首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文基于中国地面气温日值网格数据集(V2.0),采用滑动相关和相关分析等方法,揭示了冬季北大西洋涛动(NAO)对中国北方极端低温影响的事实,进一步证实了东北后冬(1、2月)冷日(夜)与同期NAO相关性的年代际变化。研究发现:在20世纪80年代中期前,东北后冬冷日(夜)频发,与NAO的相关性较好,而在80年代中期后东北后冬冷日(夜)少发,与NAO的相关性减弱。其中,1月在1969~1988阶段,东北冷日(夜)与NAO的相关性最好,相关区域显著,相关系数可达-0.68(-0.66),而在1989~2009阶段二者相关性最弱,相关区域不显著。进一步分析发现,在不同年代际背景下,NAO引起的大气环流异常是导致东北1月冷日(夜)与1月NAO相关性年代际变化的重要原因。相关性较好的年代,NAO引起的环流异常有利于冷涡等天气系统维持在贝加尔湖到东北一带,使东北地区气温偏低,冷日(夜)频发;相关性较弱的年代,不利于冷空气南下,使东北地区气温偏高,冷日(夜)少发。  相似文献   

2.
A maximum of easterly zonal wind at 925 hPa in the Caribbean region is called the Caribbean Low-Level Jet (CLLJ). Observations show that the easterly CLLJ varies semi-annually, with two maxima in the summer and winter and two minima in the fall and spring. Associated with the summertime strong CLLJ are a maximum of sea level pressure (SLP), a relative minimum of rainfall (the mid-summer drought), and a minimum of tropical cyclogenesis in July in the Caribbean Sea. It is found that both the meridional gradients of sea surface temperature (SST) and SLP show a semi-annual feature, consistent with the semi-annual variation of the CLLJ. The CLLJ anomalies vary with the Caribbean SLP anomalies that are connected to the variation of the North Atlantic Subtropical High (NASH). In association with the cold (warm) Caribbean SST anomalies, the atmosphere shows the high (low) SLP anomalies near the Caribbean region that are consistent with the anomalously strong (weak) easterly CLLJ. The CLLJ is also remotely related to the SST anomalies in the Pacific and Atlantic, reflecting that these SST variations affect the NASH. During the winter, warm (cold) SST anomalies in the tropical Pacific correspond to a weak (strong) easterly CLLJ. However, this relationship is reversed during the summer. This is because the effects of ENSO on the NASH are opposite during the winter and summer. The CLLJ varies in phase with the North Atlantic Oscillation (NAO) since a strong (weak) NASH is associated with a strengthening (weakening) of both the CLLJ and the NAO. The CLLJ is positively correlated with the 925-hPa meridional wind anomalies from the ocean to the United States via the Gulf of Mexico. Thus, the CLLJ and the meridional wind carry moisture from the ocean to the central United States, usually resulting in an opposite (or dipole) rainfall pattern in the tropical North Atlantic Ocean and Atlantic warm pool versus the central United States.  相似文献   

3.
The relationship between the late spring North Atlantic Oscillation (NAO) and the summer extreme precipitation frequency (EPF) in the middle and lower reaches of the Yangtze River Valley (MLYRV) is examined using an NECP/NCAR reanalysis dataset and daily precipitation data from 74 stations in the MLYRV. The results show a significant negative correlation between the May NAO index and the EPF over the MLYRV in the subsequent summer. In positive EPF index years, the East Asian westerly jet shifts farther southward, and two blocking high positive anomalies appear over the Sea of Okhotsk and the Ural Mountains. These anomalies are favorable to the cold air from the mid-high latitudes invading the Yangtze River Valley (YRV). The moisture convergence and the ascending motion dominate the MLYRV. The above patterns are reversed in negative EPF index years. A wave train pattern that originates from the North Atlantic extends eastward to the Mediterranean and then moves to the Tibetan Plateau and from there to the YRV, which is an important link in the May NAO and the summer extreme precipitation in the MLYRV. The wave train may be aroused by the tripole pattern of the SST, which can explain why the May NAO affects the summer EPF in the MLYRV.  相似文献   

