首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Recent observational study has shown that the southern center of the summer North Atlantic Oscillation (SNAO) was located farther eastward after the late 1970s compared to before. In this study, the cause for this phenomenon is explored. The result shows that the eastward shift of the SNAO southern center after the late 1970s is related to the variability of the Mediterranean-Black Sea (MBS) SST. A warm MBS SST can heat and moisten its overlying atmosphere, consequently producing a negative sea level pressure (SLP) departure over the MBS region. Because the MBS SST is negatively correlated with the SNAO, the negative SLP departure can enhance the eastern part of the negative-phase of the SNAO southern center, consequently producing an eastward SNAO southern center shift. Similarly, a cold MBS SST produces an eastward positive-phase SNAO southern center shift. The reason for why the MBS SST has an impact on the SNAO after the late 1970s but why it is not the case beforehand is also discussed. It is found that this instable relationship is likely to be attributed to the change of the variability of the MBS SST on the decadal time-scale. In 1951--1975, the variability of the MBS SST is quite weak, but in 1978--2002, it becomes more active. The active SST can enhance the interaction between the sea and its overlying atmosphere, thus strengthening the connection between the MBS SST and the SNAO after the late 1970s. The above observational analysis results are further confirmed by sensitivity experiments.  相似文献   

2.
利用美国国家环境预测中心与国家大气研究中心(NCEP/NCAR)逐日再分析资料,针对北大西洋多年代际振荡(AMO)两个不同位相,对逐候200 hPa经向风异常进行EOF分析,发现在AMO正、负位相期间,欧亚副热带波列的季节内活动存在明显差异。利用超前—滞后回归,对比了不同AMO位相下副热带波列及其相联系的印度夏季降水的季节内活动演变特征,分析有关的大气环流,探究波列影响降水的机制。结果表明:在AMO负位相期间,由格陵兰岛以南北大西洋经大不列颠岛、地中海、黑海—里海向南亚北部传播的副热带波列的季节内演变,在印度中部引起下沉,导致中部及西北部季节内降水减少,波列负位相相反;在AMO正位相期间,副热带波列西起冰岛以南北大西洋经丹麦南部、俄罗斯西部、中亚向南亚东北部传播,对应该波列的季节内演变,辐合上升区在印度中部和东西两侧,使得该区域季节内降水增加,波列负位相相反。于是,AMO通过调制夏季欧亚副热带波列的季节内活动,可以对印度夏季降水的季节内变化空间型及演变发挥显著影响。  相似文献   

3.
Climate models predict substantial summer precipitation reductions in Europe and the Mediterranean region in the twenty-first century, but the extent to which these models correctly represent the mechanisms of summertime precipitation in this region is uncertain. Here an analysis is conducted to compare the observed and simulated impacts of the dominant large-scale driver of summer rainfall variability in Europe and the Mediterranean, the summer North Atlantic Oscillation (SNAO). The SNAO is defined as the leading mode of July–August sea level pressure variability in the North Atlantic sector. Although the SNAO is weaker and confined to northern latitudes compared to its winter counterpart, with a southern lobe located over the UK, it significantly affects precipitation in the Mediterranean, particularly Italy and the Balkans (correlations of up to 0.6). During high SNAO summers, when strong anticyclonic conditions and suppressed precipitation prevail over the UK, the Mediterranean region instead is anomalously wet. This enhanced precipitation is related to the presence of a strong upper-level trough over the Balkans—part of a hemispheric pattern of anomalies that develops in association with the SNAO—that leads to mid-level cooling and increased potential instability. Neither this downstream extension nor the surface influence of the SNAO is captured in the two CMIP3 models examined (HadCM3 and GFDL-CM2.1), with weak or non-existent correlations between the SNAO and Mediterranean precipitation. Because these models also predict a strong upward SNAO trend in the future, the error in their representation of the SNAO surface signature impacts the projected precipitation trends. In particular, the attendant increase in precipitation that, based on observations, should occur in the Mediterranean and offset some of the non-SNAO related drying does not occur. Furthermore, the fact that neither the observed SNAO nor summer precipitation in Europe/Mediterranean region exhibits any significant trend so far (for either the full century or the recent half of the record) does not increase our confidence in these model projections.  相似文献   

