应;最大雨强常在可降水量值达到最高点之后1—3 h出现;在降水出现前站点的PWV值增幅越大,上升至高位值后维持时间越长,同时又有动力触发,对应该站点降水量也越大。  相似文献   

15.
利用加密探测资料分析冷式切变线类大暴雨的动力结构   总被引:2,自引:0,他引:2  
杨成芳  阎丽凤  周雪松 《气象》2012,38(7):819-827
利用风廓线雷达、多普勒天气雷达、地面加密自动站和闪电定位仪等非常规观测资料,对发生在山东东南部沿海青岛的一次大暴雨天气的动力结构进行了分析,以探索如何综合应用新资料追踪暴雨的演变过程。结果表明:(1)此次大暴雨过程的影响系统是冷式切变线,冷空气从对流层低层入侵,切变线在850 hPa以下层次明显,地面冷锋逐渐演变为静止锋。(2)暴雨过程经历了两个强降雨和一个弱降雨时段,1小时30 mm以上的短历时强降雨发生在冷空气刚入侵阶段,并伴随雷电。(3)强降雨主要发生在925 hPa切变线附近,降雨分布在925 hPa切变线的东北风与850 hPa切变线的西南风叠置区域。大暴雨的分布与切变线走向基本一致。(4)在切变线移动和发展过程中,水平风有明显不同:冷空气刚影响时,对流层低层产生了明显的中尺度低压环流,是导致对流性短历时强降雨的关键因素;静止锋形成的时段内,从低层至高层,低压环流消失,代之以较强西南风与弱西北风之间的切变线;在静止锋维持的后期,低层和高层均转为西北风,仅在中层有西南风与偏北风之间的切变线,从而产生稳定性弱降雨。(5)风廓线对降雨的起止、盛衰有较强信号,风向风速自上而下顺序变化,当中层西南风风速增大且不断向下扩展,持续4 h后西南低空急流明显加强,当近地面转为东北风时,强降雨开始,强降雨阶段的显著特点是在风廓线雷达上表现为中低层强西北风和强西南风交替出现,降雨强度与交替的高度有关;当各层均转为稳定的西北风时预示降雨结束。  相似文献   

16.
利用地面降水观测、NCEP/NCAR FNL再分析、ECMWF模式预报场和FY-2H静止卫星TBB资料, 对2020年6月30日浙江省一次暴雨过程进行了综合分析。结果表明: (1) 200 hPa南亚高压强高空辐散、中纬度低槽东移、副热带高压带状稳定的阻塞形势、江淮气旋后部下摆冷空气与暖湿气流交汇形成的冷式切变等共同提供了有利的环境条件; (2)对流层中低层水汽通量向高空伸展、700 hPa正的垂直螺旋度中心都对暴雨落区有示踪作用, 高层正水汽通量散度强于低层负水汽通量散度, 垂直螺旋度和垂直速度中心几乎重合, 先低层强辐合后强垂直上升运动均为本次暴雨的发生提供了重要的水汽和动力条件; (3)暴雨发生在MPV、MPV1和MPV2为正负过渡的零值区, 为对流不稳定和斜压不稳定相结合区域, θse线密集区与地面近乎垂直, 湿位涡的高值中心位于θse梯度最大处, 高空湿位涡下传触发了位势不稳定能量的释放, 引起大范围的强对流暴雨; (4) 850 hPa冷切变线附近的降水云团, 是由多个块状对流云团合并加强形成完整的带状积雨云团, 而上游不断有新生对流云团生成东移补充消散的老单体, 触发阶段对流云后向传播, 扰动发展阶段对流云团合并过程, 形成对流云串的“列车效应”。   相似文献   

17.
周海光 《高原气象》2009,28(6):1422-1433
受“凤凰”低压和冷空气共同影响, 2008年8月1~2日安徽省东部和江苏西部部分地区出现大雨, 局部地区暴雨到特大暴雨。滁州和全椒24 h雨量分别为429 mm和414 mm, 此次特大暴雨具有局地性和降水强度大的特点。使用南京和马鞍山双多普勒雷达时间同步观测资料, 对此次暴雨的三维风场进行反演, 在此基础上, 研究了暴雨的三维风场结构。由雷达回波分析可知, 此次暴雨是由β中尺度对流系统造成的, 在β中尺度对流系统内部还有γ中尺度对流单体, 对流单体发展非常旺盛。中低层切变线自西向东移入降水区后, 在该地区停留较长时间, 加之有充足的水汽供应, 造成了局地特大暴雨。在垂直剖面内, 对流系统发展旺盛, 强降水区上空回波较强且对应着较强的上升气流区, 而在强回波中心区的两侧均有下沉气流。当切变线减弱并移出降水区后, 强降水停止。  相似文献   

18.
为了研究甘肃东南部相同气候背景条件下极端暴雨天气的成因,提高极端暴雨强度和落区预报的准确率,利用NCEP再分析、自动气象站降水、常规观测资料及卫星云图资料,对2013年8月7日和2017年8月7日发生在甘肃东南部两次极端暴雨进行对比分析。结果表明:两次极端暴雨天气过程都伴随着短时强降水等强对流性天气,具有降水量大、雨强强、灾害重的特点,其中冷空气的强度对暴雨落区、空间分布以及影响系统移动以及对流强度产生重要影响。在强冷空气和高空低槽、低层切变线影响下,暴雨区偏南,强降水区域小,持续时间短,不稳定条件更好,对流强度更强;在弱冷空气和高原槽、低层低涡、低空急流作用下,暴雨区偏北,强降水范围大,持续时间长,大气湿层厚度大,低层水汽辐合强度、涡度以及垂直速度更强,降水效率更高,但对流强度相对较弱。卫星云图上,在强冷空气的影响下对流发展旺盛,形成强中尺度对流云团,对流云团呈带状;在弱冷空气作用下对流云团尺度小,发展范围小,有暖云降水特征,降水效率高。  相似文献   

19.
The four-dimensional variational (4DVAR) data assimilation method was applied to dual-Doppler radar data about two Meiyu rainstorms observed during CHeRES (China Heavy Rain Experiment and Study). The purpose of this study is to examine the performance of the 4DVAR technique in retrieving rainstorm mesoscale structure and to reveal the feature of rainstorm mesoscale structure. Results demonstrated that the 4DVAR assimilation method was able to retrieve the detailed structure of wind, thermodynamics, and microphysics fields from dual-Doppler radar observations. The retrieved wind fields agreed with the dual-Doppler synthesized winds and were accurate. The distributions of the retrieved perturbation pressure, perturbation temperature, and microphysics fields were also reasonable through the examination of their physical consistency. Both of the two heavy rainfalls were caused by merging cloud processes. The wind shear and convergence lines at middle and lower levels were their primary dynamical characteristics. The convective system was often related to low-level convergence and upper-level divergence coupled with up-drafts. During its mature stage, the convective system was characterized by low pressure at lower level and high pressure at upper level, associated with warmer at middle level and colder at lower and upper levels than the environment. However, a region of cooling and high pressure occurred in the lower and middle levels compared to warming and low pressure in the upper level during its dissipating stage. The water vapor, cloud water, and rainwater corresponded to the convergence, the updraft and the intensive reflectivity, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号