首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
本文利用CINRADCBROWSER雷达数据,对2017年6月30日齐齐哈尔市龙江县景星镇附近产生的下击暴流事件进行分析。本次下击暴流事件主要是由北部的对流单体不断发展融合产生,对齐齐哈尔地区共造成三次下击暴流,其中前两次下击暴流可观察到明显的弓状回波,第三次可观察到逗点回波;三次下击暴流均可观察到反射率因子核心的强度和高度有明显的下降过程,下击暴流的强度与反射率因子核心下降的高度和速度有关;径向速度图上三次下击暴流均有明显的辐合和辐散下沉过程,有明显正负速度对。  相似文献   

2.
利用山东威海CINRDA/SA多普勒雷达探测资料,结合常规天气图资料、地面自动气象观测站资料等,对2018年9月8日发生在威海文登机场附近的一次下击暴流天气特征进行分析。结果表明:1)此次下击暴流天气发生在高低空一致的西北气流背景下,午后太阳辐射使得低空大气加热显著,形成了强烈的不稳定层结。2)大气层结特征呈喇叭状温湿分布,850 hPa以下接近干绝热的温度直减率,为下击暴流的发生提供了有利环境条件。3)地面辐合线为风暴单体的产生提供了动力抬升条件。4)从多普勒雷达产品上看,风暴初始回波发生在午后海风锋触发的晴空窄带回波上,通过单体间的合并加强,发展成为多单体风暴;下击暴流出现前,对流风暴回波强度及高度明显发展,成熟阶段的对流风暴伴有回波悬垂结构和三体散射特征,伴随着强反射率因子核心的持续下降,下击暴流迅速到达地面,径向速度图上存在明显的中层辐合、旋转、低层辐散的现象;5 km以上60 dBZ强反射率因子核心的下降,结合径向速度中层辐合、低层辐散特征可提前3~9 min预警下击暴流的发生。  相似文献   

3.
基于多普勒雷达、闪电定位、地面观测资料和现场勘察情况,对2016年5月2日皖西南发生的一次连续下击暴流天气的成因进行分析。结果表明:引起2次微下击暴流的风暴为同一风暴单体,且为超级单体,旺盛阶段的雷达回波表现为钩状分布和倾斜结构;下击暴流产生的初始原因是液态或固态降水粒子下降的拖曳作用,中后期则主要源于热力不稳定、对流层中层的动量下传和补偿性气流作用,伴随的水成物与环境之间的负浮力增大是下击暴流发生的重要原因;对流层中层盛行风向造成的动量下传决定了2次微下击暴流的地面风走向;超级单体风暴具有反射率因子核最高和下降速度最快的特点,反射率因子核高度超过6 km,1个体扫间隔下降3 km左右或以上;当6 min降水达4 mm以上时,是发生下击暴流的征兆之一。  相似文献   

4.
三次下击暴流雷达回波特征分析   总被引:10,自引:4,他引:6       下载免费PDF全文
刁秀广  赵振东  高慧君  姜鹏 《气象》2011,37(5):522-531
利用济南、徐州和临沂多普勒天气雷达资料,对发生在山东境内的3次下击暴流进行了分析.2009年6月27日和2006年7月25日强风暴不仅产生了尺度大于4 km的宏下击暴流,而且还产生了冰雹和强降水天气,风暴最大反射率因子维持在60 dBz以上,单体VIL在45~70kg·m-2之间.2009年7月8日对流风暴只产生了尺度...  相似文献   

5.
2017年7月28日四川省东北部出现了一次罕见的湿下击暴流大风天气过程。本文利用地面自动站、雷达、卫星等观测资料以及FNL数据、视频资料,对下击暴流风暴的成因和结构特征进行研究分析。研究表明:此过程发生前,对流层中低层的环境温度及其直减率均达到同期历史极端值,有利于雷暴大风类型中尺度对流风暴的形成;此次下击暴流,主要由阵风锋与地面中尺度辐合线相交后触发,阵风锋水平涡度不断输入对流系统内,产生正的相对风暴螺旋度,利于对流风暴持续发展到较高高度,为下击暴流的产生提供条件;下击暴流发生前的对流风暴,在视频截图和反射率因子剖面图上均表现为悬垂倾斜结构,倾斜方向与对流层中层平均风向较一致;对流风暴中层的气旋性涡旋结构特征可作为下击暴流的预警指标之一。  相似文献   