4.
西南地区云量变化特征   总被引:1,自引:0,他引:1  
利用西南地区(云南、贵州、四川、重庆)记录较为完整的73个测站1956~2005年月平均云量资料,采用经验正交函数分析和Mann-Kendall突变检验方法,研究分析了西南地区云量的时空分布特征。结果表明:就全年而言,整个西南地区总云量的变化趋势一致,且存在着明显的年际变化特征,1990年代以后全年总云量表现出减少趋势;此外,总云量的分布在一定程度上受地形和区域气候的影响。从季节来看,夏、秋、冬季的总云量在西南地区为空间一致的变化趋势,而春季四川盆地北部总云量的变化趋势与其余地区相反;四季总云量也有明显的年际变化特征。低云量,全年和四季的时空变化特征相似,由于受地形起伏及区域气候差异的影响,川西高原东部和重庆地区的变化趋势与四川盆地的相反,且同样存在着明显的年际变化特征。另外,突变分析结果显示,西南地区的低云量近50a来呈持续减少趋势,而总云量在1990年发生突变,突变前在0线附近震荡,突变后总云量持续减少。  相似文献   

5.
Based on the NOAA's Advanced Very High Resolution Radiometer(AVHRR) Pathfinder Atmospheres Extended(PATMOS-x) monthly mean cloud amount data, variations of annual and seasonal mean cloud amount over the Yangtze River Delta(YRD), China were examined for the period 1982–2006 by using a linear regression analysis. Both total and high-level cloud amounts peak in June and reach minimum in December, mid-level clouds have a peak during winter months and reach a minimum in summer, and lowlevel clouds vary weakly throughout the year with a weak maximum from August to October. For the annual mean cloud amount, a slightly decreasing tendency(–0.6% sky cover per decade) of total cloud amount is observed during the studying period, which is mainly due to the reduction of annual mean high-level cloud amount(–2.2% sky cover per decade). Mid-level clouds occur least(approximately 15% sky cover) and remain invariant, while the low-level cloud amount shows a significant increase during spring(1.5% sky cover per decade) and summer(3.0% sky cover per decade). Further analysis has revealed that the increased low-level clouds during the summer season are mainly impacted by the local environment. For example,compared to the low-level cloud amounts over the adjacent rural areas(e.g., cropland, large water body, and mountain areas covered by forest), those over and around urban agglomerations rise more dramatically.  相似文献   

6.
利用2007—2016年国际卫星云气候计划(International Satellite Cloud Climatology Project,ISCCP)、云和地球辐射能量系统(Clouds and the Earth''s Radiant Energy System,CERES)和中分辨率成像光谱仪(Moderate Resolution Imaging Spectroradiometer,MODIS)卫星反演云产品,对比分析了不同数据反演的中国地区云系结构的宏微观特征,并采用复合评价指标定量评估了不同数据之间时间和空间上的一致性。结果表明:三套卫星数据都能较好地反演出中国地区总云量呈南高北低、东高西低、夏高冬低的分布特征,但通过比较时间技巧(Temporal Skill,ST)及空间技巧(Spatial Skill,SS)复合评价指标及其各项分量发现,与MODIS相比,CERES与ISCCP数据反演的总云量时间序列演变特征明显更为一致,且其评分均有南方优于北方,夏季优于冬季的特征;进一步分析不同高度云量的ST评分发现,CERES和ISCCP两套数据在南方地区的总云量差异主要来自于低云量的绝对偏差,而北方地区的偏差则同时存在于低云和中云;对比分析MODIS和CERES反演的云滴有效半径发现,高云对应的冰相云一致性较高,而中低云相对应的液相云的偏差则有夏季高于冬季的规律。针对夏季液相和冰相云滴粒径及概率密度分析则表明,相比CERES数据,MODIS对夏季液水和冰水粒子的有效半径在不同地区均有不同程度的高估,液(冰)水谱宽则更宽(窄)。  相似文献   

