首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Accurate forecasting of the intensity changes of hurricanes is an important yet challenging problem in numerical weather prediction. The rapid intensification of Hurricane Katrina(2005) before its landfall in the southern US is studied with the Advanced Research version of the WRF(Weather Research and Forecasting) model. The sensitivity of numerical simulations to two popular planetary boundary layer(PBL) schemes, the Mellor–Yamada–Janjic(MYJ) and the Yonsei University(YSU) schemes, is investigated. It is found that, compared with the YSU simulation, the simulation with the MYJ scheme produces better track and intensity evolution, better vortex structure, and more accurate landfall time and location. Large discrepancies(e.g.,over 10 hPa in simulated minimum sea level pressure) are found between the two simulations during the rapid intensification period. Further diagnosis indicates that stronger surface fluxes and vertical mixing in the PBL from the simulation with the MYJ scheme lead to enhanced air–sea interaction, which helps generate more realistic simulations of the rapid intensification process. Overall, the results from this study suggest that improved representation of surface fluxes and vertical mixing in the PBL is essential for accurate prediction of hurricane intensity changes.  相似文献   

2.
用MM5对长江流域的一次暴雨进行模拟考察其对行星边界层参数化的敏感性。不同的边界层参数化表现在不同的地表通量和垂直混合设计上,本文分析了MM5中4个主要方案地表通量和垂直混合参数化方案的不同以及它们对降水强度、落区和时间的影响。研究还发现,地表通量对暴雨模拟结果的影响比垂直混合方案要大。  相似文献   

3.
The mechanism for the maintenance of Tropical Cyclone Bill (1988) after landfall is investigated through a numerical simulation. The role of the large-scale environmental flow is examined using a scale separation technique, which isolates the tropical cyclone from the environmental flow. The results show that Bill was embedded in a deep easterly-southeasterly environmental flow to the north-northeast of a large-scale depression and to the southwest of the western Pacific subtropical high. The depression had a quasi-barotropic structure in the mid-lower troposphere and propagated northwestward with a speed similar to the northwestward movement of Bill. The moisture budgets associated with both the large-scale and the tropical cyclone scale motions indicate that persistent low-level easterly-southeasterly flow transported moisture into the inner core of the tropical cyclone. The low-level circulation of the tropical cyclone transported moisture into the eyewall to support eyewall convection, providing sufficient latent heating to counteract energy loss due to surface friction and causing the storm to weaken relatively slowly after landfall. Warming and a westward extension of the upper-level easterly flow led to westward propagation of the environmental flow in the mid-lower troposphere. As a result, Bill was persistently embedded in an environment of deep easterly flow with high humidity, weak vertical wind shear, convergence in the lower troposphere, and divergence in the upper troposphere. These conditions are favorable for both significant intensification prior to landfall and maintenance of the tropical cyclone after landfall.  相似文献   

4.
陆面过程和大气边界层相互作用敏感性实验   总被引:18,自引:1,他引:18  
文中建立了一个研究陆面物理过程与大气边界层相互作用的模式。模拟了草原下垫面的土壤 环境物理、地面热量通量、蒸发、蒸散及大气边界层结构特征。并对主要的环境物理参数进 行了敏感性实验。结果表明,本模式能合理地模拟地表热量平衡、土壤体积含水量、植被蒸 发阻抗、地表水汽通量日变化和湍流交换系数、湍流动能、位温和比湿廓线等。该模式还可 进一步应用于研究城市陆面物理过程与大气边界层相互作用机制,及与中尺度大气模式耦合用于区域气候的研究。  相似文献   

5.
In this paper,an interactive model between land surface physical process and atmosphereboundary layer is established,and is used to simulate the features of soil environmental physics,surface heat fluxes,evaporation from soil and evapotranspiration from vegetation and structures ofatmosphere boundary layer over grassland underlying.The sensitivity experiments are engaged inprimary physics parameters.The results show that this model can obtain reasonable simulation fordiurnal variations of heat balance,soil volumetric water content,resistance of vegetationevaporation,flux of surface moisture,and profiles of turbulent exchange coefficient,turbulentmomentum,potential temperature,and specific humidity.The model developed can be used tostudy the interaction between land surface processes and atmospheric boundary layer in cityregions,and can also be used in the simulation of regional climate incorporating a mesoscalemodel.  相似文献   

