首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
利用NCEP/NCAR再分析资料和中尺度模式MM5V3,对2010年7月造成甘肃东部大暴雨过程的低涡系统进行了诊断分析和数值模拟.结果表明:(1)在低涡发生、发展阶段,假相当位温和比湿的垂直平流在视热源、视水汽汇中占绝对优势,说明垂直平流变化与低涡发生、发展及强降水有很好的正相关;(2)上升运动中心与视热源、视水汽汇大致中心相对应,变化趋势基本一致,最强的凝结潜热加热发生在中层,最强上升运动同样也出现在中层,说明降水过程中大气加热与大气上升运动密切相关,大气热源主要来自于水汽的凝结潜热;(3)低涡发生、发展过程中伴随中低层有西南风急流、强正涡度中心、低层辐合、高层辐散结构、强上升运动及低层水汽通量辐合;(4)低涡区上空对流层低层为对流不稳定层结,中层至中高层为条件对称不稳定层结,对流不稳定层结强度随时间变化不大,而条件对称不稳定层结强度随时间有明显加强,位势不稳定和条件性对称不稳定共存使得假相当位温高值区域的垂直上升运动得以产生和维持.  相似文献   

2.
为进一步了解华南暴雨的形成机理,利用MM5模式输出的高时空分辨率资料,对“98.5”华南暴雨的总涡源、视热源和视水汽汇进行了诊断分析。诊断结果表明:总涡源场与涡度场对应一致,高值中心位于降水上空,正的总涡源柱中心预示了涡度柱将继续发展;在组成总涡源各项中水平绝对涡度平流项和扭转项是负贡献,垂直涡度平流项和散度项为正贡献;降水区与视水汽汇和视热源高值区对应一致,视水汽汇和视热源有峰值相伴,说明凝结潜热给系统提供了发展的能量;地面涡动通量和各层的次网格尺度涡动使高层冷却,低层加热,有利于降水系统中对流发展;在组成视热源和视水汽汇各项中均为垂直项起主要作用,充分说明了在暴雨发生过程中强上升运动具有重要作用;强烈的垂直上升运动将水汽带到了高层,云水场的发展与视水汽汇有着一致性,在视水汽汇达到极值时,除冰晶外,云水场各物理量中心高度达到极值,部分物理量的强度也达到最大。  相似文献   

3.
高原低涡是夏季青藏高原(简称高原)及其下游地区的主要降水系统。本文利用ERA5逐小时再分析资料、FY-2E卫星云顶亮温逐小时数据和TRMM 3 h降水资料,对2013年7月19~21日活动于高原的一次低涡过程进行了诊断分析。此低涡在高原期间的活动时间长达56 h,将其分为初生、发展及移出高原前三个阶段,着重分析了高原大气热源在低涡不同阶段的关键作用和机理。结果表明:此低涡在发展过程中表现为阶段性增强的特征,位势涡度倾向方程诊断发现非绝热加热的垂直梯度是造成低涡发展增强的主要因素,即非绝热加热极值所在高度的下方和上方分别有正的和负的位涡制造,从而加强了低层的气旋和高层的反气旋。进一步分析可知大气热源在低涡发展过程中也表现出阶段性增强的特征,最大值出现在正午时段,且在低涡移出高原前阶段最强。低涡的生成与地面暖中心有关,这归因于地表感热加热的作用;而低涡的后续发展则主要依赖于凝结潜热加热,加热高度位于对流层中层,这主要是由垂直运动将低层的水汽集中到中层,产生水汽凝结所致。  相似文献   

4.
本文使用常规观测资料、四川省自动站降水资料、0.1°×0.1°的FY-2E云顶亮温资料和1°×1°的NCEP再分析格点资料对2012年7月20~23日四川东部强降水过程的主要影响系统、水汽源地、动力、热力条件等进行诊断分析,结果表明:(1)本次暴雨过程中伴有500hPa高空槽东移至四川并向南加深发展,槽后冷空气与槽前暖湿气流在四川汇合,低层有低涡发展,配以高低空急流耦合的有利形势;(2)暴雨前期水汽主要来源于孟加拉湾,随着南海台风西进,其外围偏东气流向西输送增强,西南暖湿气流北上受到抑制,使得雨带南压;(3)降水以对流性降水为主,暴雨期间水汽凝结潜热在对流层中低层起主要作用,强上升运动将低层的潜热加热向上输送,形成高空的热源中心,强降水期间大气的加热是与大气的垂直上升运动密切相关的;在本次暴雨过程垂直输送项是视热源Q1和视水汽汇Q2的主要贡献者,尤其是在强降水阶段;(4)在低涡在发展阶段,低层正涡度局地变化项首先得到发展,在低涡减弱阶段,正涡度局地变化项的峰值中心由低层向中低层抬升;(5)中尺度对流系统与小时降水分布一致,MCS的发展是触发降水的重要因素之一。   相似文献   

