首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper we consider temperature (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiMdeLbae% baaaa!377B!\[\bar \Theta \]) and specific humidity (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyuayaara% aaaa!36DA!\[\bar Q\]) fields in the lower part of the planetary boundary layer and present a method for calculating the way these variables and their fluxes vary over changes in available surface moisture expressed as a surface resistance. Near the surface, the turbulence is close to equilibrium and an eddy diffusivity model enables the changes in (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiMdeLbae% baaaa!377B!\[\bar \Theta \]), % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyuayaara% aaaa!36DA!\[\bar Q\], sensible heat flux (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaara% WaaSbaaSqaaiaadIeaaeqaaaaa!37C8!\[\bar F_H \]), and latent heat flux (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaara% WaaSbaaSqaaiaadweaaeqaaaaa!37C5!\[\bar F_E \]) to be determined in terms of the assumed mean wind, turbulence profiles and upwind profiles of temperature and humidity. An important advantage of this method is that it is possible to consider arbitrary changes in surface properties.  相似文献   

2.
A higher-order closure model was developed to simulate airflow within and above vegetative environments. The model consists of equations for the mean wind, turbulent kinetic energy (TKE) components, tangential stress and simplified equations for the third-order transport terms that appear in the second-order equations. The model in general successfully simulated wind speed profiles within and above maize, been, soybeen, wheat, orange and spruce canopies. Profiles of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG1bGbauaadaahaaWcbeqaaiaaikdaaaaaaaaa!37EC!\[\overline {u'^2 } \] and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG3bGbauaadaahaaWcbeqaaiaaikdaaaaaaaaa!37EE!\[\overline {w'^2 } \] for the maize canopy were overestimated near the top of the canopy where both shear and wake production of TKE are high. These errors are believed to be caused by incorrect parameterizations for either the dissipation rate of TKE and/or the pressure-velocity correlations in the budget equations for the second moments.  相似文献   

3.
The influence of intermittent convection on surface-layer stress estimates during the GARP Atlantic Tropical Experiment (GATE) is described. A negative correlation between the drag coefficient (C D) and the wind speed (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara% aaaa!36DE!\[\bar U\]) is found when short averaging periods are used. Well-defined, discrete events produce this negative correlation, and these events are shown to correspond to the passage of convective plumes. Constraints on averaging times necessary to obtain reasonable stress estimates using the bulk method are discussed.Conditional sampling is used to produce average values of dissipation (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbae% baaaa!37AB!\[\bar \varepsilon \]), wind speed (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara% aaaa!36DE!\[\bar U\]), and virtual temperature (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmivayaara% WaaSbaaSqaaiaaiw8aaeqaaaaa!385B!\[\bar T_\upsilon \]) for each high turbulent intensity event, and for the quiescent periods in between. Such statistics indicate that the highly turbulent states coincide with the presence of plumes and account for the negative correlation between C D and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara% aaaa!36DE!\[\bar U\]. Some of these statistics are also stability dependent.The probability distributions of the dissipation rate are bimodally log-normal which suggests that turbulence generated at two different heights is being sampled. This, along with other results of this paper, support a picture of a boundary layer which is dominated by vertical exchange.Contribution Number 409, Department of Atmospheric Sciences, University of Washington.  相似文献   

4.
An international turbulence comparison experiment (ITCE 1976)   总被引:1,自引:0,他引:1  
Turbulence data for the International Turbulence Comparison Experiment (ITCE) held at Conargo, N.S.W. (35° 18′ S., 145° 10′ E.) during October, 1976 are analysed. The standard deviation % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiqado% hagaqbamaaCaaaleqabaGaaGOmaaaakiaacMcadaahaaWcbeqaaiaa% igdacaGGVaGaaGOmaaaaaaa!3B93!\[(s'^2 )^{1/2} \] and covariance % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG3bGbauaaceWGZbGbauaaaaaaaa!3809!\[\overline {w's'} \] measured by a number of instruments and instrument arrays have been compared to assess their field performance and calibration accuracy. Satisfactory agreement, i.e. typically 5% for % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaana% aabaGabm4CayaafaWaaWbaaSqabeaacaaIYaaaaaaakiaacMcadaah% aaWcbeqaaiaaigdacaGGVaGaaGOmaaaaaaa!3BA4!\[(\overline {s'^2 } )^{1/2} \] (except in humidity) and of the order of 20% for % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiqado% hagaqbamaaCaaaleqabaGaaGOmaaaakiaacMcadaahaaWcbeqaaiaa% igdacaGGVaGaaGOmaaaaaaa!3B93!\[(s'^2 )^{1/2} \], was achieved, but only after consideration of:
  1. Instrumental response at high frequencies.
  2. Flow distortion induced by instruments and supporting structures.
  3. Spatial separation of instruments used for covariance measurements.
  4. Statistical errors associated with single point measurements over a finite averaging time, and with lateral separation of two sensor arrays being compared.
  相似文献   