6.
Mean Profiles of Moisture Fluxes in Snow-Filled Boundary Layers   总被引:1,自引:0,他引:1  
Profiles of moisture fluxes have been examined for convective boundary layers containing clouds and snow, using data derived from aircraft measurements taken on four dates during the 1983/1984 University of Chicago lake-effect snow project. Flux profiles were derived from vertical stacks of aircraft cross-wind flight legs taken at various heights over Lake Michigan near the downwind shore. It was found that, if ice processes are taken into account, profiles of potential temperature and water content were very similar to those presented in past studies of convective boundary layers strongly heated from below. Profiles of total water content and equivalent potential temperature adjusted for ice were nearly invariant with height, except very near the top of the boundary layer, suggesting that internal boundary-layer mixing processes were rapid relative to the rates at which heat and vapour were transported into the boundary layer through entrainment and surface fluxes. Ice was found to play a significant, measurable role in boundary-layer moisture fluxes. It was estimated that 40 to 57% of the upward vapour flux was returned to the surface in the form of snow, converting about 45 to 64% of the surface latent heat flux into sensible heat in the snow-producing process. Assuming advective fluxes are relatively small (thought to be appropriate after the first few tens of km over the lake as suggested by past studies), the boundary layer was found to warm at a rate faster than could be explained by surface heat fluxes and latent heat releases alone, the remainder of the heating presumably coming from radiational processes and entrainment. Discussions of moisture phase change processes throughout the boundary layer and estimates of errors of these flux measurements are presented.  相似文献   

7.
In this paper,an interactive model between land surface physical process and atmosphere boundary layer is established,and is used to simulate the features of soil environmental physics,surface heat fluxes,evaporation from soil and evapotranspiration from vegetation and structures of atmosphere boundary layer over grassland underlying.The sensitivity experiments are engaged in primary physics parameters.The results show that this model can obtain reasonable simulation for diurnal variations of heat balance,soil volumetric water content,resistance of vegetation evaporation,flux of surface moisture,and profiles of turbulent exchange coefficient,turbulent momentum,potential temperature,and specific humidity.The model developed can be used to study the interaction between land surface processes and atmospheric boundary layer in city regions,and can also be used in the simulation of regional climate incorporating a mesoscale model.  相似文献   

8.
Numerical studies have been carried out to investigate the sustention and intensification of Typhoon Nina (7503), and the impacts of saturated wetland on the sustention and rainfall of tropical cyclone (TC) over land through sensitivity experiments, using the PSU/NCAR non-hydrostatic mesoscale model MM5v3 and its TC bogus scheme. The results show that the vertical transfer of fluxes in the boundary layer over saturated wetland has significant influence on the intensity, structure, and rainfall of a landfalling TC. The latent heating flux and the sensible heating flux are both favourable for TC sustaining and intensification on which the latent heating transfer is more favourable than the sensible heating transfer. They are also favourable for the maintenance of the spiral structure, and have an evident effect on the distribution of TC rainfall. The momentum flux weakens the TC vortex wind fields significantly, and is the dominant factor to dissipate and fill in a low pressure system, while it increases the local precipitation induced by a typhoon.  相似文献   

9.
Landscape heterogeneity that causes surface flux variability plays a very important role in triggering mesoscale atmospheric circulations and convective weather processes. In most mesoscale numerical models, however, subgrid-scale heterogeneity is somewhat smoothed or not adequately accounted for, leading to artificial changes in heterogeneity patterns (e.g., patterns of land cover, land use, terrain, and soil types and soil moisture). At the domain-wide scale, the combination of losses in subgrid-scale heterogeneity from many adjacent grids may artificially produce larger-scale, more homogeneous landscapes. Therefore, increased grid spacing in models may result in increased losses in landscape heterogeneity. Using the Weather Research and Forecasting model in this paper, we design a number of experiments to examine the effects of such artificial changes in heterogeneity patterns on numerical simulations of surface flux exchanges, near-surface meteorological fields, atmospheric planetary boundary layer (PBL) processes, mesoscale circulations, and mesoscale fluxes. Our results indicate that the increased heterogeneity losses in the model lead to substantial, nonlinear changes in temporal evaluations and spatial patterns of PBL dynamic and thermodynamic processes. The decreased heterogeneity favor developments of more organized mesoscale circulations, leading to enhanced mesoscale fluxes and, in turn, the vertical transport of heat and moisture. This effect is more pronounced in the areas with greater surface heterogeneity. Since more homogeneous land-surface characteristics are created in regional models with greater surface grid scales, these artificial mesoscale fluxes may have significant impacts on simulations of larger-scale atmospheric processes.  相似文献   