5.
使用ERA5、ERA-Interim和FNL 3种常用再分析/分析资料驱动WRF模式对2006年8月14日青藏高原西部的一次高原涡活动进行数值模拟,在评估不同再分析资料驱动WRF模式对高原涡的模拟能力基础上,利用涡度收支、视热源和视水汽汇方程,诊断分析高原涡生成过程中的热力和动力结构特征。结果表明,使用ERA5和ERA-Interim资料驱动WRF模式可模拟再现出此次高原涡的生成过程,其中ERA5对高原涡低层闭合性气旋环流和螺旋云带结构特征的模拟再现能力最好,模拟的高原涡及其降水强度最强;使用FNL资料驱动WRF模式无法模拟再现出高原涡生成过程及其降水分布特征。此次高原涡生成过程中气旋性正涡度的发展、热量和水汽的收支与其低层的垂直输送密切相关;高原涡生成前地表感热加热作用明显;生成阶段积云对流发展最为旺盛,降水最为显著,热量和水汽的垂直输送及相应的大气凝结潜热加热明显,对高原涡的发展有促进作用。  相似文献   

6.
利用联合台风预警中心(Joint Typhoon Warning Center,JTWC)最佳路径资料、逐小时降水资料和ERA5再分析资料,研究2017年5月26—31日孟加拉湾风暴与高原低涡共同影响下青藏高原一次强降水过程,结果表明:风暴和南支槽共同作用下建立的孟加拉湾至青藏高原的水汽输送带为高原低涡-切变线区域的降水提供水汽。南支槽后冷气流在青藏高原南部陡坡下沉形成冷垫,孟加拉湾偏南暖湿气流首先沿冷垫向北抬升,爬上青藏高原后向北在高原切变线附近再次抬升,增加降水区地表至对流层高层大气中的可降水量。风暴偏南风暖湿气流与青藏高原北部干冷空气交汇产生锋生,大气湿斜压性显著增长,湿等熵线密集陡立导致垂直涡度剧烈发展,有利于高原低涡加强。风暴北上过程中其高层反气旋式出流加强青藏高原槽前西南风高空急流,辐散增强有利于低层切变线发展和高原低涡东移,产生大范围强降水。高原低涡切变线与风暴水汽输送的正反馈作用,为降水区提供持续视热源和视水汽汇,有利于青藏高原降水系统的维持和发展。  相似文献   

7.
利用WRF模式对2009年7月29日的一次高原低涡个例进行数值模拟,研究了凝结潜热加热及其与对流活动的反馈在高原低涡发生发展过程中的作用及影响机制。通过模拟结果与实况资料的对比分析,发现WRF模式能够较好地模拟此次低涡的移动路径、中心强度和降水场分布。不考虑凝结潜热加热效应的敏感性试验结果中,模式模拟的低涡移动迟滞,降水量减少,并在移动至高原中部后迅速减弱消失。进一步分析高原低涡的结构发现,凝结潜热加热使得低涡中心附近的上升运动延伸至高层,并产生较强的对流活动,而更为深厚的上升运动又释放出较多的潜热,从而形成一种正反馈机制。位涡收支诊断分析表明,低层凝结潜热加热垂直梯度项产生的正位涡变化有利于高原低涡的增强与东移,位涡垂直通量散度项与凝结潜热加热垂直梯度项引起的位涡变化趋势相反。在高原低涡的形成和发展阶段,由于凝结潜热加热与对流活动间的正反馈机制,潜热加热垂直梯度项引起的正位涡增强,凝结潜热加热对低层的位涡变化起主要作用,有利于高原低涡的增强与东移;低涡进入成熟阶段后,凝结潜热的贡献减小,位涡水平通量散度项与位涡垂直通量散度项对位涡的变化起主要作用。  相似文献   