7.
杨凯  胡田田  王澄海 《大气科学》2017,41(2):345-356
青藏高原冬、春积雪有着显著的南、北空间差异,本文利用通用地球系统模式(CESM)设计了增加高原南、北冬、春积雪的敏感性试验,结果表明:当高原南部冬、春积雪异常偏多,长江及其以北地区夏季降水偏多,华南大部分地区夏季降水偏少;而当高原北部冬、春积雪异常偏多,华北及东北地区夏季降水偏多,长江下游南部地区夏季降水偏少,雨带更偏北。青藏高原南、北部冬、春积雪异常影响中国东部夏季降水的物理机制的分析结果表明,高原不同区域(南部和北部)冬、春积雪异常引起的非绝热加热异常效应都可持续到夏季,且北部积雪异常持续时间更长。高原南部和北部积雪异常偏多均会减弱高原北侧上空大气的水平温度梯度,进而减弱高原北侧西风急流的位置及强度,进而影响下游出口区处急流的强度和位置,且高原北部积雪异常偏多的影响更大。当高原南部积雪异常偏多,急流出口区的西风急流加强且偏南;而高原北部积雪异常偏多,出口区的西风急流减弱且偏北。相应地,对流层中层500 hPa西太平洋副热带高压减弱,低层850 hPa异常反气旋环流,影响中国东部地区水汽输送,从而影响了中国东部地区夏季雨带的变化。当高原南部积雪异常偏多,异常反气旋性环流位于东海附近,有利于更多水汽输送至长江流域,华南水汽输送减少;当高原北部积雪异常偏多,异常反气旋性环流相对偏北,更有利于华北及东北水汽输送,雨带偏北。  相似文献   

8.
Based on data from satellite and surface observations,the horizontal and vertical distributions of clouds over eastern China and the East China Sea are examined.Three maximum centers of cloud cover are clearly visible in the horizontal distribution of total cloud cover.Two of these maxima occur over land.As the clouds mainly originate from the climbing airflows in the southern and eastern slopes of the Tibetan Plateau,they can be classified as dynamic clouds.The third center of cloud cover is over the sea.As the clouds mainly form from the evaporation of the warm Kuroshio Current,they can be categorized as thermodynamic clouds.Although the movement of the cloud centers reflect the seasonal variation of the Asian summer monsoon,cloud fractions of six cloud types that are distinct from the total cloud cover show individual horizontal patterns and seasonal variations.In their vertical distribution,cloud cover over the land and sea exhibits different patterns in winter but similar patterns in summer.In cold seasons,limited by divergent westerlies in the middle troposphere,mid-level clouds prevail over the leeside of the Tibetan Plateau.At the same time,suppressed by strong downdraft of the western Pacific subtropical high,low clouds dominate over the ocean.In warm seasons both continental and marine clouds can penetrate upward into the upper troposphere because they are subject to similar unstable stratification conditions.  相似文献   

9.
The Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model version 3 (RegCM3) is used to investigate the climate effects of land use change related to agriculture over China. The model is driven by the European Center for Medium-range Weather Forecast 40-yr Re-Analysis (ERA40)data. Two sets of experiments for 15 yr (1987-2001) are conducted, one with the potential vegetation cover and the other the agricultural land use (AG). The results show that the AG effects on temperature are weak over northern China while in southern China a significant cooling is found in both winter (December-January-February) and summer (June-July-August). The mean cooling in the sub-regions of South China (SC) in winter and the sub-regions of Southeast (SE) China in summer are found to be the greatest,up to 0.5℃ and 0.8℃, respectively. In general, the change of AG leads to a decrease of annual mean temperature by 0.5-1℃ in southern China. Slight change of precipitation in western China and a decrease of precipitation in eastern China are simulated in winter, with the maximum reduction reaching -7.5% over SE. A general decrease of precipitation over northern China and an increase over southern China are simulated in summer,in particular over SE where the increase of precipitation can be up to 7.3%. The AG effects on temperature and precipitation show strong interannual variability. Comparison of the climate effects between AG and the present-day land use (LU) is also performed. In southern China, the ratio of temperature (precipitation)changes caused by AG and LU is greater than (closer to) the ratio of the number of grid cells with changed vegetation cover due to AG and LU variations.  相似文献   