5.
Review of some basic characteristics of the atmospheric surface layer   总被引:15,自引:6,他引:9  
Some of the fundamental issues of surface layer meteorology are critically reviewed. For the von Karman constant (k), values covering the range from 0.32 to 0.65 have been reported. Most of the data are, however, found in a rather narrow range between 0.39 and 0.41. Plotting all available atmospheric data against the so-called roughness Reynolds number, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabw% gadaWgaaWcbaGaaeimaaqabaGccqGH9aqpcaWG1bWaaSbaaSqaaiaa% cQcaaeqaaOGaamOEamaaBaaaleaacaaIWaaabeaakiaac+cacqaH9o% GBaaa!3FD0!\[{\rm{Re}}_{\rm{0}} = u_* z_0 /\nu \] or against the surface Rossby number, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaab+% gadaWgaaWcbaGaaeimaaqabaGccqGH9aqpcaWGhbGaai4laiaadAga% caWG6bWaaSbaaSqaaiaaicdaaeqaaaaa!3DF1!\[{\rm{Ro}}_{\rm{0}} = G/fz_0 \] gives no clear indication of systematic trend. It is concluded that k is indeed constant in atmospheric surface-layer flow and that its value is the same as that found for laboratory flows, i.e. about 0.40.Various published formulae for non-dimensional wind and temperature profiles, m and h respectively, are compared after adjusting the fluxes so as to give % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2% da9iaaicdacaGGUaGaaGinaiaaicdaaaa!3AC6!\[k = 0.40\] and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWabeaaii% GacqWFgpGzdaWgaaWcbaGaamiAaaqabaGccaGGVaGae8NXdy2aaSba% aSqaaiaad2gaaeqaaaGccaGLOaGaayzkaaWaaSbaaSqaaiaadQhaca% GGVaGaamitaiabg2da9iaaicdaaeqaaOGaeyypa0JaaGimaiaac6ca% caaI5aGaaGynaaaa!4655!\[\left( {\phi _h /\phi _m } \right)_{z/L = 0} = 0.95\]. It is found that for % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWabeaaca% WG6bGaai4laiaadYeaaiaawEa7caGLiWoacqGHKjYOcaaIWaGaaiOl% aiaaiwdaaaa!3F72!\[\left| {z/L} \right| \le 0.5\] the various formulae agree to within 10–20%. For unstable stratification the various formulations for h continue to agree within this degree of accuracy up to at least % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiaac+% cacaWGmbGaeyisISRaeyOeI0IaaGOmaaaa!3BC9!\[z/L \approx - 2\]. For m in very unstable conditions results are still conflicting. Several recent data sets agree that for unstable stratification % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabM% gacqGHijYUcaaIXaGaaiOlaiaaiwdacaWG6bGaai4laiaadYeaaaa!3E0D!\[{\rm{Ri}} \approx 1.5z/L\] up to at least % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaam% OEaiaac+cacaWGmbGaeyypa0JaaGimaiaac6cacaaI1aaaaa!3C8D!\[ - z/L = 0.5\] and possibly well beyond.For the Kolmogorov streamwise inertial subrange constant, u , it is concluded from an extensive data set that % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS% baaSqaaiaadwhaaeqaaOGaeyypa0JaaGimaiaac6cacaaI1aGaaGOm% aiabgglaXkaaicdacaGGUaGaaGimaiaaikdaaaa!4178!\[\alpha _u = 0.52 \pm 0.02\]. The corresponding constant for temperature is much more uncertain, its most probable value being, however, about 0.80, which is also the most likely value for the corresponding constant for humidity.The turbulence kinetic energy budget is reviewed. It is concluded that different data sets give conflicting results in important respects, particularly so in neutral conditions.It is demonstrated that the inertial-subrange method can give quite accurate estimates of the fluxes of momentum, sensible heat and water vapour from high frequency measurements of wind, temperature and specific humidity alone, provided apparent values of the corresponding Kolmogorov constants are used. For temperature and humidity, the corresponding values turn out to be equal to the true constants, so % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS% baaSqaaiaadgeaaeqaaOGaeyisISRaeqOSdiMaeyisISRaaGimaiaa% c6cacaaI4aGaaGimaaaa!4074!\[\beta _A \approx \beta \approx 0.80\]. For momentum, however, the apparent constant % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS% baaSqaaiaadwhacaWGbbaabeaakiabgIKi7kaaicdacaGGUaGaaGOn% aiaaicdaaaa!3E18!\[\alpha _{uA} \approx 0.60\].Based on an invited paper presented at the EGS Workshop Instrumental and Methodical Problems of Land Surface Flux Measurements, Grenoble 22–26 April, 1994.  相似文献   