4.
春季北大西洋三极型海温异常变化及其与NAO和ENSO的联系   总被引:1,自引:0,他引:1  
利用1951—2016年HadISST逐月海表温度(Sea Surface Temperature,SST)资料,NCEP/NCAR再分析资料以及1958—2016年美国伍兹霍尔海洋研究所(Woods Hole Oceanographic Institution,WHOI)提供的OAFlux数据集,运用经验正交函数分解(Empirical Orthogonal Function,EOF)和偏相关分析等统计方法,研究了春季北大西洋海温异常的主要特征及其与春季NAO和前期冬季ENSO联系。结果表明:春季北大西洋海温异常EOF的第一模态是自北而南出现的三极结构的海温距平型,其方差贡献率为35.7%。春季北大西洋三极型海温异常的形成主要受到春季NAO主导作用,还受到前期冬季热带中东太平洋海温异常的影响。消除前期冬季Niňo3.4的影响后,春季北大西洋三极型海温异常指数与同期北大西洋涛动(North Atlantic Oscillation,NAO)指数的偏相关系数分别为0.50,通过了99%置信度水平的显著性检验。消除春季NAO的影响后,春季北大西洋三极型海温异常指数与前期冬季Niňo3.4指数的偏相关系数为-0.26,通过了95%信度水平的显著性检验。春季NAO正(负)位相引起的海表风场和海表湍流热通量的异常,进而激发出正(负)位相的北大西洋三极型海温异常。前期冬季ENSO事件可以引起春季大气环流异常和热带外海温异常,进而调制春季NAO对北大西洋三极型海温异常的影响。  相似文献   

5.
Influence of North Atlantic sea surface temperature (SST) anomalies on tropical Pacific SST anomalies is examined. Both summer and winter North Atlantic SST anomalies are negatively related to central-eastern tropical Pacific SST anomalies in the subsequent months varying from 5 to 13?months. In particular, when the North Atlantic is colder than normal in the summer, an El Ni?o event is likely to be initiated in the subsequent spring in the tropical Pacific. Associated with summer cold North Atlantic SST anomalies is an anomalous cyclonic circulation at low-level over the North Atlantic from subsequent October to April. Corresponded to this local response, an SST-induced heating over the North Atlantic produces a teleconnected pattern, similar to the East Atlantic/West Russia teleconnection. The pattern features two anticyclonic circulations near England and Lake Baikal, and two cyclonic circulations over the North Atlantic and near the Caspian Sea. The anticyclonic circulation near Lake Baikal enhances the continent northerlies, and strengthens the East-Asian winter monsoon. These are also associated with an off-equatorial cyclonic circulation in the western Pacific during the subsequent winter and spring, which produces equatorial westerly wind anomalies in the western Pacific. The equatorial westerly wind anomalies in the winter and spring can help initiate a Pacific El Ni?o event following a cold North Atlantic in the summer.  相似文献   

6.
The NCEP twentieth century reanalyis and a 500-year control simulation with the IPSL-CM5 climate model are used to assess the influence of ocean-atmosphere coupling in the North Atlantic region at seasonal to decadal time scales. At the seasonal scale, the air-sea interaction patterns are similar in the model and observations. In both, a statistically significant summer sea surface temperature (SST) anomaly with a horseshoe shape leads an atmospheric signal that resembles the North Atlantic Oscillation (NAO) during the winter. The air-sea interactions in the model thus seem realistic, although the amplitude of the atmospheric signal is half that observed, and it is detected throughout the cold season, while it is significant only in late fall and early winter in the observations. In both model and observations, the North Atlantic horseshoe SST anomaly pattern is in part generated by the spring and summer internal atmospheric variability. In the model, the influence of the ocean dynamics can be assessed and is found to contribute to the SST anomaly, in particular at the decadal scale. Indeed, the North Atlantic SST anomalies that follow an intensification of the Atlantic meridional overturning circulation (AMOC) by about 9 years, or an intensification of a clockwise intergyre gyre in the Atlantic Ocean by 6 years, resemble the horseshoe pattern, and are also similar to the model Atlantic Multidecadal Oscillation (AMO). As the AMOC is shown to have a significant impact on the winter NAO, most strongly when it leads by 9 years, the decadal interactions in the model are consistent with the seasonal analysis. In the observations, there is also a strong correlation between the AMO and the SST horseshoe pattern that influences the NAO. The analogy with the coupled model suggests that the natural variability of the AMOC and the gyre circulation might influence the climate of the North Atlantic region at the decadal scale.  相似文献   