10.
The study investigated the effects of global direct radiative forcing due to carbonaceous aerosol on the climate in East Asia, using the CAM3 developed by NCAR. The results showed that carbonaceous aerosols cause negative forcing at the top of the atmosphere (TOA) and surface under clear sky conditions, but positive forcing at the TOA and weak negative forcing at the surface under all sky conditions. Hence, clouds could change the sign of the direct radiative forcing at the TOA, and weaken the forcing at the surface. Carbonaceous aerosols have distinct effects on the summer climate in East Asia. In southern China and India, it caused the surface temperature to increase, but the total cloud cover and precipitation to decrease. However, the opposite effects are caused for most of northern China and Bangladesh. Given the changes in temperature, vertical velocity, and surface streamflow caused by carbonaceous aerosol in this simulation, carbonaceous aerosol could also induce summer precipitation to decrease in southern China but increase in northern China.  相似文献   

11.
Based on the International Satellite Cloud Climatology Project (ISCCP) data in 1983–2006,it is found that there is a high value center of high cloud amount over the Tibetan Plateau (TP),while there is a high value center of middle cloud amount over the Sichuan Basin extending to the coastal area of southeastern China along the same latitude,and a low one over the TP.The present day (PD) and Last Glacial Maximum (LGM) climates are simulated by using the NCAR Community Climate Model (CCM3) nested with a regio...  相似文献   

12.
利用玛曲国家基本气象观测站1971—2010年的总云量、低云量等观测数据,用线性趋势分析、小波分析等方法对玛曲地区近40 a总云量、低云量的月、季、年际、年代际变化和周期性变化特征进行分析。研究表明,近40 a来,平均总云量距平在-0.1%~0.1%之间,保持了很好的稳定性,平均低云量以4.0%/10 a的速率递增;春、夏、秋季低云量呈现出不同程度的增多趋势,夏季增加趋势非常明显达7.3%/10 a。平均总云量周期变化不明显,平均低云量有明显的6~7 a的周期。玛曲地区在总云量保持稳定的情况下低云量不断增多,夏季低云量的增多趋势非常明显,且积雨云的增多是主要特征,是对玛曲草原气候变化的一种响应机制,反映出在气候变暖的大背景下,玛曲草原对流性天气活动频繁。  相似文献   

13.
中国区域总云量和低云量分布变化   总被引:5,自引:2,他引:3  
徐兴奎 《气象》2012,38(1):90-95
据1960—2009年606个气象台站总云量和低云量观测数据分析显示,我国总云量总体处于下降趋势,相对于20世纪60至70年代云覆盖年变化平稳阶段,1980 2009年全国平均总云量下降了0.6%,但长江以南沿海地区和新疆少部分地区总云量一直变化比较平稳。低云变化空间不均性差异较大,以四川盆地为中心区域50年间低云持续减少,从20世纪60年代开始,平均每10年年平均下降幅度达4.0%;长江以南、东北东部和新疆西部至青藏高原北部区域低云却增加了,平均每10年增加4.8%。  相似文献   

14.
利用ISCCP资料分析青藏高原云气候特征   总被引:19,自引:0,他引:19  
利用ISCCP提供的1983年7月-1993年12月3h一次的月平均卫星决云量资料,将整个高原分为39个网格点,分析了高原总云量的年、季节、日变化规律及其空间分布特征,并根据高原水汽条件和地形动力影响以及环流特征作出一定的科学解释。将ISCCP总云量与地面观测总云量分布形势作了比较,证明了ISCCP-D2资料的合理性。对总云量与OLR进行相关分析,发现夏季相关好,冬季相关差。  相似文献   

