首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
张人禾  周顺武 《气象学报》2008,66(6):916-925
利用台站探空观测资料和卫星观测资料,分析了1979—2002年青藏高原上空温度的变化趋势。结果表明:高原地区上空平流层低层和对流层上层的温度与对流层中低层具有反相变化趋势。平流层低层和对流层上层降温,温度出现降低趋势,降温幅度无论是年平均还是季节平均都比全球平均降温幅度更大。高原上空对流层中低层增温,温度显示出增加的趋势,并且比同纬度中国东部非高原地区有更强的增温趋势。对1979—2002年卫星臭氧资料的分析表明,青藏高原上空臭氧总量在每个季节都呈现出明显的下降趋势,并且比同纬度带其他地区下降得更快。由于青藏高原上空臭氧有更大幅度的减少,造成高原平流层对太阳紫外辐射吸收比其他地区更少,使进入对流层的辐射更多,从而导致高原上空平流层低层和对流层上层降温比其他地区更强,而对流层中低层增温更大。因此,高原上空比其他地区更大幅度的臭氧总量减少可能是造成青藏高原上空与同纬度其他地区温度变化趋势差异的一个重要原因。  相似文献   

2.
利用ERA-Interim和MERRA-2再分析资料,考察1980—2017年青藏高原大气温度变化趋势和规律,年、季、月不同时间尺度分析结果均揭示2008年以来青藏高原春季大气温度变化呈现逆转趋势:高原上空平流层下部150~50 hPa呈现明显的增温趋势(1.0~2.7℃/10a),对流层上部300~175 hPa呈现明显的降温趋势(-3.1~-1.0℃/10a),这与此前的大气温度变化趋势完全相反。利用TOMS和OMI卫星臭氧遥感资料,考察同期青藏高原臭氧总量变化特征,表明2008年以来青藏高原臭氧总量也表现出逆转的增加趋势,与大气温度逆转趋势吻合,从冬末至春季各月均有显著增加趋势,尤以5月臭氧总量增加速率最大,达13.7 DU/10a。青藏高原春季大气温度变化趋势与同期臭氧总量变化特征紧密相关,2008年后臭氧总量的快速恢复可能是引起大气温度逆转趋势的一个重要影响因素。  相似文献   

3.
青藏高原上空气溶胶含量的分布特征及其与臭氧的关系   总被引:7,自引:5,他引:2  
采用1991年10月—2005年11月的HALOE资料,分析了青藏高原(27°~40°N,75°~105°E)上空气溶胶数密度、体积密度、面积密度的分布和变化特征,探讨了它们与臭氧的关系,并且与同纬度带中国东部地区(107°~122°E,27°~40°N)、北太平洋(170°E~170°W,27°~40°N)上空进行了对比。结果表明:高原上空气溶胶的体积密度、面积密度受Pinatubo火山喷发的影响主要发生在1991—1995年,然而气溶胶数密度受火山影响则不如前二者明显;高原上空气溶胶在对流层顶附近存在一个极大值区,在夏季该极大值区位于对流层顶下方(约120 hPa),而其他季节则位于对流层顶上方(约100hPa);青藏高原、中国东部地区、北太平洋三地上空气溶胶数密度的差异主要出现在60 hPa以下的气层,夏季差异最突出,高原上120 hPa附近的气溶胶数密度约为平原上的1.8倍,约为海洋上的5.5倍;在高原上空对流层顶附近以及平流层低层,气溶胶数密度与臭氧体积混合比呈很好的负相关关系,而在20 hPa以上则有明显的正相关关系;对比三地上空气溶胶与臭氧的关系,得到在对流层顶附近及平流层低层气溶胶在高原和平原上空与臭氧的变化呈很好的负相关,其中以高原上空的负相关关系更好,但是在海洋上空气溶胶和臭氧的相关不明显。而在20 hPa以上气层中,三地上空的气溶胶与臭氧的变化都具有很好的正相关关系。  相似文献   

4.
青藏高原地区大气臭氧变化的研究   总被引:33,自引:4,他引:33  
文中综述了对青藏高原夏季大气臭氧低值中心的出现和可能形成的机理的一些研究结果。发现了青藏高原在夏季存在大气臭氧总量低值中心的事实 ,研究了该低值中心的背景环流特征 ;证实了青藏高原地区确为对流层与平流层物质输送的通道之一 ,以及它对青藏高原臭氧低值中心形成所起的作用 ;并用数值模拟方法揭示了该低值中心的形成原因。另外用资料证实了青藏高原地区夏季不但存在大气臭氧低值中心 ,而且该低值中心是一个强大气臭氧递减中心的事实。最后介绍了用数值模拟方法来预测青藏高原地区大气臭氧未来变化的趋势。  相似文献   