7.
This paper examines an asymmetric spatiotemporal connection and climatic impact between the winter atmospheric blocking activity in the Euro-Atlantic sector and the life cycle of the North Atlantic Oscillation(NAO) during the period 1950–2012. Results show that, for positive NAO(NAO+) events, the instantaneous blocking(IB) frequency exhibits an enhancement along the southwest–northeast(SW–NE) direction from the eastern Atlantic to northeastern Europe(SW–NE pattern, hereafter), which is particularly evident during the NAO+decaying stage. By contrast, for negative NAO(NAO-)events, the IB frequency exhibits a spatially asymmetric southeast–northwest(SE–NW) distribution from central Europe to the North Atlantic and Greenland(SE–NW pattern, hereafter). Moreover, for NAO-(NAO+) events, the most marked decrease(increase) in the surface air temperature(SAT) in winter over northern Europe is in the decaying stage. For NAO+events, the dominant positive temperature and precipitation anomalies exhibit the SW–NE-oriented distribution from western to northeastern Europe, which is parallel to the NAO+-related blocking frequency distribution. For NAO-events, the dominant negative temperature anomaly is in northern and central Europe, whereas the dominant positive precipitation anomaly is distributed over southern Europe along the SW–NE direction. In addition, the downward infrared radiation controlled by the NAO's circulation plays a crucial role in the SAT anomaly distribution. It is further shown that the NAO's phase can act as an asymmetric impact on the European climate through producing this asymmetric spatiotemporal connection with the Euro-Atlantic IB frequency.  相似文献   

8.
A strong (weak) East Asian summer monsoon (EASM) is usually concurrent with the tripole pattern of North Atlantic SST anomalies on the interannual timescale during summer, which has positive (negative) SST anomalies in the northwestern North Atlantic and negative (positive) SST anomalies in the subpolar and tropical ocean. The mechanisms responsible for this linkage are diagnosed in the present study. It is shown that a barotropic wave-train pattern occurring over the Atlantic-Eurasia region likely acts as a link between the EASM and the SST tripole during summer. This wave-train pattern is concurrent with geopotential height anomalies over the Ural Mountains, which has a substantial effect on the EASM. Diagnosis based on observations and linear dynamical model results reveals that the mechanism for maintaining the wave-train pattern involves both the anomalous diabatic heating and synoptic eddy-vorticity forcing. Since the North Atlantic SST tripole is closely coupled with the North Atlantic Oscillation (NAO), the relationships between these two factors and the EASM are also examined. It is found that the connection of the EASM with the summer SST tripole is sensitive to the meridional location of the tripole, which is characterized by large seasonal variations due to the north-south movement of the activity centers of the NAO. The SST tripole that has a strong relationship with the EASM appears to be closely coupled with the NAO in the previous spring rather than in the simultaneous summer.  相似文献   