6.
Turbulent fluctuations of wind and temperature were measured using a three-component sonic anemometer at 8 m on a 30 m micro-meteorological tower erected at the Indian Institute of Technology (IIT) Kharagpur (22.3° N, 87.2° E), India, as part of the Monsoon Trough Boundary Layer Experiment (MONTBLEX). Diurnal and nocturnal variations of fluxes of sensible heat and momentum were estimated by the eddy correlation technique from 42 observations, each of 10 min duration during 6–8 July in the monsoon season of 1989. The estimated heat flux shows a diurnal trend while the momentum flux shows variability but no particular trend. The nocturnal heat flux changes sign intermittently.Fluctuations of vertical wind velocity wand temperature when normalised with the respective scaling parameters u *and * are found to scale with Z/L in accordance with the Monin-Obukhov similarity hypothesis: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdy2aaS% baaSqaaiaadEhaaeqaaOGaamiEaiaacIcacaWGAbGaai4laiaadYea% caGGPaWaaWbaaSqabeaacaaIXaGaai4laiaaiodaaaaaaa!3FE8!\[\phi _w x(Z/L)^{1/3} \], % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdy2aaS% baaSqaaiabeI7aXbqabaGccaWG4bGaaiikaiaadQfacaGGVaGaamit% aiaacMcadaahaaWcbeqaaiaaigdacaGGVaGaaG4maaaaaaa!40A2!\[\phi _\theta x(Z/L)^{1/3} \] during unstable conditions and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdy2aaS% baaSqaaiaadEhaaeqaaOGaamiEaiaacIcacaWGAbGaai4laiaadYea% caGGPaaaaa!3D90!\[\phi _w x(Z/L)\], % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdy2aaS% baaSqaaiabeI7aXbqabaGccaWG4bGaaiikaiaadQfacaGGVaGaamit% aiaacMcadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa!401F!\[\phi _\theta x(Z/L)^{ - 1} \] during stable conditions. Correlation coefficients for heat and momentum flux % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS% baaSqaaiaadEhacqaH4oqCaeqaaaaa!3A71!\[\gamma _{w\theta } \] and uwshow stability dependence. For unstable conditions, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS% baaSqaaiaadEhacqaH4oqCaeqaaaaa!3A71!\[\gamma _{w\theta } \] increases with increasing ¦Z/L¦ whereas uwdecreases. During stable conditions, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS% baaSqaaiaadEhacqaH4oqCaeqaaaaa!3A71!\[\gamma _{w\theta } \] decreases with increasing Z/L while uwdecreases very slowly from a value -0.36 to -0.37.  相似文献   

7.
A balloon-borne continuous actinometer has been developed which measures stratospheric N2O photolysis coefficients, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAamaaBa% aaleaacaGGobWaaSbaaWqaaiaaikdaaeqaaSGaci4taiabg2da9iab% gkHiTiGacsgaciGGSbGaaiOBaiaacIcaciGGobWaaSbaaWqaaiaaik% daaeqaaSGaci4taiGacMcacaGGVaGaciizaiaadshaaeqaaaaa!44F2!\[j_{N_2 \operatorname{O} = - \operatorname{d} \ln (\operatorname{N} _2 \operatorname{O} )/\operatorname{d} t} \], with a time resolution of approximately 100 s, and a lower detection limit approaching 10-10 s-1. The instrument performed successfully, or was at least partially successful, on five stratospheric balloon flights between October 1982 and September 1986. The experimental profiles are compared with model calculations of % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAamaaBa% aaleaacaGGobWaaSbaaWqaaiaaikdaaeqaaSGaci4taaqabaaaaa!39A3!\[j_{N_2 \operatorname{O} } \]. The model takes full account of the sphericity of the atmosphere and of the specific flight conditions, but neglects scattering, which should have a negligible effect on % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAamaaBa% aaleaacaGGobWaaSbaaWqaaiaaikdaaeqaaSGaci4taaqabaaaaa!39A3!\[j_{N_2 \operatorname{O} } \]. The quantitative results, particularly the altitude and solar zenith angle dependences under extreme conditions, support the low absorption cross-sections of oxygen in the Herzberg continuum as recommended by WMO in 1986 and are inconsistent with Ackerman's tabulations of 1971. It is shown that the altitude dependence of Brewer and Wilson's historical irradiance measurements in the stratospheric window region is well reproduced by our model, but should be multiplied by a factor of 1.75.  相似文献   