8.
高原东侧一次大暴雨过程动力热力特征分析   总被引:20,自引:16,他引:4  
2006年7月6~7日高原东侧发生了一次区域性暴雨过程,与以往高原东侧暴雨过程概念模型不同的是,这次暴雨过程中没有出现低空急流,在暴雨强盛阶段伴有全风速增强。本文采用诊断分析方法,从暴雨发生所需的热力、水汽及动力条件入手,采用相当位温、水汽通量、视热源和视水汽汇、湿位涡等几个物理量对这次暴雨过程进行综合分析,以揭示了暴雨发生、发展的机制。西南涡与高温、高湿的大气条件相配合,高低空风的垂直切变及来自孟加拉湾的充沛水汽输送和辐合,为该暴雨过程提供了有利的条件。这次暴雨以对流性降水为主,视热源和视水汽汇的垂直输送作用是加热的主要贡献项,而局地变化项和平流项有相反的变化特征,其共同作用是减小对加热的贡献;该过程中湿斜压性是位涡的主要贡献项,湿位涡的演变与暴雨发展有很好的对应关系,湿位涡最大值与暴雨峰值出现时间一致,位势不稳定对触发暴雨的作用也不可忽视。  相似文献   

9.
利用ERA5再分析资料、CMORPH融合降水资料和山地通量观测资料对2020年6月26日发生在四川冕宁一次夜间致灾暴雨进行综合诊断分析。结果表明:本次夜间暴雨发生前,白天地面热源存在明显的正异常变化,地面热源的正异常区与降水有很好的对应关系。同时大气热源(视热源和视水汽汇)与暴雨的关系密切且相互影响,降水释放凝结潜热,加热大气,使得视热源也随之增加。在暴雨发展强盛阶段,视水汽汇的垂直输送项达到最大,而视水汽汇的局地变化项能很好指示整个暴雨过程中区域水汽的净输送状况。  相似文献   

10.
高原低涡降水是高原上5-8月高原主体降水产生主要天气系统之一,利用2008年7月29日玉树地区一次低涡过程的实况资料,分析过程前与过程期间500hPa环流形势、地面变压场、水汽条件以及云的演变等,总结出这次过程是在副高西伸脊点维系的大环流背景影响下,切变线东移过程中开始变性,配合季风低压水汽输送和高原动力作用生成的一次低涡过程。低涡生成的最初动力因子,是边界层内风场的辐合作用及相应垂直运动发展,地面潜热在发展阶段贡献也比较大,而凝结潜热的释放是低涡初期形成的主要能量源泉。  相似文献   

11.
冷空气对高原低涡移出青藏高原的影响   总被引:3,自引:3,他引:3       下载免费PDF全文
在对1998—2004年冷空气影响高原低涡移出青藏高原 (以下简称高原) 观测事实分析的基础上, 利用NCEP再分析资料对2002年8月12—14日托勒低涡移出高原的位涡进行诊断分析, 并通过数值试验揭示了托勒低涡移出高原的冷空气侵入特征和影响机理。结果表明:这次托勒低涡是受我国东北冷空气影响, 有高位涡空气伸入低涡区, 使冷空气迫近暖湿空气, 低涡处在斜压不稳定增强情况下移出高原的。在低涡区域没有冷空气或我国东北不存在冷温度槽情况下, 将会使伸向高原东北部的冷空气主力偏东、减弱, 使低涡受到我国东北冷空气影响减弱, 斜压不稳定减弱, 从而使高原低涡移出高原的速度减慢, 低涡强度减弱, 尤其是我国东北冷温度槽的影响更为明显, 在我国东北没有冷温度槽存在的情况下, 低涡24 h内西退, 在高原边缘徘徊。  相似文献   