9.
利用大气环流模式模拟北大西洋海温异常强迫响应   总被引:3,自引:1,他引:3  
李建  周天军  宇如聪 《大气科学》2007,31(4):561-570
北大西洋地区的海温异常能够在多大程度上对大气产生影响,一直是一个有争议的问题。作者利用伴随北大西洋涛动出现的海温异常对大气环流模式CAM2.0.1进行强迫,考察了模式在冬季(12月、1月和2月)对三核型海温异常的响应。通过与欧洲中期天气预报中心提供的再分析资料的对比,发现该模式可以通过海温强迫在一定程度上再现具有北大西洋涛动特征的温度场和环流场。在北大西洋及其沿岸地区,模式模拟出了三核型的准正压响应,与经典的北大西洋涛动型大气异常是一致的。模式结果与北大西洋地区大气内部主导模态的差别主要体现在两个方面:一是异常中心位置多偏向于大洋上空,在陆地上的异常响应强度很弱;二是高纬地区对海温异常的响应不显著,没有强迫出与实际的大气模态相对应的异常中心,表明该地区海洋的反馈作用较弱。  相似文献   

10.
两类ENSO对中国北方冬季平均气温和极端低温的不同影响   总被引:2,自引:0,他引:2  
汪子琪  张文君  耿新 《气象学报》2017,75(4):564-580
利用1961-2012年观测、再分析资料以及全球大气环流模式数值试验,探讨了中国北方冬季平均气温对于不同类型(即东部型和中部型)ENSO事件的气候响应,并分析了不同类型ENSO对极端低温事件的可能影响,重点关注了北大西洋涛动(NAO)在其中的桥梁作用。结果表明,ENSO信号能通过调制北大西洋地区的大气环流改变欧亚中高纬度地区的纬向温度平流输送和西伯利亚高压的强度,进而影响中国北方冬季气温,由于不同类型ENSO事件海温分布的差异,这种影响具有明显的非线性特征。在两类厄尔尼诺和东部型拉尼娜事件冬季,北大西洋涛动均呈现负位相,不利于北大西洋的暖湿空气向欧亚大陆输送,西伯利亚高压偏强,因而中国北方地区较气候态偏冷。中部型厄尔尼诺和东部型拉尼娜事件冬季气温负异常的显著区域分别位于东北大范围地区、内蒙古河套附近;东部型厄尔尼诺事件冬季显著的冷异常信号仅局限于黑龙江北部与大兴安岭地区;而中部型拉尼娜事件冬季虽伴随北大西洋涛动正位相,但其空间结构向西偏移,对下游中国北方地区气温的直接影响并不显著,可能受局地信号干扰较大。数值试验再现了北大西洋涛动以及中国北方冬季气温对不同类型ENSO的响应,进一步佐证了上述结论。此外,两类厄尔尼诺事件冬季中国东北地区日平均气温容易偏低,极端低温事件的发生频次增多;而两类拉尼娜事件对极端低温的影响较弱。   相似文献   

11.
This work evaluates the skill of retrospective predictions of the second version of the NCEP Climate Forecast System (CFSv2) for the North Atlantic sea surface temperature (SST) and investigates the influence of El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) on the prediction skill over this region. It is shown that the CFSv2 prediction skill with 0–8 month lead displays a “tripole”-like pattern with areas of higher skills in the high latitude and tropical North Atlantic, surrounding the area of lower skills in the mid-latitude western North Atlantic. This “tripole”-like prediction skill pattern is mainly due to the persistency of SST anomalies (SSTAs), which is related to the influence of ENSO and NAO over the North Atlantic. The influences of ENSO and NAO, and their seasonality, result in the prediction skill in the tropical North Atlantic the highest in spring and the lowest in summer. In CFSv2, the ENSO influence over the North Atlantic is overestimated but the impact of NAO over the North Atlantic is not well simulated. However, compared with CFSv1, the overall skills of CFSv2 are slightly higher over the whole North Atlantic, particularly in the high latitudes and the northwest North Atlantic. The model prediction skill beyond the persistency initially presents in the mid-latitudes of the North Atlantic and extends to the low latitudes with time. That might suggest that the model captures the associated air-sea interaction in the North Atlantic. The CFSv2 prediction is less skillful than that of SSTA persistency in the high latitudes, implying that over this region the persistency is even better than CFSv2 predictions. Also, both persistent and CFSv2 predictions have relatively low skills along the Gulf Stream.  相似文献   