8.
An equation is derived for the components of the horizontal (turbulent) frictional force in the -coordinate system with special attention to mesometeorological flow models. The starting point is the horizontal equation of motion in its flux-form in the -system in which we replace (following Reynolds' procedure) the velocity components u,v and % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbai % aaaaa!37B8! \[ \dot \sigma \] aswell as other relevant quantities by terms of the form u = + u,..., = ± + % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbai % Gbauaaaaa!37C3! \[ \dot \sigma ' \] , etc. ( = time average of u; u = fluctuating part of u.) Next, the equation is averaged with respect to time and terms which we believe are small in mesometeorological flows, are neglected. On expressing by an appropriate expression that involves w, the result shows the appearance of two new terms which, have not been considered previously in the published literature. While the expression earlier used in the literature involved the -derivative of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG1bGbauaaceWG3bGbauaaaaaaaa!380B!\[\overline {u'w'} \] alone, the new terms add the -derivatives of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG1bGbauaadaahaaWcbeqaaiaaikdaaaaaaaaa!37EC!\[\overline {u'^2 } \] and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG1bGbauaaceWG2bGbauaaaaaaaa!380A!\[\overline {u'v'} \] for the x-component of the force, and the -derivatives of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG2bGbauaadaahaaWcbeqaaiaaikdaaaaaaaaa!37ED!\[\overline {v'^2 } \]} and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG1bGbauaaceWG2bGbauaaaaaaaa!380A!\[\overline {u'v'} \] for the y-component, where and are the slopes of the -surfaces in the x- and y-directions, respectively. Further, a few numerical simulations of the sea-breeze over topography are carried out with and without the correction terms. It is shown that when corrections terms are not included the effective smoothing is stronger above the sloping regions and may amount to as high as 50 percent of the convergence with slopes of ~.04. The ìnclusìon of the new terms does not lead to any special computational difficulties and for that reason there is no compelling reason to neglect them, all the more so because, as is shown, the addition of the new terms results in a consistent apportioning of the degree of horizontal diffusion.On leave from CIMMS, Norman, OK.Now visiting Dept. of Met., Helsinki, Finland.  相似文献   

9.
A simple and fast approach to determine when density fluctuations are non-negligible in the calculation of the flux of trace gases (F c ) is proposed. The correction (F c F c (raw)), when expressed as the percentage of the flux, is dependent on the ratio of background concentration of the trace gas over its flux (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeikaiabeg% 8aYnaaBaaaleaacaWGJbaabeaakiaab+cacaWGgbWaaSbaaSqaaiaa% dogaaeqaaOGaaeykaaaa!3CBC!\[{\rm{(}}\rho _c {\rm{/}}F_c {\rm{)}}\], on the partitioning of available energy between sensible (F T ) and latent (F v ) heat fluxes, and on the flux measuring system. An increase from 100 to 200 W m-2 in available energy and from 0 to 20% in F T /(F T + F v ) led to a threefold reduction in the required value of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaacq% aHbpGCdaWgaaWcbaGaam4yaaqabaaaaOGaai4laiaadAeadaWgaaWc% baGaam4yaaqabaaaaa!3B6D!\[\overline {\rho _c } /F_c \] to have a density correction of 10%. A trace gas with a % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaceaaca% WGgbWaaSbaaSqaaiaadogaaeqaaaGccaGLhWUaayjcSdGaai4lamaa% naaabaGaeqyWdi3aaSbaaSqaaiaadogaaeqaaaaaaaa!3E91!\[\left| {F_c } \right|/\overline {\rho _c } \] value above 0.014 m s-1 has a density correction on flux of less than 10%, for even the worst case scenario. Values of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa% aaleaacaWGJbaabeaakiaac+cadaqdaaqaaiabeg8aYnaaBaaaleaa% caWGJbaabeaaaaaaaa!3B6D!\[F_c /\overline {\rho _c } \] for several trace gases computed from typical situations show that the fluxes of N2O, NO, CO2, CH4 and O3 need to be corrected, while those of pesticides and volatile organic compounds, for example, do not. The corrections required with the newly developed relaxed eddy accumulation technique are discussed and equation development is shown for two sampling systems.Land Resource Research Centre Contribution No 91-61.  相似文献   