12.
一次高原低涡与高原切变线演变过程与机理分析   总被引:6,自引:1,他引:5  
李山山  李国平 《大气科学》2017,41(4):713-726
对一次东移高原低涡减弱、高原切变线生成并在有利的环流背景下东南移,进而引发川渝强降水的高原切变线生成机制以及演变过程进行了初步分析。首先引入描写热带气旋的Okubo-Weiss(OW)参数(VOW)来定量表达低涡、切变气流中旋转和变形的相对大小,确定高原切变线的潜在生成区域和发展状况。得出在高原切变线生成阶段,500 hPa等压面上VOW值由正转负,VOW负值带可以很好地指示高原切变线的潜在生成区域。VOW负值强度与高原切变线强度有很好的相关性。高原切变线上以VOW负值中心为主,但也会存在正值中心,说明在切变线上也会有气旋性涡度。此个例高原切变线以伸缩变形为主,高原切变线沿变形场的拉伸轴分布。然后通过涡度方程和总变形方程进一步分析了高原低涡减弱、高原切变线生成的动力机制。高原低涡的减弱、消失主要受散度项的影响,时间演变分析表明系统由强气旋性涡度的高原低涡演变为强辐合性的高原切变线。总变形方程中的扭转项对高原切变线的生成贡献最大,其次为水平气压梯度项,散度项最小;当高原切变线上以拉伸变形为主时,不利于其上高原低涡的发展,切变线可能是影响低涡发展的背景流场。  相似文献   

13.
高原低涡东移出高原的平均环流场分析   总被引:7,自引:7,他引:7  
高文良  郁淑华 《高原气象》2007,26(1):206-212
利用美国国家环境预测中心(NCEP)再分析资料,挑选出1998—2004年夏季高原涡移出高原多、少的年、月对它们的环流场进行对比分析。对比分析指出,6~8月是高原涡最易移出的月;当500hPa孟湾季风槽偏北,或西太副高明显西伸,高原东部有切变线活动;当200hPa南亚高压东伸明显,高原东部为南亚高压脊前西北气流控制时,有利于高原涡东移出高原。为高原低涡暴雨预报的气候背景提供了科学依据。  相似文献   

14.
杜梅  李国平  李山山 《大气科学》2020,44(2):269-281
基于大气运动方程组及散度方程,对高原横切变线上扰动稳定性问题以及切变线诱发高原低涡的动力学机制进行了理论分析并用欧洲中心(ECMWF)ERA-interim再分析资料对其进行验证。得出高原横切变线是高原低涡产生的重要背景场,切变线以南的水汽输送与辐合对于低涡的诱发作用是大气处于不平衡状态而引起散度场调整的结果,辐合增强区有利于高原低涡生成,低涡中心对应非平衡正值中心,低涡外围为非平衡项负值区。非平衡项负值大值与水汽辐合带的重叠区对降水落区有较好的指示意义。当高原南部的西南风带向东或东北方向移动或当低涡下游出现非平衡项负值中心时,低涡亦同向移动。若高原出现气旋式环流并且环流中心与非平衡项正值中心对应时,有利于低涡生成;进一步,当低涡中心与非平衡项正值中心对应且正值中心数值不断增大时,低涡趋于发展加强。  相似文献   

15.
青藏高原及其热源效应对东亚以及全球的天气气候起着举足轻重的作用。青藏高原大气热源及其影响的相关研究有助于进一步加深对青藏高原大气热源及其影响的认识,提高高原地区天气系统发生发展的预报能力,提升高原地区降水的预报水平。本文较为系统地梳理了青藏高原大气热源的相关研究,涉及青藏高原大气热源的获取与特征,包括青藏高原大气热源的计算和青藏高原大气热源的时空分布及演变特征;青藏高原大气热源对季风、对降水的影响;青藏高原大气热源对天气系统的影响和作用,包括青藏高原大气热源对南亚高压、西太平洋副热带高压、高原低涡以及高原切变线的影响。在总结已有研究进展和成果的基础上,对今后青藏高原大气热源研究做出一定展望,提出值得进一步加强研究的方面。  相似文献   

16.
夏季青藏高原地区降水和低涡的数值预报试验   总被引:11,自引:1,他引:11       下载免费PDF全文
本文首先分析了1979年6—7月的FGGEIIIb级资料风场和相对湿度场在青藏高原地区的偏差,指出在高原西部应予以订正。然后利用一有限区域模式,通过综合订正初始风场和相对湿度场,改进模式部分物理过程,并提高其水平分辨率,共设计了6组预报试验,对该年的两例高原低涡切变线降水过程进行了24小时预报。结果表明,利用改进了的初始场和部分物理过程,可明显改善高原地区的降水预报,并在一定程度上改善了流场的预报,即上述改进方案是可行的;但在高原地区嵌套预报方案尚待修改,还应继续努力提高模式对高原低涡流场的预报能力。  相似文献   