10.
Boundary-Layer Wind Structure in a Landfalling Tropical Cyclone   总被引:1,自引:0,他引:1  
In this study, a slab boundary layer model with a constant depth is used to analyze the boundary-layer wind structure in a landfalling tropical cyclone. Asymmetry is found in both the tangential and radial components of horizontal wind in the tropical cyclone boundary layer at landfall. For a steady tropical cyclone on a straight coastline at landfall, the magnitude of the radial component is greater in the offshoreflow side and the tangential component is greater over the sea, slightly offshore, therefore the greater total wind speed occurs in the offshore-flow side over the sea. The budget analysis suggests that: (1) a greater surface friction over land produces a greater inflow and the nonlinear effect advects the maximum inflow downstream, and (2) a smaller surface friction over the sea makes the decrease of the tangential wind component less than that over land. Moreover, the boundary layer wind structures in a tropical cyclone are related to the locations of the tropical cyclone relative to the coastline due to the different surface frictions. During tropical cyclone landfall, the impact of rough terrain on the cyclone increases, so the magnitude of the radial component of wind speed increases in the offshore-flow side and the tangential component outside the radius of maximum wind speed decreases gradually.  相似文献   

11.
森林下垫面陆面物理过程及局地气候效应的数值模拟试验   总被引:5,自引:0,他引:5  
文中基于大气边界层和植被冠层微气象学基本原理 ,建立了一个森林植被效应的陆面物理过程和二维大气边界层数值模式。并应用该模式进行了植被和土壤含水量等生物和生理过程在陆面过程和局地气候效应方面的数值模拟试验。所得数值模拟试验结果与实际情况相吻合。结果表明 ,应用该模式可获得植被温度、植被冠层内空气温度、地表温度日变化特征 ;森林下垫面大气边界层风速、位温、比湿、湍流交换系数的时空分布和日变化特征。该模式还可应用于不同下垫面 ,模拟陆面物理过程与大气边界层相互作用机制及其局地气候效应的研究 ,这将为气候模式与生物圈的耦合研究奠定一个良好的基础。  相似文献   

12.
Summary Hurricanes cause a variety of damage due to high winds, heavy rains, and storm surges. This study focuses on hurricanes’ high winds. The most devastating effects of sustained high winds occur in the first few hours of landfall. During the short period, hurricanes’ rainfall often increases, while the low-level pressure gradients continue to weaken. Latent heating does not appear to strengthen the surface winds. The indicator is that dry mechanisms such as the boundary layer processes and terrain are responsible for the damaging winds in the coastal areas. In this study, the design of a dry hurricane boundary layer wind model is described. The goal is to develop a forecast tool with near-real time applications in expeditious wind damage assessment and disaster mitigation during a hurricane landfall event. Different surface roughness lengths and topographic features ranging from flat land to the mountainous terrain of Taiwan were used in the model simulation experiments to reveal how the coastal environment affected the hurricane surface winds. The model performed quite well in all cases. The experiments suggested that the downward transfer of high momentum aloft played a significant role in the maintenance of high wind speeds at the surface. The surface wind maximums were observed on the lee sides of high terrain. The surface streamline analyses showed that the high mountains tended to block the relatively weak flow and caused small eddies, while they forced the stronger flow to turn around the mountains. Due to great difficulty in data collection, the hurricane boundary layer over land remains one of the least understood parts of the system. The dry model proves to be an effective way to study many aspects of hurricane boundary layer winds over a wide range of terrain features and landfall sites. The model runs efficiently and can be run on a medium-size personal computer. Received March 16, 2001 Revised September 10, 2001  相似文献   

13.
Based on the basic principles of atmospheric boundary layer and plant canopy micrometeorology, a forest underlying surface land surface physical process model and a two-dimensional atmospheric boundary layer numerical model are developed and numerical simulation experiments of biosphere and physiological processes of vegetation and soil volumetric water content have been done on land surface processes with local climate effect. The numerical simulation results are in good agreement with realistic observations, which can be used to obtain reasonable simulations for diurnal variations of canopy temperature, air temperature in canopy, ground surface temperature, and temporal and spatial distributions of potential temperature and vertical wind velocity as well as relative humidity and turbulence exchange coefficient over non-homogeneous underlying surfaces. It indicates that the model developed can be used to study the interaction between land surface process and atmospheric boundary layer over various underlying surfaces and can be extended to local climate studies. This work will settle a solid foundation for coupling climate models with the biosphere.  相似文献   