10.
The one-dimensional equation for the turbulent kinetic energy budget in steady, horizontally-homogeneous flow near the ground is reviewed, and some of the many experimental evaluations of its stability-dependent terms obtained during the last twenty years are compared. Uncertainties attributable to instrument error and inadequate sites are discussed, and it is demonstrated that improved equipment makes it possible to evaluate contributions to the budget with comparatively simple experiments. A preliminary field study finds a von Karman constant of k=0.387±0.016 and a wind shear function for the unstable surface layer% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdy2aaS% baaSqaaiaad2gaaeqaaOGaeyypa0JaaiikaiaaigdacqGHsislcaaI% YaGaaGOmaiaac6cacaaI2aGaamOEaiaac+cacaWGmbGaaiykamaaCa% aaleqabaGaeyOeI0IaaGymaiaac+cacaaI0aaaaaaa!4587!\[\phi _m = (1 - 22.6z/L)^{ - 1/4} \]: the form % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaig% dacqGHsislcaaIXaGaaGynaiaac6cacaaIXaGaamOEaiaac+cacaWG% mbGaaiykamaaCaaaleqabaGaeyOeI0IaaGymaiaac+cacaaIZaaaaa% aa!419C!\[(1 - 15.1z/L)^{ - 1/3} \] fits equally well over the limited range of instability observed. Turbulence dissipation is found to be 15 to 20% too small to balance the production of energy by wind shear in the neutral surface layer, and this deficit appears to remain approximately constant relative to the total rate of energy production as instability increases to% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiaac+% cacaWGmbGaeyypa0JaeyOeI0IaaGimaiaac6cacaaIXaGaaGOmaaaa% !3D45!\[z/L = - 0.12\]. Renormalized dissipation rates originally measured by others are shown to exhibit similar behavior beyond this narrow range. Combining these results with those of the present study suggests a dissipation function of the form % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdy2aaS% baaSqaaiabew7aLbqabaGccqGH9aqpcqaHgpGzdaWgaaWcbaGaamyB% aaqabaGccqGHsislcaWG6bGaai4laiaadYeacqGHRaWkcaWGJbaaaa!42A3!\[\phi _\varepsilon = \phi _m - z/L + c\] in which c = -0.16 represents a near constant, net negative contribution made by the sum of the divergent transport terms.School of Earth and Atmospheric Sciences, Georgia Institute of Technology.Work sponsored by the National Science Foundation under Grant Nos. ATM-8714025 and ATM-9019682, in part through The University of Chicago.  相似文献   

11.
The best quality wind data from the Norwegian sector of the North Sea, consisting of 3662 20-min time series measured at the top of the Statfjord A drilling derrick, are analyzed. Identification of Autoregressive wind models with Akaike's AIC and Achwarz's BIC measures appears to give rather arbitrary results. Spectral estimation with FFT- and AIC-identified AR-methods give almost identical results in the mean. At the higher frequencies (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa!36D7!\[f\] > 10–2 s–1) the spectrum is estimated to follow the usual inertial subrange law with little variability. The small-scale turbulent intensity is estimated to be very low, even in hurricane conditions. Comparatively, the low-frequency (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa!36D7!\[f\] ~ 10–3 s–1) fluctuations are more energetic than expected. None of the chosen low-frequency characteristica appear to be significantly linearly correlated to the available mean weather variables. However, some nonlinear relations appear to exist.  相似文献   

12.
Models and observations of the growth of the atmospheric boundary layer   总被引:7,自引:2,他引:7  
The evolution of the mixed layer during a clear day can be described with a slab model. The model equations have to be closed by a parameterization of the turbulent kinetic energy budget. Several possibilities for this parameterization have been proposed. In order to assess the practical applicability of these models for the atmosphere, field experiments were carried out on ten clear days in 1977 and 1978. Within the accuracy of the measurements the mixed-layer height in fully convective conditions (at noon on clear days) is well predicted taking a constant heat flux ratio % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa0% aaaeaacqaH4oqCcaWG3bWaaSbaaSqaaiaadIgaaeqaaaaakiabg2da% 9iaaicdacaGGUaGaaGOmamaanaaabaGaeqiUdeNaam4DamaaBaaale% aacaWGZbaabeaaaaaaaa!41D4!\[ - \overline {\theta w_h } = 0.2\overline {\theta w_s } \]. In the early morning hours mechanical entrainment is also important. Good overall results are obtained with the entrainment formulation % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa0% aaaeaacqaH4oqCcaWG3bWaaSbaaSqaaiaadIgaaeqaaaaakiabg2da% 9iaaicdacaGGUaGaaGOmamaanaaabaGaeqiUdeNaam4DamaaBaaale% aacaWGZbaabeaaaaGccqGHRaWkcaaI1aGaamyDamaaDaaaleaacqGH% xiIkaeaacaaIZaaaaOGaamivaiaac+cacaWGNbGaamiAaaaa!49C1!\[ - \overline {\theta w_h } = 0.2\overline {\theta w_s } + 5u_ * ^3 T/gh\].Only large differences in the entrainment coefficients lead to significantly different results. Making the entrainment model more complex does not lead to substantial improvement.The mean potential temperature in the mixed layer is reproduced within 0.5 °C. This temperature is insensitive to the choice of a particular entrainment formulation and depends more on the surface heat input and the temperature gradient in the stable air aloft.  相似文献   