15.
中国地区夏季云粒子尺寸的时空分布特征   总被引:5,自引:1,他引:4  
利用CloudSat卫星资料,分析了2006~2008年中国地区夏季月平均云粒子有效半径的垂直和区域变化特征。结果显示,水云粒子有效半径在对流层低层达到最大,并随高度增加而减小。30°N纬度带的水云相对以南及以北纬度带的粒子有效半径偏大。6月水云粒子有效半径较大,应与梅雨季节有密切联系。对于中国北部和中部,水云粒子有效半径在西部较东部偏大,而在南部地区,东西部差异不明显。不同纬度带上的冰云粒子有效半径相类似,在冰云下边界最大,随高度增加而减小。水云和冰云的云粒子尺度的年际变化不明显。对上述特征的成因分析表明,高原地形以及东亚夏季风对月平均云粒子有效半径具有明显影响。所揭示的云粒子有效半径特征为天气和气候模式改进、人工影响天气及云—辐射—气候相互作用等研究提供了重要的基础信息。  相似文献   

16.
We analyze decadal climate variability in the Mediterranean region using observational datasets over the period 1850–2009 and a regional climate model simulation for the period 1960–2000, focusing in particular on the winter (DJF) and summer (JJA) seasons. Our results show that decadal variability associated with the winter and summer manifestations of the North Atlantic Oscillation (NAO and SNAO respectively) and the Atlantic Multidecadal Oscillation (AMO) significantly contribute to decadal climate anomalies over the Mediterranean region during these seasons. Over 30% of decadal variance in DJF and JJA precipitation in parts of the Mediterranean region can be explained by NAO and SNAO variability respectively. During JJA, the AMO explains over 30% of regional surface air temperature anomalies and Mediterranean Sea surface temperature anomalies, with significant influence also in the transition seasons. In DJF, only Mediterranean SST still significantly correlates with the AMO while regional surface air temperature does not. Also, there is no significant NAO influence on decadal Mediterranean surface air temperature anomalies during this season. A simulation with the PROTHEUS regional ocean–atmosphere coupled model is utilized to investigate processes determining regional decadal changes during the 1960–2000 period, specifically the wetter and cooler 1971–1985 conditions versus the drier and warmer 1986–2000 conditions. The simulation successfully captures the essence of observed decadal changes. Model set-up suggests that AMO variability is transmitted to the Mediterranean/European region and the Mediterranean Sea via atmospheric processes. Regional feedbacks involving cloud cover and soil moisture changes also appear to contribute to observed changes. If confirmed, the linkage between Mediterranean temperatures and the AMO may imply a certain degree of regional decadal climate predictability. The AMO and other decadal influences outlined here should be considered along with those from long-term increases in greenhouse gas forcings when making regional climate out-looks for the Mediterranean 10–20?years out.  相似文献   

17.
游婷  张华  王海波  赵敏 《大气科学》2020,44(4):835-850
本文利用2001~2017年ERA5再分析资料以及CERES卫星资料,探究夏季白天中国中东部不同类型云的云量及其光学厚度的时空变化特征,并利用一维辐射对流模式定量分析不同类型云对近地表气温的影响。观测结果表明:夏季白天中国中东部总云量及其光学厚度整体呈由南向北逐渐减小的分布特征,且中高云量占主导地位。总云量整体呈?0.3% a?1显著减少趋势,其中低云的贡献(?0.27% a?1)最大;总云光学厚度为0~0.1 a?1增加趋势,其中低云光学厚度(0.06 a?1)和中低云光学厚度(0.03 a?1)呈增加趋势,而中高云光学厚度(?0.08 a?1)和高云光学厚度(?0.03 a?1)呈减少趋势。模式结果表明:四种不同类型云的温度效应(Cloud Effect Temperature, CET)均为负值,表现为降温效应。低云、中低云、中高云和高云的年均CET值分别为?2.9°C、?2.7°C、?2.2°C和?1.7°C。其中,低云在华北平原降温可达?5°C;中低云和中高云在四川盆地和云贵高原降温可达?7.8°C。不同类型云温度效应与近地表气温的年际变化具有较好的一致性,具体表现为:2004年前(后)近地表气温呈现下降(上升)趋势,不同类型云的CET在此期间呈下降(上升)趋势,表现为云的降温效应增强(减弱)与近地表气温下降(上升)相对应,体现了夏季白天中国中东部4种不同类型云温度效应与近地表气温都呈正相关关系。特别地,夏季白天中国中东部中高云量占主导地位,其CET与近地表气温的相关系数高达0.63。综上,夏季白天中国中东部不同类型云温度效应对近地表气温的影响不同,但均呈正相关关系。定量分析不同类型云对近地表气温的影响可以为定量研究云反馈对区域增暖的作用以及合理预估未来区域增暖情景提供必要的科学参考。  相似文献   

