首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 373 毫秒
1.
【目的】为评估DSG1型和DSG5型国产降水现象仪在测量降水方面的性能。【方法】挑选鲁南地区降水过程、强度和持续时间较一致且相邻2个国家气象观测站不同型号的降水现象仪和自动气象站2017年9月—2020年8月5年降水观测资料,对比分析了这两种不同型号降水现象仪和自动气象站观测降水的差异。【结果】(1)两种降水现象仪和自动气象站观测的降水时间基本相同,但DSG1型和DSG5型比自动气象站分别偏多约2.2%、3.7%;(2)两种降水现象仪分钟降水量、小时降水量和日降水量都比自动气象站偏小;(3)在中等降水强度及以下,两种降水现象仪观测的降水量大小基本一致,但降水强度较大时,降水量大小不一致且分散;(4)两种降水现象仪与自动气象站的分钟、小时和日降水量差值百分比均值变化不同,说明其在测量降水方面性能略有差异。【结论】由于测量原理和时间及空间分辨率不同于自动气象站雨量计,这两种降水现象仪在观测业务中有着良好的表现,对降水开始和结束时刻记录的更早更准确。  相似文献   

2.
Parsivel激光雨滴谱仪观测较强降水的可行性分析和建议   总被引:3,自引:2,他引:1  
为了研究OTT-Parsivel激光雨滴谱仪(简称Parsivel)在较强降水观测中应用的可行性,用南京地区2012年6—7月份4个典型的降水个例,对Parsivel和SL3-1翻斗式雨量计(简称雨量计)的累积降水量、降水强度观测资料进行对比分析,并与人工雨量筒观测作以比较。结果表明:Parsivel测值是可信的,在累积降水量观测上,与雨量计具有很好的相关性,但测值始终偏高,该现象主要是粒子相互遮挡造成的。雨量计的反应时间,明显滞后于Parsivel。雨量计测值接近人工测值;而Parsivel与人工测值的偏差明显大于雨量计。结合实验分析与业务应用,提出3点使用建议:(1)仪器应架设在无遮蔽物的开阔地带。(2)采样周期应随着降水强度(地理位置)的不同而改变。(3)对降水微物理参量特征以及粒子谱分析时,可剔除直径过大、速度很低的粒子。  相似文献   

3.
应用反距离权重插值法,将2019年4—6月江西省气象部门自动气象站和水利部门自动雨量站逐小时降水观测数据,分别转换为分辨率为0.05°×0.05°格点降水资料,以对比分析两种观测系统降水资料的相关性、误差及其时空变化规律。结果表明:1) 气象、水文降水量格点场具有显著相关关系,其中中度及以上相关的格点数占总数的99.54%;两者的平均相关系数为0.93,平均均方根误差为0.56 mm/h,绝对误差为0.13 mm/h,误差为-0.01 mm/h;气象与水文降水总量平均差异在-4%左右。2) 出现零星或短时降水时,气象、水文小时降水量格点场相关性差异较大;而出现系统性降水过程时,两者表现为高度相关。逐时格点平均降水量,在系统性降水的初期和结束期气象类高于水文类,而持续期水文类高于气象类,两者差异在-6%—6%以内。3) 气象、水文降水资料在时间和空间分布上具有较好的一致性,对两者的融合应用可以明显提高站点密度,站网分布更合理,能更准确地反映过程降水的时空变化。  相似文献   

4.
近40多年来清江流域降水时空分布特征   总被引:1,自引:0,他引:1  
用清江流域各水文站1962-2003年逐日降水资料统计分析得到清江流域降水的时空分布特征。结果表明:(1)强降水区呈两点一线型,低值区位于桃山附近;(2)全流域降水量近20年呈减少趋势;(3)7月是每年降水最多的月份,4-10月的降水量占全年总降水量的87%;(4)降水日变化峰值出现在3-5时,低值出现在9-10时。  相似文献   

5.
刘宗庆  郑亮  陈涛 《气象科技》2020,48(5):635-639
基于SL3-1型双翻斗雨量传感器的结构原理进行测量误差分析。根据传感器翻斗承水量的不同,采用模拟降水试验的方法比对降水误差,得到在大、小雨强(1mm/min和4mm/min)下计量10mm降水量时的上翻斗与计量翻斗合适的比例关系,从而使得测量误差最小且两种雨强下测量误差一致性最好。结果表明:10mm降水计量,上翻斗与计量翻斗翻动次数的比例关系为9∶10最合适。比例关系的确定为双翻斗雨量传感器的超差调整提供了技术参考和依据,为雨量观测数据的准确可靠提供了保障。  相似文献   