13.
A simple model is deduced for the surface layer of a convective boundary layer for zero mean wind velocity over homogeneous rough ground. The model assumes large-scale convective circulation driven by surface heat flux with a flow pattern as it would be obtained by conditional ensemble averages. The surface layer is defined here such that in this layer horizontal motions dominate relative to vertical components. The model is derived from momentum and heat balances for the surface layer together with closures based on the Monin-Obukhov theory. The motion in the surface layer is driven by horizontal gradients of hydrostatic pressure. The balances account for turbulent fluxes at the surface and fluxes by convective motions to the mixed layer. The latter are the dominant ones. The model contains effectively two empirical coefficients which are determined such that the model's predictions agree with previous experimental results for the horizontal turbulent velocity fluctuations and the temperature fluctuations. The model quantitatively predicts the decrease of the minimum friction velocity and the increase of the temperature difference between the mixed layer and the ground with increasing values of the boundary layer/roughness height ratio. The heat transfer relationship can be expressed in terms of the common Nusselt and Rayleigh numbers, Nu and Ra, as Nu ~ Ra% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca% aIXaaabaGaaGOmaaaaaaa!3779!\[{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\]. Previous results of the form Nu ~ Ra% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca% aIXaaabaGaaG4maaaaaaa!377A!\[{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}\] are shown to be restricted to Rayleigh-numbers less than a certain value which depends on the boundary layer/roughness height ratio.  相似文献   

14.
Formation of methoxy (CH3O) radicals in the reaction (1) CH3O2+NOCH3O+NO2 at 298 K has been observed directly using time resolved LIF. The branching ratio % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdyMaae% 4qaiaabIeadaWgaaWcbaGaae4maaqabaGccaqGpbGaaeiiaiaabIca% ieqacaWF9aGaa8hiaiaa-nbicaWFGaGaeuiLdqKaai4waiaaboeaca% qGibWaaSbaaSqaaiaabodaaeqaaOGaae4taiaac2facaWFVaGaeuiL% dqKaai4waiaaboeacaqGibWaaSbaaSqaaiaabodaaeqaaOGaae4tam% aaBaaaleaacaqGYaaabeaakiaac2facaqGPaaaaa!4E31!\[\phi {\rm{CH}}_{\rm{3}} {\rm{O (}} = -- \Delta [{\rm{CH}}_{\rm{3}} {\rm{O}}]/\Delta [{\rm{CH}}_{\rm{3}} {\rm{O}}_{\rm{2}} ]{\rm{)}}\] has been determined by quantitative cw-UV-laser absorption at 257 nm of CH3O2 and CH3ONO, the product of the consecutive methoxy trapping reaction (2) % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4qaiaabI% eadaWgaaWcbaGaae4maaqabaGccaqGpbacbeGaa83kaiaa-bcaieaa% caGFobGaa43taiaa+bcacaGFOaGaa83kaiaa+1eacaGFPaGaa4hiai% abgkziUkaabccacaqGdbGaaeisamaaBaaaleaacaqGZaaabeaakiaa% b+eacaqGGaGaaeOtaiaab+eacaqGGaGaa4hkaiaa-TcacaGFnbGaa4% xkaiaa+5cacaGFGaGaa4hiaiabeA8aMnaaBaaajqwaacqaaiaaboea% caqGibWaaSbaaKazcaiabaGaae4maaqabaqcKfaGaiaab+eaaSqaba% aaaa!55AC!\[{\rm{CH}}_{\rm{3}} {\rm{O}} + NO ( + M) \to {\rm{ CH}}_{\rm{3}} {\rm{O NO }}( + M). \phi _{{\rm{CH}}_{\rm{3}} {\rm{O}}} \] is found to be (1.0±0.2). The rate constant k 1 is (7±2) 10-12 cm3/molecule · s in good agreement with previous results.  相似文献   