6.
为了研究江苏地区下击暴流的结构特征,利用常规天气资料、雷达探测资料、自动气象站观测资料和ERA5再分析资料等,选取2007—2018年江苏地区19个典型下击暴流过程进行统计分析。结果表明:江苏下击暴流的分布呈北多南少,以湿下击暴流为主,7月是下击暴流的高发月份,孤立风暴型下击暴流具有弱的天气尺度强迫和上干下湿的结构,风暴移速较慢,飑线镶嵌型下击暴流具有很强的天气尺度强迫特征,风暴移速较快。下击暴流影响期间地面温度变化剧烈,温度降低伴随有明显风速增大过程。统计显示,产生下击暴流风暴的环境温度平均垂直递减率为6.8℃/km,能够保证负浮力的维持,干冷空气被中层辐合气流夹卷进入风暴内进一步加强了下沉气流,使得下击暴流得以维持和加强。下击暴流的初生阶段,强反射率因子核心和中层径向辐合出现在下击暴流发生前20—30 min,成熟阶段,强反射率因子核心高度有明显降低,低层呈辐散结构。   相似文献   

7.
利用高、低空常规气象观测资料、卫星云图和多普勒雷达资料,分析了2006年6月12日发生在太原机场的一次强对流风暴过程,结果表明:高空气旋性冷槽的迅速东移和地面冷锋过境是本次强对流风暴发生的天气尺度系统背景,机场发生的地面大风是由下击暴流引起的,近地面强辐散引起阵风锋发生在弓形回波中低辐合层对应的下方;雷暴单体回波剖面随时间的演变发现确有反射率因子核心重心下降并接地的现象,并据此证实有两次下击暴流过程.第一次出现在16时前后距本场西北90 km处,第二次出现在18时04分,第二轮下击暴流直接造成本场的地面大风.下击暴流发生的过程始终伴随着中低层长时间的辐合和反射率因子核心的重心下降接地过程.  相似文献   

8.
利用河南濮阳CINRDA/SB多普勒雷达探测资料,结合常规天气图资料、地面自动站资料等,对2011年7月10日发生在河南濮阳的下击暴流天气进行诊断分析。分析表明:此次下击暴流天气以高空快速下滑的低压槽为背景,高空冷空气叠加在低空暖舌之上,使大气具有强烈的层结不稳定。大气环境场呈倒"V"形的垂直温湿分布:云底位于700 h Pa高度,云底以下空气干燥,气温直减率约为9℃/km,接近干绝热气温直减率,有利于干下击暴流的发生。地面辐合线的存在和弱冷空气的侵袭,为强风暴单体的产生提供了动力抬升条件。从多普勒雷达产品上看,风暴初始回波发生在一条稳定的晴空窄带回波上,通过单体间的合并加强,发展成为孤立的多单体强风暴;风暴反射率因子反复在3—6 km高度强烈发展,风暴反射率因子强核高度反复4次快速下降,形成强烈的冷下沉气流,在底层出现强烈的径向辐散风;径向速度图上中层一直存在向着反射率因子核心的辐合特征,这正是下击暴流的风场特征。  相似文献   