18.
袁薇  孙建奇 《大气科学进展》2009,26(6):1209-1214
This study investigates the relationship between the summer North Atlantic Oscillation (SNAO) and the simultaneous Northern Hemisphere (NH) land surface air temperature (SAT) by using the Climate Research Unit (CRU) data. The results show that the SNAO is related to NH land SAT, but this linkage has varied on decadal timescales over the last 52 years, with a strong connection appearing after the late 1970s, but a weak connection before. The mechanism governing the relationship between the SNAO and NH land SAT is discussed based on the NCEP/NCAR reanalysis data. The results indicate that such a variable relationship may result from changes of the SNAO mode around the late 1970s. The SNAO pattern was centered mainly over the North Atlantic before the late 1970s, and thus had a weak influence on the NH land SAT. But after the late 1970s, the SNAO pattern shifted eastward and its southern center was enhanced in magnitude and extent, which transported the SNAO signal to the North Atlantic surrounding continents and even to central East Asia via an upper level wave train along the Asian jet.  相似文献   

19.
By using the data set of light rain days and low cloud cover at 51 stations in South China (SC), and the method of linear regression and correlative analysis, we analyze the spatiotemporal characteristics of the light rain days and low cloud cover including annual variation and long-term seasonal change. The results are as follows: (1) The trends of light rain days and low cloud cover over SC are opposite (light rain days tended to decrease and low cloud cover tended to increase in the past 46 years). The value distributed in east is higher than that in west, and coastal area higher than inland area. (2) The regression coefficients of light rain days and low cloud cover during 1960–2005 are 4.88 d/10 years and 1.14%/10 years respectively, which had all passed the 0.001 significance level. (3) Variations of light rain days are relatively small in spring and summer, but their contributions are larger for annual value than that of autumn and winter. (4) There are two regions with large values of aerosol optical depth (AOD), which distribute in central and southern Guangxi and Pearl River Delta (PRD) of Guangdong, and the value of AOD in PRD is up to 0.7. The aerosol index distributed in coastal area is higher than in the inland area, which is similar to the light rain days and low cloud cover over SC. Aerosol indexes in SC kept increasing with fluctuation during the past 27 years. The GDP of the three provinces in SC increased obviously during the past 28 years, especially in Guangdong, which exhibited that there is simultaneous correlation between light rain days with the variables of low cloud cover and release of aerosols over SC during 1960 to 2005.  相似文献   

20.
利用IAP2-LAGCM进行了青藏高原冬春季雪盖异常对东亚夏季大气环流、加热场和降水影响的数值试验。结果表明,该影响十分显著,持续性很强。当高原冬春季雪盖异常增厚、范围扩大时,夏季(JJA)高原地区及我国北方500hPa位势高度降低,南方变高,西太平洋副高减弱。大气对雪盖异常的响应呈明显的波列特征。我国北方大部地区土壤温度降低,南方土壤温度升高。夏季各月降水异常分布形势并不完全一致,但与同期500hPa高度场异常分布形势有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号