14.
The advanced weather research and forecasting model is used to investigate the influence of planetary boundary layer (PBL) processes on intensity and structure of the storm Phailin (2013). Five simulations are conducted with five PBL schemes; Yonsei University (YSU), Mellor?Yamada?Nakanishi?Niino order2.5 (MYNN2), Assymetric Convective Model2 (ACM2), Medium Range Forecast (MRF), and Bougeault and Lacarrere (BouLac). The simulation duration includes the pre???intensification and rapid intensification phase of Phailin before landfall. Results indicate that during the pre???intensification phase, storm’s track and intensity are not much sensitivity to PBL but structural changes are noted. A significant sensitivity of track and intensity to PBL parameterizations are found during rapid intensification phase. BouLac and MRF produced two extremes with 39 hPa intense and 16 km compact storm for BouLac than MRF. Further analysis reveals an outward movement of air parcel just above the boundary layer which causes spin-down for YSU and MYNN2. BouLac is associated with stronger eddy diffusivity and moisture fluxes within the boundary layer and stronger cyclonic vorticity just above the boundary layer than other experiments. Stronger cyclonic vorticity above the boundary layer in BouLac favors intense updraft, facilitating more moisture transport from the boundary layer to upper layers aiding stronger secondary circulation and robustly intensifying the storm. A relatively deeper and drier inflow layer associated with weaker cyclonic vorticity just above the boundary layer reduces the moisture transport and weaken the secondary circulation for MRF than others.  相似文献   

15.
黄翊  彭新东 《大气科学》2017,41(3):533-543
为了提高边界层参数化在我国复杂下垫面上的描述能力,改善边界层能量和物质输送计算和检验其数值模拟效果,本文选取WRF三维模式,采用基于我国不同下垫面上的边界层观测资料改进的新MYNN(Mellor-Yamada-Nakanishi-Niino)参数化方案对2009年3月17日黄海海雾以及2011年12月4日华北地区两次大雾过程进行模拟检验,探讨边界层参数化方案对雾和边界层结构模拟的影响。参照卫星云图和探空资料,边界层内云水混合比垂直积分的水平分布的模拟能力明显提高,反映了改进的MYNN方案能够更好地模拟出两次雾过程的发生、移动和雾区空间分布,更精确的云水混合比和温度的垂直分布能更好地给出雾区的垂直结构和稳定层结,同时可改善雾区低层位温以及比湿垂直分布的模拟。  相似文献   

16.
A simple parameterization of land surface processes, amenable to the structure of a two-layer soil model, including a representation of the vegetation, has been designed for use in meteorological models. Prior to implementation in a mesoscale model, it is necessary to check the components and to verify the good working order of the parameterization as a whole. The aims of this paper then are: (i) evaluation and a sensitivity study of the various components of the model, specifying the needed accuracy for the parameters; (ii) micrometeorological validation of the model against the HAPEX-MOBILHY data set.First, we present the basic scheme. The focus is on the parameterization of surface resistance, and especially on its relationship with soil moisture.A sensitivity study is then performed through a set of one-dimensional simulations which allow a full interaction between the ground and the atmosphere. Above bare ground, it is shown that both soil texture and initial moisture greatly influence the outcome of the simulation. Latent heat flux ranges from that associated with potential evaporation through a switch-like behavior to that of dry soil. Next, the effects of transpiring vegetation canopies on the physical processes involved and the surface energy balance are examined. The sensitivity of the latent heat flux to changes in the soil and canopy parameters is emphazised; the major influence of the initial mean soil moisture and of the vegetation cover is pointed out. Finally, the evolution of the boundary layer in response to various surface conditions is studied.A validation of the land surface scheme is conducted through daily cycles during cloudless days. Simulated turbulent fluxes are successfully compared to micrometeorological measurements over a maize field at different growth stages. Over a pine forest, the correct simulation of the turbulent fluxes is obtained with an adequate parameterization of the surface resistance accounting for the atmospheric moisture deficit.  相似文献   

17.
Land-surface heterogeneity effects on the subgrid scale of regional climate and numerical weather prediction models are of vital interest for the energy and mass exchange between the surface and the atmospheric boundary layer. High-resolution numerical model simulations can be used to quantify these effects, and are a tool used to obtain area-averaged surface fluxes over heterogeneous land surfaces. We present high-resolution model simulations for the LITFASS area near Berlin during the LITFASS-2003 experiment, which were carried out using the non-hydrostatic model FOOT3DK of the University of Köln with horizontal resolutions of 1 km and 250 m. The LITFASS-2003 experimental dataset is used for comparison. The screen level quantities show good quality for the simulated pressure, temperature, humidity and wind speed and direction. Averaged over the four week experimental period, simulated surface energy fluxes at land stations show a small bias for the turbulent heat fluxes and an underestimation of the net radiation caused by excessive cloudiness in the simulations. For eight selected days with low cloud amounts, the net radiation bias is close to zero, but the sensible heat flux shows a strong positive bias. Large differences are found for latent heat fluxes over a lake, which are partly due to local effects on the measurements, but an additional problem seems to be the overestimation of the turbulent exchange under stable conditions in the daytime internal boundary layer over the lake. In the area average over the LITFASS area of 20 ×  20 km2, again a strong positive bias of 70 W m?2 for the sensible heat is present. For the low soil moisture conditions during June 2003, the simulation of the turbulent heat fluxes is sensitive to variations in the soil type and its hydrological properties. Under these conditions, the supply of ground water to the lowest soil layer should be accounted for. Different area-averaging methods are tested. The experimental set-up of the LITFASS-2003 experiment is found to be well suited for the computation of area-averaged turbulent heat fluxes.  相似文献   