9.
2019年3月21日广西桂林市临桂区发生一次极端大风天气过程(以下简称"3·21"临桂大风),当日21:13临桂观测站记录最大阵风风速为60.3 m·s-1(17级)。通过风灾现场调查判断这是强度为EF2级的微下击暴流过程。应用常规观测资料以及加密自动气象站、探空、多普勒雷达等资料,分析了"3·21"临桂大风的环流背景与影响系统及其形成原因。结果表明:低层暖湿气流活跃,中层显著干层,强的低层垂直风切变是大风发生的有利条件,地面中尺度辐合线、冷锋南压为其提供了触发机制。"3·21"临桂大风由2个超级单体风暴合并加强造成,在下击暴流发生前,风暴单体最强反射率因子核心高度(HGT)超过6 km,有中等强度中气旋伴随,中层径向辐合明显,辐合值达36 m·s-1;当反射率因子减弱、风暴顶高下降、HGT下降时,下击暴流发生;当HGT剧降,一个体扫间隔下降3.5 km,17级极端大风发生,低层0.5°仰角在强中气旋的出流区观测到强的径向辐散,其值达27 m·s-1;中气旋表现出最强切变加强,底高迅速下降到1 km以下等特征。本次下击暴流发生与极端强降水和冰雹的拖曳作用有密切关系,冰雹与雨水粒子的拖曳和融化蒸发作用使下击暴流加强。当分钟降水量大于3 mm时,风速超过12级;当分钟降水量大于6 mm时,则出现17级极大风速。  相似文献   

10.
利用灾情调查、常规观测和雷达资料对比分析2018年6月8日佛山南海龙卷和2016年8月18日湛江雷州微下击暴流两次强风天气过程。结果表明:南海龙卷强度为F1级和EF1级,雷州微下击暴流强度为F2级和EF2级,且导致风灾的气流具有多尺度性以及时空尺度小的特征。两次过程均发生在低层辐合、高层辐散和中低层急流汇合有利的环流背景,但龙卷发生在台风环流内部,而微下击暴流发生在台风外围。环境参数表现为弱的条件不稳定、对流抑制能量小和抬升凝结高度低,但龙卷过程的0—1 km风垂直切变较强。导致风灾的风暴单体均伴有中气旋,但形成龙卷的微超级单体具有明显的钩状回波特征,低层存在中等强度中气旋,中气旋尺度较微下击暴流过程的小得多,底高较低,龙卷出现前中气旋底高降低,直径缩小。形成微下击暴流的为一椭圆形的β中尺度风暴单体,低层存在强中气旋,中气旋为辐散性气旋,底高较高,直径逐渐增大,垂直剖面图上存在中层径向速度辐合、强反射率因子核心下降特征。  相似文献   

11.
Two downburst events from one thunderstorm are investigated, which occurred on 23 March 2001, in Germany's climatologic annual minimum of downburst activity. Observations by two Doppler radars are combined with hail reports, ground lightning detection and an aerial survey conducted after the event. The downburst-producing storm had formed at a synoptic convergence line within the warm sector of a cyclone. It had a remarkably high propagation speed of up to 31 m s− 1 corresponding to the mid-tropospheric flow. Thus, by superposition with the storm motion, even two weak downbursts were sufficient to cause the observed damage of F1 and F2 intensity, respectively. While in its late stages, the storm was dynamically characterized by lower- and mid-tropospheric divergence; at about the time of the first downburst, a mesocyclonic vortex signature was verified. Aside from mid-tropospheric dry air entrainment, a thermodynamic explanation for the triggering of the two downbursts by melting of small hail according to recent findings by Atlas et al. [Atlas, D., Ulbrich, C.W., Williams, C.R., 2004. Physical origin of a wet microburst: observations and theory. J. Atmos. Sci. 61, 1186–1196] appears probable. Despite the lack of warnings to the public, the storm's potential for hail and strong straight-line winds was detected by the German weather service radar software CONRAD more than a half hour before the downbursts occurred.  相似文献   