5.
根据63站无线电探空网资料,应用线性回归方法对1960—85、1965—85、1970—85、1975—85年时段内两半球极地、温带、亚热带、赤道地区以及热带的地表面、对流层(1.5—9km)、对流层顶层(9—16km)和平流层低层(16—20km)的年、季温度变化进行了估计。在过去的25年中,几乎所有气候区的地表和对流层都增暖,而对流层顶层和平流层低层冷却,即递减率增大。低层增暖和高层冷却的现象南半球比北半球更明显。从半球范围看,增暖率和冷却率增加不明显。但就各个气候区而言是显著的。例如南极平流层低层冷却的增加,尤其是春季。也许,这与这个地区春季总的臭氧含量低(或减小)有关。在北半球,地表增暖冬季最明显;在南半球,增温最大的是在秋季和冬季。就全球而言,地表和对流层以9、10、11月增温最少。在两半球的对流层顶层9、10、11和12、1、2月冷却最大。 El chichon火山爆发对平流层低层降温的影响也进行了估计,并得到了平流层低层冷却有随高度增加的迹象。这种实测到的温度变化图象被认为是来自CO_2和一些痕量气体的增加。  相似文献   

6.
利用TOMS大气臭氧总量格点资料分析了东北地区近6a(1996年8月—2002年7月)臭氧的分布特征、季节变化、变化趋势及其对气温变化的影响,并与1979—1992年的变化情况作了对比分析。结果表明:东北地区处于北半球大气臭氧高值中心的边缘,臭氧总量呈随纬度增加的分布形式,近6a区域年均值为361Du;冬春季总量较大、夏秋季较小,其中8月最小,3月最大;1979—1992年臭氧存在明显的下降趋势(冬季最为显著),下降趋势高纬大于低纬,近6a整个区域没有系统性下降趋势;1979—1992年对流层中下部显著变暖、对流层上层和平流层低层显著变冷,且变暖率与变冷率均随纬度增高而加大,而近6a气温变幅很小,这与臭氧变化趋势基本对应,表明臭氧的辐射加热是影响平流层低层、对流层高层温度场的重要因素,同时它对对流层低层气温的影响值得进一步关注。  相似文献   

7.
利用TOMS大气臭氧总量格点资料分析了东北地区近6a(1996年8月-2002年7月)臭氧的分布特征、季节变化、变化趋势及其对气温变化的影响,并与1979—1992年的变化情况作了对比分析。结果表明:东北地区处于北半球大气臭氧高值中心的边缘,臭氧总量呈随纬度增加的分布形式,近6a区域年均值为361Du;冬春季总量较大、夏秋季较小,其中8月最小,3月最大;1979—1992年臭氧存在明显的下降趋势(冬季最为显著),下降趋势高纬大于低纬,近6a整个区域没有系统性下降趋势;1979—1992年对流层中下部显著变暖、对流层上层和平流层低层显著变冷,且变暖率与变冷率均随纬度增高而加大,而近6a气温变幅很小,这与臭氧变化趋势基本对应,表明臭氧的辐射加热是影响平流层低层、对流层高层温度场的重要因素,同时它对对流层低层气温的影响值得进一步关注。  相似文献   

8.
青藏高原臭氧的准两年振荡   总被引:2,自引:2,他引:2  
通过对臭氧卫星观测资料及大气环流资料的分析,研究了青藏高原上空臭氧的季节和年际变化.通过分析青藏高原地区臭氧准两年振荡(QBO),并与同纬度无山区及赤道地区臭氧QBO进行比较,指出:青藏高原臭氧QBO的平均周期为29个月,平均振幅为8DU.青藏高原臭氧QBO变化位相与热带平流层纬向风场QBO相反,即热带平流层纬向西风时,青藏高原上空臭氧总量偏小,东风时臭氧总量偏大.还讨论了与青藏高原臭氧QBO相关的大气环流物质输送理论.  相似文献   