6.
山东省短时强降水天气的特征分析   总被引:1,自引:0,他引:1  
通过分析山东省2007—2010年常规观测资料、山东省区域和国家级自动气象观测站降水观测资料,研究短时强降水天气的时间和地理分布特征,分析短时强降水出现的时间、落区和强度,并对1小时降水量≥100mm的短时特强降水的天气系统进行了分析,结果表明:2007—2010年山东省短时强降水天气一般出现在5—10月,7—8月较多;1小时降水量≥100mm的短时特强降水都发生在7—8月;出现短时强降水天气的时段以午后至傍晚居多,夜间次之,上午最少;当500hPa位于西风槽前和副高边缘,700hPa和850hPa位于西风槽前或存在切变线,地面有冷锋影响时,有可能发生1小时降水量≥100mm的短时特强降水天气。  相似文献   

7.
李林  常晨  范雪波  崔炜 《气象科技》2013,41(6):1008-1012
为掌握称重式降水传感器的液态降水观测性能,推进降水自动化观测进程,按照降水过程强弱,依照北京市观象台2011年春夏季降水观测数据的统计结果,对DSH1型称重式降水传感器与业务用SL3 1型双翻斗雨量传感器进行比较分析。结果表明:以SL3 1型双翻斗雨量传感器为参照,DSH1型称重式降水传感器的观测数据基本可靠,在小雨过程中,两种型号传感器的观测数据有较好一致性;在中雨及大雨过程中,DSH1型称重式传感器与SL3 1型双翻斗雨量传感器还有一定的差异,有待于进一步试验与研究。试验过程中,DSH1型称重式传感器曾有故障出现,仪器可靠性有待提高。  相似文献   

8.
易家俊 《气象》1989,15(9):1-1
近年来笔者多次发现,当遇到象08时定时观测时有降水,但降水恰好在观测降水量后至08时正点前终止,且当日再无降水这类非日界(20时)的其它时次定时观测时的特殊降水现象,往往漏测观测后至正点前降水终止这段时间的降水量。例如:某站某日天气现象记录为·5:20~7:59,08时定时观测时观测了降水量,观测的时间在7:52左右,但该日以后的两次定时观测(14时和20时)均未再观测降水量。显然,7:52—7:59这段时间的降水量没有进行观测。  相似文献   

9.
郭军  熊明明  黄鹤 《山东气象》2019,39(2):58-67
使用2007—2017年京津冀地区156个气象站暖季(5—9月)逐小时降水观测数据,根据地形将研究区域分为6个分区,分析各分区降水量季节内变化和日变化特征,结果表明:1)京津冀的多雨区主要位于沿燕山南麓到太行山,存在多个降雨中心。2)各分区降水量季节内特征总体表现为单峰型,即7月降水量最大,7月第3候至8月第4候是主汛期,8月降水量次之,5月最少。3)降水呈夜间多,白天少的特点,7月初之前的前汛期降水多发生在16—21时;主汛期降水呈双峰型,峰值在17—22时,次峰值出现在00—07时;8月中旬以后的后汛期多夜间降水,峰值多出现在00—08时。4)高原山区多短历时降水,长历时累计降水对季节降水贡献率大值区位于平原地区,而持续性降水贡献率大值位于太行山区和燕山迎风坡的西部。  相似文献   

10.
利用拉萨2005—2017年逐小时降水观测资料和1969—2017年逐3 h降水观测资料,在分析该站汛期(5—9月)降水日变化特征的基础上,揭示该站昼夜降水的长期演变特征。结果表明:(1)拉萨小时降水量和降水频次日变化呈单峰型分布,两者峰值均出现在05:00(北京时,下同),谷值出现在15:00—17:00;小时降水强度日变化呈双峰型分布,峰值出现在17:00和00:00,谷值出现在13:00—15:00。(2)拉萨汛期不同等级降水的小时降水量和降水频次日变化位相不同,其中微雨和小雨的小时降水量和降水频次日变化为单峰型,且峰值均出现在05:00,而中雨及以上小时降水量和降水频次日变化峰值出现时间较微雨和小雨略有提前。(3)近49 a拉萨汛期昼夜降水量显著增多,降水强度显著增强,而降水日数无明显趋势,降水强度增强是拉萨汛期降水量增多的主要原因。  相似文献   

11.
利用潮州1957—2007年逐日降水资料,统计分析其年、季降水气候特征及暴雨气候特征;应用MHF小波方法分析年降水量及暴雨日数的多时间尺度特征。结果表明:(1)潮州年降水量总体呈上升趋势,前汛期降水量对全年雨量的贡献逐渐下降,后汛期则相反;汛期开始月份及汛期降水强弱的年际变化明显,汛期结束月份年际变化不显著;降水偏多异常,各月差别不大,偏少异常,各月差别很大;4—8月最易发生降水异常。(2)暴雨主要发生在4—9月,暴雨气候事件初发时间有提前趋势,但近51 a暴雨日数总体上无明显增加。(3)年降水量存在3.5 a、18.4 a的主要时间尺度;暴雨日数存在4.6 a、12.1 a主要时间尺度。(4)整个时间域上,降水量和暴雨日数均存在较好的对应关系,不同尺度和时期这种对应特征略有不同。  相似文献   