15.
Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy   总被引:58,自引:42,他引:16  
This paper argues that the active turbulence and coherent motions near the top of a vegetation canopy are patterned on a plane mixing layer, because of instabilities associated with the characteristic strong inflection in the mean velocity profile. Mixing-layer turbulence, formed around the inflectional mean velocity profile which develops between two coflowing streams of different velocities, differs in several ways from turbulence in a surface layer. Through these differences, the mixing-layer analogy provides an explanation for many of the observed distinctive features of canopy turbulence. These include: (a) ratios between components of the Reynolds stress tensor; (b) the ratio K H/K M of the eddy diffusivities for heat and momentum; (c) the relative roles of ejections and sweeps; (d) the behaviour of the turbulent energy balance, particularly the major role of turbulent transport; and (e) the behaviour of the turbulent length scales of the active coherent motions (the dominant eddies responsible for vertical transfer near the top of the canopy). It is predicted that these length scales are controlled by the shear length scale % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa% aaleaacaWGtbaabeaakiabg2da9iaadwfacaGGOaGaamiAaiaacMca% caGGVaGabmyvayaafaGaaiikaiaadIgacaGGPaaaaa!3FD0!\[L_S = U(h)/U'(h)\] (where h is canopy height, U(z) is mean velocity as a function of height z, and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaafa% Gaeyypa0JaaeizaiaadwfacaGGVaGaaeizaiaadQhaaaa!3C32!\[U' = {\rm{d}}U/{\rm{d}}z\]). In particular, the streamwise spacing of the dominant canopy eddies is x = mL s, with m = 8.1. These predictions are tested against many sets of field and wind-tunnel data. We propose a picture of canopy turbulence in which eddies associated with inflectional instabilities are modulated by larger-scale, inactive turbulence, which is quasi-horizontal on the scale of the canopy.  相似文献   

16.
The average dispersion of a plume in the atmospheric boundary layer is strongly influenced by atmospheric turbulence. Atmospheric turbulence determines also concentration fluctuations due to turbulent meandering by large scale turbulent eddies and in-plume fluctuations, due to smaller scale eddies. Conversion of NO to NO2 in a plume is influenced by micro-scale mixing, due to the concentration fluctuation correlation % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% qGobGaae4tamaaCaaaleqabaGaaeymaaaakiaab+eadaqhaaWcbaGa% ae4maaqaaiaabgdaaaaaaaaa!3AF4!\[\overline {{\rm{NO}}^{\rm{1}} {\rm{O}}_{\rm{3}}^{\rm{1}} } \] and macro-scale mixing, the mixing in of ambient air containing O3 into the plume.The study of turbulent meandering, in-plume fluctuations, microscale and macro-scale mixing will contribute to a better understanding of concentration fluctuations in general.  相似文献   

17.
The formation mechanism of the nocturnal urban boundary layer (UBL), especially in the winter nighttime, was investigated based on the extensive field observations conducted during November 1984 in Sapporo, Japan. A strong, elevated inversion formed over the Sapporo urban area and the inversion base height was approximately twice the average building height. Velocity fluctuations u, w and Reynolds stress % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaam4DamaaCaaa% leqabaGaaGymaaaaaaaaaa!3A9C!\[\overline {u^1 w^1 } \] had nearly uniform profiles within the nocturnal UBL and decreased with height above the UBL. On the other hand, temperature fluctuations t , and heat fluxes % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaeqiUde3aaWba% aSqabeaacaaIXaaaaaaaaaa!3B56!\[\overline {u^1 \theta ^1 } \] and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG3bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaeqiUde3aaWba% aSqabeaacaaIXaaaaaaaaaa!3B58!\[\overline {w^1 \theta ^1 } \] had peaks at the inversion base and small values within the nocturnal UBL. The turbulent kinetic energy budget showed that the turbulent transport term and shear generation from urban canopy elements are important in the nocturnal UBL development; the role of the buoyancy term is small. The turbulence data analysis and application of a simple advective model showed that the mechanism of UBL formation may be controlled by the downward transport of sensible heat from the elevated inversion caused by mechanically-generated turbulence.Nomenclature g accelaration due to gravity, m s-2 - k turbulent kinetic energy, m2 s-1 - K m eddy viscosity, m2 s-1 - L Monin-Obukhov lenght, m - p pressure, Kg m-2 - U, V, W mean wind speed in the downwind, crosswind, and vertical directions, respectively, m s-1 - u 1, w 1 wind speed fluctuation in the downwind and vertical direction, respectively, m s-1 - u 1 friction velocity, m s-1 - % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaam4DamaaCaaa% leqabaGaaGymaaaaaaaaaa!3A9C!\[\overline {u^1 w^1 } \] momentum flux, m2s-2 - % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaam4DamaaCaaa% leqabaGaaGymaaaaaaaaaa!3A9C!\[\overline {u^1 \theta^1 } \] sensible heat flux, m2s-1°C - WD wind direction, deg - WS wind speed, m s-1 - z altitude, m - Z h inversion base height, m - Z j wind maximum height, m - Z t inversion top height, m - T u-r heat island intensity, °C - temperature lapse rate at rural site, °C m-1 - energy dissipation rate, m2s-3 - 1 Potential temperature fluctuation, °C - * scaling temperature, (=-% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaeqiUde3aaWba% aSqabeaacaaIXaaaaaaaaaa!3B56!\[\overline {u^1 \theta ^1 } \]/u*) °C - mean potential temperature fluctuation, K - density of air, Kgm-3 - K von Kármán constant (=0.4) - u, v, w standard deviation of wind speed in the downwind, crosswind, and vertical directions, respectively, m s-1 - standard diviation of temperature, °C  相似文献   