12.
利用一个全球海气耦合模式(BCM),结合观测资料,讨论了热带太平洋强迫对北大西洋年际气候变率的影响。研究表明,BCM能够相对合理地模拟赤道太平洋的年际变率模态及相应的海温距平型和大气遥相关型,尽管其准3年的振荡周期过于规则。来自数值模式和观测上的证据都表明,北大西洋冬季海温的主导性变率模态,即自北而南出现的“- -”的海温距平型,受到来自热带太平洋强迫的显著影响,其正位相与赤道中东太平洋冷事件相对应。换言之,赤道太平洋暖事件的发生,在太平洋-北美沿岸激发出PNA遥相关型,进而通过在北大西洋产生类似NAO负位相的气压距平型,削弱本来与NAO正位相直接联系的三核型海温距平。北大西洋三核型海温距平对热带太平洋强迫的响应,要滞后2—3个月的时间。  相似文献   

13.
瞬变天气涡旋对北大西洋涛动的增强效应   总被引:3,自引:2,他引:1  
使用NCEP/NCAR再分析资料计算了冬季北大西洋瞬变涡旋活动强度与北大西洋涛动(NAO)逐日指数的时间序列,结果发现:当涡旋活动强度出现峰值后会伴随NAO模态增强现象;而随着NAO的增强,涡旋能量同落.为了判断是否涡流相互作用将天气尺度的能量转换为低频尺度的能量,使用瞬变涡度通量来研究涡度与能量的传输.通过分析瞬变涡...  相似文献   

14.
利用再分析数据,以在北半球冬季与北大西洋涛动(North Atlantic Oscillation,NAO)相关的向下游传播的准定常波列在欧洲地区是否发生反射为标准,将1957/1958年至2001/2002年这45个冬季分为高纬型和低纬型两类冬季,分别简称为在H型和L型冬季。在H(L)型冬季,和NAO相联系的向下游传播的Rossby波列主要沿高纬度(低纬度)路径传播。对比了在两种类型冬季NAO与同期大气环流、近地面温度(Surface Air Temperature,SAT)、海表面温度(Sea Surface Tempertaure,SST)和降水的关系。结果表明:大气环流方面,在H型冬季,300 hPa位势高度异常在西-西伯利亚和中-西伯利亚西部与NAO呈现正相关,而在L型冬季300 hPa位势高度异常在亚洲东海岸(约40°N)和北太平洋呈现正相关,在H型冬季与NAO相关的经向风异常在中纬度形成波列,而在L型冬季与NAO相关的经向风异常在副热带形成波列;SAT方面,在H型冬季SAT异常在欧亚大陆腹地高纬度地区与NAO呈现正相关,而在L型冬季与NAO相关的SAT异常在欧亚大陆腹地的高纬度地区相对较弱,但NAO造成的SAT异常可以扩展到亚洲东北部;降水方面,H型冬季与L型冬季主要区别在中国南方,在H型冬季降水异常与NAO的关系相对较弱,而在L型冬季降水异常与NAO呈现正相关关系;SST方面,同期SST异常在北大西洋中纬度海域与NAO呈现正相关,而在L型冬季与NAO相关的SST异常在北大西洋中纬度地区相对较弱,在北大西洋北部和南部较强。总体而言,在H型和L型冬季,NAO具有不同下游影响。  相似文献   

15.
A sign-variable structure of sea surface temperature (SST) anomalies in the high, subtropical, and tropical latitudes of the North Atlantic under the North Atlantic Oscillation index (NAO) values NAO ≥ 1 and NAO ≤ ?1 is considered. A difference in cyclonic activity in winter under extreme values of the NAO is noted. The relation between the NAO anomalies in the areas with maximum cyclonic activity in the North Atlantic and some hydrometeorological quantities in the Crimea is analyzed. Preliminary estimates of the occurrence of a quasi-twenty-year cycle in the variability of processes determined by extreme values of the NAO are presented.  相似文献   