12.
利用中国气象局地面自动气象站、探空、天气雷达等观测资料和ERA-Interim再分析资料,分析2016年9月8日川藏高原一次强对流天气过程。结果表明:该过程多站出现8级雷暴大风、10 mm以上小时强降水且伴有最大直径为18 mm的冰雹,是川藏高原一次混合型强对流过程。对流系统发生在500 hPa弱冷平流和低层切变线影响下,中低层深厚湿层、环境中等强度对流有效位能和垂直风切变为超级单体的形成和维持提供有利条件。初始北侧多单体和南侧弱对流在地面辐合线上生成,向东南移入适宜环境后,北侧多单体发展成线状对流系统,与南侧单体合并且促使其迅速发展成超级单体。成熟超级单体低层具有清晰的前侧入流缺口、钩状回波和中气旋特征。强回波区随高度前倾,呈显著的上冲云顶突起、回波悬垂和有界弱回波区。风暴内中层径向辐合、上升气流减弱和反射率因子核心快速下降预示下击暴流的产生。中层干空气的夹卷和水凝物快速下落的拖曳作用加强下沉气流,结合峡谷地形的狭管效应,引起地面大风。  相似文献   

13.
利用海口多普勒雷达、海南省区域加密自动站和常规资料对2016年4月11日凌晨发生在海南岛北部近海和陆地的大范围雷暴大风过程进行天气学分析。结果表明:(1)这次雷暴大风过程发生在500 hPa槽前、低空急流左前侧、低层切变线南侧、高空急流分流区下方和地面静止锋南侧的有利于对流发展的较大范围上升气流区域内;(2)对流风暴移动路径上的大气环境具有中等程度的条件不稳定、对流有效位能CAPE以及上干冷下暖湿的温-湿廓线垂直结构、强的深层垂直风切变,对流风暴形成后最终组织发展产生雷暴大风、大冰雹和短时强降水的多单体带状回波和弓形回波;(3)在多单体带状回波中镶嵌的风暴A和B各自发展成为具有中层径向辐合特征的超级单体,风暴B和C合并形成弓形回波,其中风暴C的中气旋加强成为弓形回波北部的气旋式中尺度涡旋;(4)阵风锋对对流风暴的正反馈作用、对流风暴前侧强劲的暖湿入流与风暴后侧径向风速相当的冷池出流,长时间倾斜依存的自组织结构及其与强的低层环境风垂直切变的相互作用,是多单体风暴和弓形回波长时间维持和加强的主要原因;(5)地面原来存在的β中尺度辐合切变线,对流风暴主体回波沿着海南岛北部近海东移等因素,有利于多单体带状回波和弓形回波的长时间维持。   相似文献   

14.
冷涡对两类对流系统结构演变作用的个例模拟对比分析   总被引:1,自引:1,他引:0  
蔡雪薇  谌芸  沈新勇  刘靓珂  葛蕾 《气象》2018,44(6):790-801
2015年8月22日,在同一冷涡背景下,华北东北部形成了多单体风暴,而在黄淮地区出现飑线过程。本文根据观测资料给出冷涡对中尺度对流系统发生发展的动力和热力作用,并基于WRF中尺度数值模式的模拟结果,对比分析了两类对流系统的形态结构演变和运动过程的差异、差异产生的原因及冷涡的作用,主要结论如下:(1)两类对流系统均位于冷涡后部,但形态演变和运动过程差异显著,北部分散性对流受地面风辐合及地形抬升的共同影响发展形成多单体风暴,呈西北—东南排列,主要以前向传播的方式缓慢向东南偏南方向运动,带来短时强降水为主的天气;南部线状对流由山东西北部和河南北部形成的多个孤立单体合并后形成,随后在黄淮地区发展为飑线系统,在平流移动为主的作用下向东南方向快速运动,产生雷暴大风和冰雹天气。(2)北部多单体风暴在冷暖气团交界面形成,位于冷涡西南象限,低层水汽和能量充足;新对流单体在边界层被触发后,沿着低层切变线向高能区传播。(3)南部飑线系统在冷槽后的地面干暖区低压带中形成,中尺度对流系统产生的冷池和雷暴高压的出流与环境相互作用,低层水汽条件转好,使得单体不断传播和合并,发展为飑线系统。(4)中层后部入流的强度和环境水汽条件对两类对流系统组织化过程有不同影响,飑线中层后部入流的增强主要来自环境西风分量的增加,与冷涡发展演变使得环境风场增强有关;北部对流湿层深厚,所处的中层风场弱,不利于多单体风暴组织化发展;南部飑线系统位于更强的环境西风引导气流中,后部中层入流强、高层环境空气干,有利于强下沉气流形成,从而促进雷暴高压和冷池的发展,强下沉气流还使中低层的风速增加,垂直风切变增强,有利于对流单体组织化发展形成线状对流。  相似文献   