12.
吴珍  宗晓鸿 《山东气象》2008,28(3):66-67
目前在使用SL2—1型雨量传感器的自动气象站中,存在有明显降水时无降水量、无降水时有降水量以及雨量有明显偏差等异常现象,从传感器上分析其产生原因,并提出故障排除方法。  相似文献   

13.
为更好地利用降水观测数据,充分发挥新型探测设备建设效益,选取海东市5个国家级地面观测站2016年6—9月份称重式降水传感器与翻斗观测降水量业务资料,探讨称重观测与翻斗观测降水量的差异,并进行相关性研究。结果表明:小时降雨量分析中,翻斗与称重观测方式对降雨判断的差异较小,出现差异时小时降水量介于零星降雨和小雨之间;称重观测与翻斗观测日降水量相关系数为0.9918,称重式观测比翻斗观测的日降雨量平均偏小0.54mm,均方根误差为1.22mm,56.3%的对比次数中,两者日降水量差值满足业务要求;两者在日降水量等级判断差异较小,在有明显降水时,称重式与翻斗在降水量等级上的差别很小。  相似文献   

14.
GRAPES_GFS模式全球降水预报的主要偏差特征   总被引:1,自引:0,他引:1  
刘帅  王建捷  陈起英  孙健 《气象学报》2021,79(2):255-281
利用2017年1、4、7、10月“全球降水观测(global precipitation measurement,GPM)计划”每日08时(北京时)的24 h累计降水量和逐30 min降水量观测产品,从降水量和频率等角度,对同期GRAPES全球模式(GRAPES_GFS)第1(D1)、3(D3)、5天(D5)的全球降水预报性能和偏差特征进行细致评估与分析,且对低纬度暖池和北半球中纬度风暴路径区进行了重点观察,初步探讨了降水预报偏差特征在低纬度和中纬度明显不同的可能原因。结果显示:(1)GRAPES_GFS的D1—D5预报对全球日降水(量和频率)分布描述合理,能准确再现纬向平均降水(量和频率)的典型特征—降水“双峰”极大位于南北纬20°之间,次极大位于南北纬40°—50°地区的特征,以及关键区日降水时、空演变和降水日循环逐日演变的主要趋势特征。(2)低纬度的纬向平均湿日(≥0.1 mm/d)频率预报正偏差很小,但日降水量和强降水日(>25 mm/d)频率预报的正偏差明显、偏差极大值“双峰”位置恰是相应观测极大值所在处(南北纬5°—10°);中纬度的纬向平均日降水量预报基本无偏,但明显的湿日降水频率预报正偏差(20%—30%)和强降水日频率负偏差出现在南北纬40°—60°。降水偏差正、负分布特征随季节和预报时效基本保持不变,预报均方根误差数倍于平均误差,暗示模式降水预报偏差有系统性且性能表现波动较大。(3)日循环中,模式在暖池的降水量预报正偏差缘于降水强度预报偏强,降水频率预报的弱负偏差主要与降水落区预报偏小有关;而模式在北半球风暴路径区降水频率预报的正偏差则是降水落区预报偏大和空报弱降水事件两方面因素造成。(4)模式降水(量和频率)预报偏差特征在低纬度和中纬度的明显差异与模式次网格尺度和网格尺度降水比例失调有关,改进线索指向模式对流参数化方案中深对流的启动和深对流降水量的处理以及对流参数化方案与云微物理方案的协同问题。   相似文献   

15.
山东省汛期小时降水过程时空分布特征   总被引:1,自引:1,他引:0  
董旭光  顾伟宗  邱粲  曹洁 《气象》2018,44(8):1063-1072
利用山东省74个气象站1961-2012年逐时降水观测数据,分析了山东省汛期(5-9月)短历时和持续性降水过程的时空分布特征。结果表明:(1)过程降水量和过程历时显著增大使得山东省汛期总降水量略有增加,持续性降水过程次数、过程降水量、过程历时的增加对总降水量增加的贡献最大。(2)短历时总降水量以鲁中山区、鲁东南地区最多,鲁东南沿海、半岛东部持续性总降水量最多;短历时过程降水量、平均雨强以鲁东南向西北方向经鲁中山区至德州一带最大,持续性过程降水量、平均雨强在半岛东部和鲁东南部分地区最大。(3)短历时峰值雨强以鲁中山区周边地区较大,持续性峰值雨强以鲁南、鲁东南、半岛东部较大。(4)鲁中山区、鲁南及半岛个别地区短历时降水一般开始于午后(13-18时),鲁中山区周边及半岛沿海一带多以夜雨为主,持续性降水过程开始时间多出现在夜间。  相似文献   