16.
Global North Atlantic Oscillation (NAO) oceanic precipitation features in the latter half of the twentieth century are documented based on the intercomparison of multiple state-of-the-art precipitation datasets and the analysis of the NAO atmospheric circulation and SST anomalies. Most prominent precipitation anomalies occur over the ocean in the North Atlantic, where in winter a “quadrupole-like” pattern is found with centers in the western tropical Atlantic, sub-tropical Atlantic, high-latitude eastern Atlantic and over the Labrador Sea. The extent of the sub-tropical and high-latitude center and the amount of explained variance (over 50%) are quite remarkable. However, the tropical Atlantic center is probably the most intriguing feature of this pattern apparently linking the NAO with ITCZ variability. In summer, the pattern is “tripole-like” with centers in the eastern Mediterranean Sea, the North Sea/Baltic Sea and in the sub-polar Atlantic. In the eastern Indian Ocean, the correlation is positive in winter and negative in summer, with some link to ENSO variability. The sensitivity of these patterns to the choice of the NAO index is minor in winter while quite important in summer. Interannual NAO precipitation anomalies have driven similar fresh water variations in these “key” regions. In the sub-tropical and high-latitude Atlantic in winter precipitation anomalies have been roughly 15 and 10% of climatology per unit change of the NAO, respectively. Decadal changes of the NAO during the last 50 years have also influenced precipitation and fresh water flux at these time-scales, with values lower (higher) than usual in the high-latitude eastern North Atlantic (Labrador Sea) in the 1960s and the late 1970s, and an opposite situation since the early 1980s; in summer the North Sea/Baltic region has been drier than usual during the period 1965–1975 when the NAO was generally positive.  相似文献   

17.
This paper explores the role of synoptic eddy feedback in the air-sea interaction in the North Atlantic region, particularly the interaction between the North Atlantic Oscillation (NAO) and the North Atlantic sea surface temperature anomalies (SSTA) tripole. A linearized five-layer primitive equation atmospheric model with synoptic eddy and low-frequency flow (SELF) interaction is coupled with a linearized oceanic mixed-layer model to investigate this issue. In this model, the “climatological” storm track/activity (or synoptic eddy activity) is characterized in terms of spatial structures, variances, decay time scales and propagation speeds through the complex empirical orthogonal function (CEOF) analysis on the observed data, which provides a unique tool to investigate the role of synoptic eddy feedback in the North Atlantic air–sea coupling. Model experiments show that the NAO-like atmospheric circulation anomalies can produce tripole-like SSTA in the North Atlantic Ocean, and the tripole-like SSTA can excite a NAO-like dipole with an equivalent barotropic structure in the atmospheric circulation, which suggests a positive feedback between the NAO and the SSTA tripole. This positive feedback makes the NAO/SSTA tripole-like mode be the leading mode of the coupled dynamical system. The synoptic eddy feedback plays an essential role in the origin of the NAO/SSTA tripole-like leading mode and the equivalent barotropic structure in the atmosphere. Without synoptic eddy feedback, the atmosphere has a baroclinic structure in the response field to the tripole-like SSTA forcing, and the leading mode of the dynamic system does not resemble NAO/SSTA tripole pattern.  相似文献   