9.
气溶胶对青藏高原气候变化影响的数值模拟分析   总被引:1,自引:0,他引:1  
利用美国大气研究中心(NCAR)提供的2组数值试验结果对比,分析了只考虑温室气体增加(1%CO2试验)和综合考虑大气温室气体与气溶胶持续增加(50yrs试验)条件下,青藏高原地区地表温度、积雪深度及其他气候要素的变化,并在此基础上探讨了大气气溶胶含量变化对高原气候变化的可能影响.分析结果表明:只考虑大气CO2含量每年增加1%的变化时,青藏高原相对邻近地区地表温度显著增加,春、夏、秋及冬季地表温度线性增温率均表现出随着海拔高度升高而增强.例如,在海拔1.5~2 km,3~3.5 km和4.5~5 km范围内对应的冬季增温趋势分别为0.29 ℃/10 a,0.36 ℃/10 a和0.50 ℃/10 a.在温室气体引起的高原增暖过程中地表积雪深度普遍降低,且高海拔地区的积雪减少愈加明显.当综合考虑气溶胶和温室气体含量共同增加时,青藏高原地表增暖相对偏弱,春、夏和秋季增温也随海拔高度上升而加强,但冬季地面增温幅度随海拔上升反而下降,海拔1.5~2 km,3~3.5km和4.5~5 km范围内对应的冬季增温趋势分别为0.02 ℃/10 a,-0.03 ℃/10 a和-0.13 ℃/10 a.对比分析发现,大气气溶胶增加造成青藏高原冬季增温不明显甚至出现变冷趋势,地面积雪也随之增多,这可能歪曲了青藏高原地区气候变暖对海拔高度的依赖性.  相似文献   

10.
21世纪平流层温度变化和臭氧恢复   总被引:5,自引:2,他引:3  
胡永云  夏炎  高梅  吕达仁 《气象学报》2008,66(6):880-891
温室气体增加和可能的臭氧恢复将是影响21世纪平流层温度变化的两个主要因素。温室气体增加的辐射效应将导致平流层变冷,而臭氧恢复将导致平流层变暖。为探讨平流层温度在这两种相反因素作用下的变化趋势,研究中使用了观测的臭氧和温度资料以及4个有代表性的IPCC-AR4海气耦合的全球环流模式的模拟结果(GISS-ER、GFDL-CM20、NCAR-CC-SM3和UKMO-HadCM3)。观测分析结果表明,在近10年来臭氧柱含量和平流层低层温度均有升高的趋势,平流层中层温度仍然延续20世纪后20年的变冷趋势。IPCC-AR4的模拟结果表明,单纯温室气体增加将造成平流层变冷。可是,在同时考虑温室气体增加和臭氧层恢复的情况下,模拟结果表明平流层中上层仍将维持变冷的趋势,而下层则存在变暖的趋势,但几个模式给出的变暖趋势有差别。UKMO-HadCM3给出的模拟结果是在3种温室气体排放情况下平流层低层均呈现较强的变暖趋势,变暖的层次可达40hPa;GFDL-CM20和NCAR-CCSM3给出的变暖趋势较弱一些,并且变暖主要位于60hPa以下的层次。  相似文献   

11.
To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and signiffcantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change.  相似文献   

12.
In late December 2012 a blocking anticyclone followed by the event of minor stratospheric warming, set in the troposphere over West Siberia and, after that, over the European part of Russia. As a result of the deformation of a polar stratospheric vortex, the temperature in the lower stratosphere over Obninsk dropped below the threshold of the formation of polar stratospheric clouds. The lidar measurements of temperature, ozone values, and aerosol characteristics in the middle atmosphere were carried out at the lidar station during this atmospheric event. In three cases, polar stratospheric clouds (PSCs) referred to NAT Ia type according to the sounding results, were registered at the height of about 20 km. No considerable decrease in the ozone concentration in the area of PSC formation was revealed in these measurements.  相似文献   

13.
Using radiosonde and satellite observations, we investigated the trends of air temperature changes over the Tibetan Plateau (TP) in comparison with those over other regions in the same latitudes from 1979 to 2002. It is shown that Over the TP, the trends of air temperature changes in the upper troposphere to lower stratosphere were out of phase with those in the lower to middle troposphere. Air temperature decreased and a decreasing trend appeared in the upper troposphere to lower stratosphere. The amplitude of the annual or seasonal mean temperature decreases over the TP was larger than that over the whole globe. In the lower to middle troposphere over the TP, temperature increased, and the increasing trend was stronger than that over the non-plateau regions in the same latitudes in the eastern part of China. Meanwhile, an analysis of the satellite observed ozone data in the same period of 1979-2002 shows that over the TP, the total ozone amount declined in all seasons, and the ozone depleted the most compared with the situations in other regions in the same latitudes. It is proposed that the difference between the ozone depletion over the TP and that over other regions in the same latitudes may lead to the difference in air temperature changes. Because of the aggravated depletion of ozone over the TP, less (more) ultraviolet radiation was absorbed in the upper troposphere to lower stratosphere (lower to middle troposphere) over the TP, which favored a stronger cooling in the upper troposphere to lower stratosphere, and an intenser heating in the lower to middle troposphere over the TP. Therefore, the comparatively more depletion of ozone over the TP is possibly a reason for the difference between the air temperature changes over the TP and those over other regions in the same latitudes.  相似文献   