15.
使用探空、地面和张掖多普勒天气雷达观测资料对2013年7月30日发生在河西走廊的一次强沙尘暴天气进行了分析。结果表明:这次雷暴大风沙尘天气是对流层低层冷平流作用下,不稳定能量释放形成的β、γ中尺度对流系统造成的,雷暴下击暴流的辐散流和密度流是引发地面强风和沙尘暴的直接因素。高层干、中层相对湿和低层干的层结,易产生雷暴大风天气。1 h正变压和负变温演变能很好地反映雷暴下击暴流形成的雷暴高压和冷池的强弱变化,同时也反映了下击暴流的辐散气流和冷池密度流造成的地面大风及沙尘天气的变化。  相似文献   

16.
利用武汉多普勒天气雷达资料,对2007年7月27日发生在武汉及其周边部分地区的一次强对流天气过程,特别是引起武汉、洪湖的冰雹和地面大风灾害的2个强风暴(A、B)进行了详细分析,得到如下结论:(1)这次强对流天气的主要天气背景是,副热带高压西侧强烈的西南气流诱发了中小尺度扰动,强的低层垂直风切变,大的垂直不稳定,低层较干和中高层更干的水汽条件。(2)产生灾害性天气的对流系统最初是一条近乎南北向的断续型对流带,强风暴A和B在其成熟阶段都有低层弱回波和中高层悬垂回波结构,最大回波强度均大于60dBz;风暴A在其崩溃阶段,近地面径向速度迅速增大,随其北移.造成武汉市黄陂区大风灾害;风暴B在平均径向速度图上存在明显的中层气流辐合(MARC),是即将出现地面强辐散风的标识。(3)强回波中心高度迅速降低是地面灾害性天气发生的标识,VIL密度比VIL本身更能反映风暴的强度,特别是当因雷达扫描策略的影响导致探测不到风暴顶或风暴底时。(4)在用冰雹探测算法(HDA)探测冰雹时,要注意修改可调参数.特别是0℃和-20℃环境温度的高度.这样才能大大降低冰雹误报率。  相似文献   

17.
Derechos occur frequently in Europe and the United States, but reports of derechos in China are scarce. In this paper, radar, satellite, and surface observation data are used to analyze a derecho event in South China on 17 April 2011. A derecho-producing mesoscale convective system formed in an environment with medium convective available energy, strong vertical wind shear, and a dry layer in the middle troposphere, and progressed southward in tandem with a front and a surface wind convergence line. The windstorm can be divided into two stages according to differences in the characteristics of the radar echo and the causes of the gale. One stage was a supercell stage, in which the sinking rear inflow of a high-precipitation supercell with a bow-shaped radar echo induced a Fujita F0 class gale. The other stage was a non-supercell stage (the echo was sequentially kidney-shaped, foot-shaped, and an ordinary single cell), in which downbursts induced a gale in Fujita F1 class. This derecho event had many similarities with derechos observed in western countries. For example, the windstorm was perpendicular to the mean flow, the gale was located in the bulging portion of the bow echo, and the derecho moved southward along with the surface front. Some differences were observed as well. The synoptic-scale forcing was weak in the absence of an advancing high-amplitude midlevel trough and an accompanying strong surface cyclone; however, the vertical wind shear was very strong, a characteristic typical of derechos associated with strong synoptic-scale forcing. Extremely high values of convective available potential energy and downdraft convective available potential energy have previously been considered necessary to the formation of weak-forcing archetype and hybrid derechos; however, these values were much less than 2000 J during this derecho event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号