18.
A Single Column Model(SCM) for Global and Regional Atmospheric Prediction Enhanced System (GRAPES) is constructed for the purpose of evaluating physical process parameterizations.Two observational datasets including Wangara and the third Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study(GABLS-3) SCM field observations have been applied to evaluate this SCM.By these two numerical experiments,the GRAPES_SCM is verified to be correctly constructed.Furthermore, the interaction between the land surface process and atmospheric boundary layer(ABL) is discussed through the second experiment.It is found that CASE3(CoLM land surface scheme coupled with ABL scheme) simulates less sensible heat fluxes and smaller surface temperature which corresponds with its lower potential temperature at the bottom of the ABL.Moreover,CASE3 simulates turbulence that is weaker during the daytime and stronger during nighttime,corresponding with its wind speed at 200 m which is bigger during daytime and smaller during nighttime.However,they are generally opposite in CASE2(SLAB coupled with ABL).The initial profile of the water vapor mixing ratio is artificially increased by the experiment setup which results in the simulated water vapor mixing becoming wetter than actually observed.CASE1 (observed surface temperature taken as lower thermal forcing) and CASE2 have no soil moisture prediction and simulate a similar water vapor mixing ratio,while CASE3 has a soil moisture prediction and simulates wetter.It is also shown that the time step may affect the stabilization of the ABL when the vertical levels of the SCM are fixed.  相似文献   

19.
Effects of Crop Growth and Development on Land Surface Fluxes   总被引:2,自引:0,他引:2  
In this study, the Crop Estimation through Resource and Environment Synthesis model (CERES3.0) was coupled into the Biosphere-Atmosphere Transfer Scheme (BATS), which is called BATS CERES, to represent interactions between the land surface and crop growth processes. The effects of crop growth and development on land surface processes were then studied based on numerical simulations using the land surface models. Six sensitivity experiments by BATS show that the land surface fluxes underwent substantial changes when the leaf area index was changed from 0 to 6 m2 m-2. Numerical experiments for Yucheng and Taoyuan stations reveal that the coupled model could capture not only the responses of crop growth and development to environmental conditions, but also the feedbacks to land surface processes. For quantitative evaluation of the effects of crop growth and development on surface fluxes in China, two numerical experiments were conducted over continental China: one by BATS CERES and one by the original BATS. Comparison of the two runs shows decreases of leaf area index and fractional vegetation cover when incorporating dynamic crops in land surface simulation, which lead to less canopy interception, vegetation transpiration, total evapotranspiration, top soil moisture, and more soil evaporation, surface runoff, and root zone soil moisture. These changes are accompanied by decreasing latent heat flux and increasing sensible heat flux in the cropland region. In addition, the comparison between the simulations and observations proved that incorporating the crop growth and development process into the land surface model could reduce the systematic biases of the simulated leaf area index and top soil moisture, hence improve the simulation of land surface fluxes.  相似文献   

20.
江南地面热通量对江淮气旋暴雨影响的模拟研究   总被引:6,自引:0,他引:6  
翟国庆  高坤 《气象学报》1997,55(1):55-65
通过对一次江淮气旋暴雨个例的数值模拟,研究地面热通量与大尺度流型结合作用对气旋降水系统的影响。过程前期存在南北两大片地面热通量正值区,北片位于气旋所在处及其前方,南片位于上游低空急流处。模拟比较两片地面热通量的作用发现,前期南片地面热通量,特别是强潜热通量,通过与其上空低空急流的共同作用,对后期下游江淮气旋降水系统的加强起着更为重要的作用。对其机制的初步探讨表明:由地面通量进入低层大气的水汽,通过西南气流向长江中下游输送,改变下游大气的温湿结构,并通过积云对流和层状云雨潜热释放等非绝热过程,促进后期气旋降水系统的发展  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号