18.
The dynamics of the boundary layer of a developing vortex is studied. To keep the mathematical treatment simple, axisymmetric vortices in both solid and non-solid rotation are considered. The governing equations are subjected to a similarity transformation and the resulting non-linear parabolic partial differential equations are solved by a Galerkin technique for simplified initial conditions which permit non-zero tangential and vertical velocities at the lower and upper boundaries. The application of a time-dependent Taylor boundary condition at the lower extremity of the vortex causes the fluid to spin-down gradually. By doing so, the no-slip steady-state solutions are progressively approached. On the other hand the employment of the customary Taylor boundary condition made the vortex to spin down rapidly causing a large-amplitude oscillatory vertical velocity.Analyses of the linearized equations and of the numerical solutions of the non-linear problem indicate the presence in the radial and tangential fields of inertial oscillations of frequency % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaKaaaj% aad6gakmaaleaaleaaruqqYLwySbacfaGaa8xmaaqaaiaa-jdaaaac% ciGccqGFPoWvaaa!3D19!\[2n\tfrac{1}{2}\Omega \] (: angular velocity of the flow and n: a parameter such that n=1 signifies solid rotation and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9qq-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaWefv% 3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFKjcHcaWG% Ubaaaa!461C!\[0 \leqslant n\] <1 non-solid rotation). Thus the frequency of inertial oscillations is reduced for non-rigid rotation.  相似文献   

19.
Low-latitude observations of the stably-stratified planetary boundary layer (SBL) above rough terrain are compared to observations of the mid-latitude SBL mainly through the depth h and its dependence upon surface fluxes. This involves the quantity h/L and the similarity prediction h = (u * L/f)1/2.Mid-latitude observations are consistent with model calculations for nighttime-averaged quantities and their deviations, as functions of latitude and surface roughness, from the equilibrium values found at large t. The above applies to horizontally-homogeneous terrain.Low-latitude observations of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4SdCMbae% baaaa!37AB!\[\bar \gamma \] and h/L are significantly smaller than mid-latitude values, apparently the result of katabatic flows at the site and not the differences in latitude. This is consistent with model calculations for non-zero slope terrain.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

20.
This paper describes a framework to evaluate air quality model predictions against observations. We propose the following relationship between observations and predictions from an adequate model% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4qayaaja% WaaSbaaSqaaiaaicdaaeqaamXvP5wqonvsaeHbfv3ySLgzaGqbaOGa% e8hkaGIaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaS% baaSqaaiaaikdaaeqaaOGae8xkaKIaeyypa0Jabm4qayaajaWaaSba% aSqaaiaadchaaeqaaOGae8hkaGIaamiEamaaBaaaleaacaaIXaaabe% aakiab-LcaPiab-TcaRiabew7aLjab-HcaOiaadIhadaWgaaWcbaGa% aGOmaaqabaGccqWFPaqkaaa!4F93!\[\hat C_0 (x_1 ,x_2 ) = \hat C_p (x_1 ) + \varepsilon (x_2 )\],where x 1 refers to the inputs used in the model prediction C p(x 1), and x 2denotes unknown variables which affect the observed concentration C 0. The hats associated with C pand C 0denote transformations to convert the residual to a white noise sequence which is normally distributed. In this paper we assume % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4qayaaja% GaeyyyIORaciiBaiaac6gacaWGdbaaaa!3B39!\[\hat C \equiv \ln C\].The standard deviation of determines the expected deviation between model prediction and observation. The purpose of model improvement is to make this deviation as small as possible.The formalism we have proposed is applied to the evaluation of two models developed by this author. We show how careful analysis of residuals can lead to improvements in the model. We have also estimated for each of the models.In the last part of the part of the paper we show how the statistics of can be used to interpret model predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号