14.
Total column ozone (TCO) over the Tibetan Plateau (TP) is lower than that over other regions at the same latitude, particularly in summer. This feature is known as the “TP ozone valley”. This study evaluates long-term changes in TCO and the ozone valley over the TP from 1984 to 2100 using Coupled Model Intercomparison Project Phase 6 (CMIP6). The TP ozone valley consists of two low centers, one is located in the upper troposphere and lower stratosphere (UTLS), and the other is in the middle and upper stratosphere. Overall, the CMIP6 models simulate the low ozone center in the UTLS well and capture the spatial characteristics and seasonal cycle of the TP ozone valley, with spatial correlation coefficients between the modeled TCO and the Multi Sensor Reanalysis version 2 (MSR2) TCO observations greater than 0.8 for all CMIP6 models. Further analysis reveals that models which use fully coupled and online stratospheric chemistry schemes simulate the anticorrelation between the 150 hPa geopotential height and zonal anomaly of TCO over the TP better than models without interactive chemistry schemes. This suggests that coupled chemical-radiative-dynamical processes play a key role in the simulation of the TP ozone valley. Most CMIP6 models underestimate the low center in the middle and upper stratosphere when compared with the Microwave Limb Sounder (MLS) observations. However, the bias in the middle and upper stratospheric ozone simulations has a marginal effect on the simulation of the TP ozone valley. Most CMIP6 models predict the TP ozone valley in summer will deepen in the future.  相似文献   

15.
The paper discusses the potential effects on the ozone layer of gases released by the engines of proposed high altitude supersonic aircraft. The major problem arises from the emissions of nitrogen oxides which have the potential to destroy significant quantities of ozone in the stratosphere. The magnitude of the perturbation is highly dependent on the cruise altitude of the aircraft. Furthermore, the depletion of ozone is substantially reduced when heterogeneous conversion of nitrogen oxides into nitric acid on sulfate aerosol particles is taken into account in the calculation. The sensitivity of the aerosol load on stratospheric ozone is investigated. First, the model indicates that the aerosol load induced by the SO2 released by aircraft is increased by about 10–20% above the background aerosols at mid-high latitude of the Northern Hemisphere at 15 km for the NASA emission scenario A (the NASA emission scenarios are explained in Tables I to III). This increase in aerosol has small effects on stratospheric ozone. Second, when the aerosol load is increased following a volcanic eruption similar to the eruption of El Chichon (Mexico, April 1982), the ozone column in spring increases by as much as 9% in response to the injection of NO x from the aircraft with the NASA emission scenario A. Finally, the modeled suggests that significant ozone depletion could result from the formation of additional polar stratospheric clouds produced by the injection of H2O and HNO3 by the aircraft engines.  相似文献   

16.
OzoneVerticalProfileCharacteristicsoverQinghaiPlateauMeasuredbyElectrochemicalConcentrationCelOzonesondes①LiuQijun(刘奇俊),Zheng...  相似文献   

17.
平流层对对流层的作用是准确评估、预测对流层气候变化的一个重要方面。其中平流层成分尤其是臭氧的变化,可以改变平流层乃至对流层的辐射平衡,从而影响平流层、对流层的热动力过程。本文从辐射、动力2个角度介绍了平流层臭氧影响对流层气候变化的若干研究进展。平流层臭氧可以通过长短波辐射的方式对对流层大气造成辐射强迫,利用大气化学气候模式可以定量计算平流层臭氧变化引起的辐射强迫,但是辐射强迫的估算受模式中辐射传输模块本身缺陷的影响存在不确定性。动力方面,平流层臭氧变化产生的辐射效应可以改变温度的垂直和经向梯度,造成波折射指数的变化,进而影响平流层甚至对流层内波的折射与反射,通过上对流层下平流层区域内的波—流相互作用,对对流层气候产生影响。另外,南极臭氧损耗可通过大气环状模影响冬春季中高纬度对流层的天气气候,但是其影响的强度大小以及物理机制仍需进一步的确认。值得注意的是,北极平流层臭氧的变化与北半球中高纬度气候变化之间的关系相比南半球要更加复杂,需要更为深入的研究。  相似文献   