18.
The dominant patterns of the winter (December–February) surface air temperature anomalies (SATAs) over Central Asia (CA) are investigated in this study. The first two leading modes revealed by empirical orthogonal function (EOF) analysis represent the patterns by explaining 74% of the total variance. The positive phase of EOF1 is characterized by a monopole pattern, corresponding to cold SATAs over CA, while the positive phase of EOF2 shows a meridional dipole pattern with warm and cold SATAs over northern and southern CA. EOF1 is mainly modulated by the negative phase of the Arctic Oscillation (AO) in the troposphere, and the negative AO phase may be caused by the downward propagation of the precursory anomalies of the stratospheric polar vortex. EOF2 is mainly influenced by the Ural blocking pattern and the winter North Atlantic Oscillation (NAO). The SATAs associated with EOF2 can be attributed to a dipole-like pattern of geopotential height anomalies over CA. The dipole-like pattern is mainly caused by the Ural blocking pattern, and the NAO can also contribute to the northern part of the dipole.摘要本文利用经验正交函数分解方法 (Empirical orthogonal function, EOF) , 针对1979–2019年冬季 (12月–2月) 中亚地区地面气温异常进行了研究. 结果表明, 中亚地区冬季地面气温异常的前两个EOF模态解释方差总占比可达74%. 其中, 第一模态 (EOF1) 正位相为一致型变化, 对应中亚地区气温冷异常; 第二模态 (EOF2) 正位相则为南北偶极型变化, 对应于中亚地区南冷北暖型气温异常. EOF1可能受到冬季北极涛动 (Arctic Oscillation, AO) 负位相的调制, 而AO的负位相则可能来自于前期平流层极涡正位势高度异常下传. EOF2则可能受到乌拉尔山阻塞及冬季北大西洋涛动 (North Atlantic Oscillation, NAO) 的共同调制. 乌拉尔山阻塞可引起中亚区域南北偶极型气温异常, 而冬季NAO可对该偶极型气温异常的北侧产生贡献.  相似文献   

19.
Holocene climate modes are identified by the statistical analysis of reconstructed sea surface temperatures (SSTs) from the tropical and North Atlantic regions. The leading mode of Holocene SST variability in the tropical region indicates a rapid warming from the early to mid Holocene followed by a relatively weak warming during the late Holocene. The dominant mode of the North Atlantic region SST captures the transition from relatively warm (cold) conditions in the eastern North Atlantic and the western Mediterranean Sea (the northern Red Sea) to relatively cold (warm) conditions in these regions from the early to late Holocene. This pattern of Holocene SST variability resembles the signature of the Arctic Oscillation/North Atlantic Oscillation (AO/NAO). The second mode of both tropical and North Atlantic regions captures a warming towards the mid Holocene and a subsequent cooling. The dominant modes of Holocene SST variability emphasize enhanced variability around 2300 and 1000 years. The leading mode of the coupled tropical-North Atlantic Holocene SST variability shows that an increase of tropical SST is accompanied by a decrease of SST in the eastern North Atlantic. An analogy with the instrumental period as well as the analysis of a long-term integration of a coupled ocean-atmosphere general circulation model suggest that the AO/NAO is one dominant mode of climate variability at millennial time scales.  相似文献   

20.
Huang  Ruping  Chen  Shangfeng  Chen  Wen  Yu  Bin  Hu  Peng  Ying  Jun  Wu  Qiaoyan 《Climate Dynamics》2021,56(11):3643-3664

Compared to the zonal-mean Hadley cell (HC), our knowledge of the characteristics, influence factors and associated climate anomalies of the regional HC remains quite limited. Here, we examine interannual variability of the northern poleward HC edge over western Pacific (WPHCE) during boreal winter. Results suggest that interannual variability of the WPHCE is impacted by the El Niño-Southern Oscillation (ENSO) Modoki, North Pacific Oscillation (NPO) and North Atlantic Oscillation (NAO). The WPHCE tends to shift poleward during negative phase of the ENSO Modoki, and positive phases of the NPO and NAO, which highlights not merely the tropical forcing but also the extratropical signals that modulate the WPHCE. ENSO modoki, NPO and NAO modulate the WPHCE via inducing atmospheric anomalies over the western North Pacific. We further investigate the climatic impacts of the WPHCE on East Asia. The poleward shift of the northern descending branch of the WPHC results in anomalous upward (downward) motions and upper-level divergence (convergence) anomalies over south-central China (northern East-Asia), leading to increased (decreased) rainfall there. Moreover, pronounced cold surface air temperature anomalies appear over south-central China when the sinking branch of the WPHC moves poleward. Based on the temperature diagnostic analysis, negative surface temperature tendency anomalies over central China are mostly attributable to the cold zonal temperature advection and ascent-induced adiabatic cooling, while the negative anomalies over South China are largely due to the cold meridional temperature advection. These findings could improve our knowledge of the WPHCE variability and enrich the knowledge of forcing factors for East Asian winter climate.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号