17.
利用长时间序列气象卫星及多源数据,研究青藏高原低涡综合识别方法,完成低涡数据集并与青藏高原低涡年鉴中低涡位置、路径和分布进行对比分析。研究表明:卫星识别多年平均低涡分布存在两个高值区,分别位于西藏的中北部和青海西南部及青藏高原西部,在有探空站的青藏高原东部(90°E以东),卫星识别低涡高值区和年鉴数据吻合,冬半年,卫星识别低涡活动明显高于年鉴,主要为青藏高原西部低涡活动引起,逐年及2008年低涡路径对比也显示,有探空站区域卫星识别低涡和年鉴具有较好的一致性,表明卫星识别低涡在青藏高原东部地区的可信性;2015年青藏高原中西部新增3个探空站,年鉴中90°E以西低涡约占全年低涡总数量的22%,该区域卫星识别低涡和年鉴一致性较高,表明卫星识别低涡在高原中西部的可信性。因此,卫星识别低涡与年鉴低涡在有探空站区域有较好的一致性,可对年鉴中青藏高原东部低涡源地进行追踪,又可识别青藏高原中西部尤其是活跃于冬半年的低涡,是青藏高原年鉴低涡数据的有效补充。  相似文献   

18.
郁淑华  高文良 《大气科学》2017,41(4):831-856
本文利用NCEP/NCAR-FNL再分析资料、历史天气图、青藏高原低涡切变线年鉴,通过分析1998~2015年持续高原涡影响西南涡结伴而行(简称两涡伴行)过程的活动形式,并对不同活动形式的个例进行了环境场与位涡分析,得出了不同活动形式两涡伴行的环境场特征,揭示了冷空气活动、200 hPa急流对不同活动形式的两涡伴行的影响原因。结果表明:(1)两涡伴行有三种活动形式,它们是高原涡诱发西南涡、高原涡与西南涡耦合以及同一天气系统下两涡,其中以高原涡诱发西南涡的活动形式占多数。(2)两涡伴行的500 hPa环境场主要是40°N以北东亚环流经向度不强,纬向气流主导,受500 hPa低槽、冷空气活动的影响;200 hPa环境场主要与200 hPa急流的强度、距急流核距离、在急流两侧的位置密切相关;不同活动形式的西南涡上空200 hPa、500 hPa环境场特征是有差别的。(3)受500 hPa低槽、冷空气影响的两涡伴行中的西南涡的生成是通过500 hPa高位涡空气伸入西南涡上空,造成西南涡上空斜压不稳定所至;在西南涡上空500 hPa斜压不稳定增强且具有较强的斜压不稳定时西南涡加强;200 hPa西南风急流影响高原涡诱发或耦合、加强西南涡是分别在高空高位涡下传影响到高原涡与西南涡上空、西南涡的情况下实现的,同一天气系统下,高空高位涡下传只影响高原涡,而未影响西南涡。  相似文献   

19.
利用欧洲中心ERA-interim再分析资料,通过计算Okubo-Weiss(OW)参数,对青藏高原上一次高原切变线诱发高原低涡生成的过程进行了诊断分析。结果表明:(1)OW负值带可以指示高原切变线的可能生成区;OW值趋于0时,切变线变得不稳定,强度逐渐减弱;OW正值区能够指示高原低涡的后续移动趋势以及发展情况,气流辐合区域与OW大正值区有很好的对应关系。(2)此次高原切变线气流活动以拉伸变形为主。切变线生成阶段,其附近气流作拉伸变形运动;切变线成熟阶段,气流拉伸变形运动达到最强;切变线减弱阶段,其气流拉伸变形运动减弱。(3)切变线的生成以及移动主要受总变形方程的局地变化项影响;低涡的生成位置以及后续移动路径与水平涡度方程的散度项有很好的对应关系。气流辐合在高原低涡形成的初期起主要作用,辐合强度的减弱会抑制高原低涡的东移及发展。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号