18.
Abstract

A coupled 1‐D radiative‐convective and photochemical diffusion model is used to study the influence of ozone photochemistry on changes in the vertical temperature structure and surface climate resulting from the doubling of atmospheric CO2, N2O, CH4 and increased stratospheric aerosols owing to the El Chichón volcanic eruption. It is found when CO2 alone is doubled, that the total ozone column increases by nearly 6% and the resulting increase in the solar heating contributes a smaller temperature decrease in the stratosphere (up to 4 K near the stratopause level). When the concentration of CO2, N2O and CH4 are simultaneously doubled, the total ozone column amount increases by only 2.5% resulting in a reduced temperature recovery in the stratosphere. Additional results concerning the effect of the interaction of ozone photochemistry with the stratospheric aerosol cloud produced by the El Chichón eruption show that it leads to a reduction in stratospheric ozone, which in turn has the effect of increasing the cooling at the surface and above the cloud centre while causing a slight warming below in the lower stratosphere.  相似文献   

19.
Wintertime temperature and ozone in the Northern Hemisphere stratosphere vary significantly between years. Largely random, those variations are marked by compensating changes at high and low latitudes, a feature that reflects the residual mean circulation of the stratosphere. Interannual changes of temperature and ozone each track anomalous forcing of the residual circulation. This relationship is shown to be obeyed even over the Arctic, where transport is augmented by heterogeneous chemical processes that destroy ozone. Chlorine activation obeys a similar relationship, reflecting feedback between changes of the residual circulation and anomalous photochemistry.Changes of stratospheric dynamical and chemical structure are found be accompanied by coherent changes in the troposphere. Vertically extensive, they reflect inter-dependent changes in the stratosphere and troposphere, which are coupled by the residual circulation through transfers of mass. The corresponding structure is shown to share major features with empirical modes of interannual variability associated with the AO and its cousin, the NAO.A 3D model of dynamics and photochemistry is used to simulate anomalous temperature and ozone. Driven by anomalous wave activity representative of that observed, the model reproduces the salient structure of observed interannual changes. Anomalous temperature and ozone follow in the integrations from anomalous downwelling, which, under disturbed conditions, renders temperature over the Arctic anomalously warm, and from anomalous poleward transport, which renders Arctic ozone anomalously rich.Accompanying random interannual changes in the observed record was a systematic decline of Northern Hemisphere temperature and ozone during the 1980s and early 1990s. Comprising decadal trends, these systematic changes are shown to have the same essential structure and seasonality as random changes, which, in turn, vary coherently with anomalous forcing of the residual circulation. Implications of the findings to the interpretation of stratospheric trends are discussed in light of anomalous residual motion, photochemistry, and feedback between them.  相似文献   

20.
谢飞  田文寿  郑飞  张健恺  陆进鹏 《大气科学》2022,46(6):1300-1318
本论文基于WACCM(Whole Atmosphere Community Climate Model)模式最新版本WACCM6和DART(Data Assimilation Research TestBed)同化工具最新版本Manhattan,开发了中高层大气温度、臭氧和水汽卫星资料的同化接口,搭建了一个包含完整平流层过程的数值同化、天气预报和短期气候预测模型(此后简称模型);本模型对2020年3~4月平流层大气变化进行了同化观测资料的模拟,并以同化试验输出的分析场作为初值,对5~6月的平流层大气进行了0~30天天气尺度预报以及31~60天短期气候尺度预测的回报试验。结果表明:本模型能较好地重现2020年3、4月北极平流层出现的大规模臭氧损耗事件随时间的演变特征,模拟结果和Microwave Limb Sounder(MLS)卫星观测结果很接近;而未进行同化的模拟试验,虽然可以模拟出北极臭氧损耗现象,但是模拟的臭氧损耗规模相比MLS卫星观测结果要低很多;利用同化试验4月末输出的分析场作为初值,预报的5月北极平流层臭氧体积混合比变化与MLS卫星观测值的差值小于0.5,预测的6月北极平流层臭氧变化只在10~30 hPa之间的区域,与观测之间的差异达到了1 ppm(ppm=10?6)。本模型不但改善了北极平流层化学成分变化的模拟,也显著地提升了北极平流层温度和环流的模拟。本模型同化模拟的3~4月、预报预测的5~6月北极平流层温度和纬向风变化与Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2)再分析资料结果具有很好的一致性,仅在北极平流层顶部,预报预测的温度和纬向风分别与再分析资料之间的均方根误差(RMSE)约为3 K和4 m s?1。未进行同化的试验模拟的3~4月、预报预测的5~6月北极平流层的温度和纬向风与MERRA2再分析资料之间的RMSE在大部分区域都达到6 K及5 m s?1以上。从全球范围来看,本模型对平流层中低层模拟性能改善最为显著,其预报预测结果与观测值之间的差异,比未进行同化试验的结果,减少了50%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号