16.
利用1994—2013年5—9月喀什气象站逐小时降水资料,分析喀什近20 a降水的日变化特征。研究表明,20时至翌日06时为降水量的高值阶段,最大值出现在01时,07—19时为降水量的低值时段,最小值出现在16时。降水频次的高值区为00时至07时,降水最不易产生的时间为17时。降水强度最高值在20时,次高值为01时,也是累积降水量较大时刻,降水强度最低值出现在15时也是累积降水量的低值区。喀什的降水主要以短时性降水(1~3 h)为主,多发生在傍晚至夜间,1 h降水频次最多的是量级≤1 mm的降水,但1.1 mm≤R1≤3.0 mm量级的降水贡献率最高。小雨、中雨及大雨降水过程最易发生时段均为前半夜,下午为各量级降水过程发生最少的时段。  相似文献   

17.
利用2008—2017年1—12月新疆伊犁河谷10个气象站逐小时降水资料,分析伊犁河谷近10 a全年降雨雪(以下统称降水)时空分布特征。结果表明,伊犁河谷暖、冷季平原区、山区年平均逐时累积降水量和降水频次变化特征极其明显,暖季山区降水量和降水频次明显高于平原区,而冷季山区则低于平原区。暖季平原区、山区降水量最大值分别出现在22:00和00:00(以下均为北京时间),最小值出现在14:00和13:00;而冷季平原区、山区降水量最大值分别出现在10:00和11:00,最小值出现在18:00和17:00。全天中暖季最易发生降水的时间为23:00—翌日08:00;而冷季最易发生降水的时间为04:00—13:00。降水强度暖、冷季变化特征不明显,变化趋势与降水量、降水频次存在差异。全年降水主要以短时段降水为主,其中,暖、冷季平原区、山区降水持续1 h的次数均为最大值,但暖季平原区降水持续2 h和暖季山区持续4 h的降水量及贡献率为最大值,而冷季平原区、山区最大值则均出现在降水持续4 h情况下。  相似文献   

18.
利用2009—2013年天津地区205个自动气象站的逐时降水资料,分析了天津地区降水的基本空间分布和日变化特征。结果表明:(1)天津地区降水小时数及小时平均降水强度空间差异明显,高值区分别位于蓟县北部山区、市区西北侧、滨海新区中南部;(2)天津中北部地区累积降水量峰值主要出现在23—03时,南部地区则出现在17—19时和04—08时,降水频次峰值基本都出现在00—09时,降水强度峰值与累积降水量峰值出现时间类似,11时为降水强度低谷出现时间;(3)全市傍晚至午夜的降水频次明显较凌晨偏少,长持续时间(10 h以上)的最大降水易出现在凌晨至清晨,短时降水(1~4 h)的最大降水易出现在傍晚至午夜;13—24时多数时次,无论降水量、频次还是降水强度市区均较其周边地区和沿海地区偏多偏强,而凌晨多数时次,市区则以偏少偏弱为主;(4)始于下午至傍晚的降水多为短时降水,而始于傍晚至凌晨的降水持续时间普遍较长。  相似文献   

19.
基于2012—2015年期间上海市多次明显强降水过程的逐时110积水报警数据(积水灾情)和气象站降水量数据,分析降水和积水灾情两者之间的关系和时空动态变化,建立了上海城市人口密集区强降水积水的阈值指标。结果表明:上海中心城区强降水积水的起始阈值为1 h降水量30 mm,当中心城区1 h降水量在70 mm以上时,积水会显著增多。上海区县人口密集居住区强降水的起始阈值为1 h降水量35 mm。降水积水的严重程度不仅与降水强度相关,也与累积降水量和降水持续时间的长短有关。当2 h累积降水达到40 mm以上时,也有积水灾情。积水灾情相对于降水有1—2 h左右的滞后期。  相似文献   

20.
利用CMA-BJ V2.0系统在2021年汛期(6—9月)华北地区预报的平均日降水量和24 h内逐时降水量,评估不同水平分辨率(3 km和9 km)在降水量、有效降水时次占比、降水强度、降水日变化等方面的预报性能。结果表明:9 km和3 km分辨率预报均可较好地反映降水量和落区,捕捉平均日降水量大于8 mm的降水区域分布特征,但降水量级的预报较观测偏大;对小时降水量和有效降水时次占比日变化的预报与观测基本一致,但对傍晚的峰值预报偏强,且多个时段空报,同时高估了小时降水量。与9 km分辨率预报相比,3 km分辨率预报对有效降水时次占比随累积降水量的变化趋势与观测更接近,对小时有效降水时次占比日变化、峰谷值出现时间的预报也与观测更接近。9 km分辨率预报对弱降水过程的预报能力更优,而3 km分辨率预报对强降水过程的预报能力更优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号