首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用常规观测、多普勒天气雷达和ERA—Interim再分析资料(0.25°×0.25°),对2016年11月22日陕西东南部地区一次伴有雷暴的暴雪天气过程进行诊断分析。结果表明:(1)此次暴雪是在低层东路回流冷空气与中层暖湿气流共同作用下形成的,700 hPa存在强的风向风速辐合,辐合区前部16 m/s的西南急流,为暴雪产生提供了有利的动力和水汽条件。急流加强是降雪增幅的主要原因。(2)冷季、强的锋区和低空急流、冷垫、逆温层、锋区之上湿的中性到条件不稳定层结、强切变低CAPE、雷达带状回波是此类天气预报中需要关注的特征。(3)整体层状云降水中,局地对流性云团旺盛发展,是此次暴雪的云系特征,暴雪发生在对流云团加强西伸、移速减缓的时段;与本地暖季相比,暴雪对流云团的面积较小,最大反射率因子所在的高度较高。(4)由动力锋生产生的次级环流上升支促使冷垫之上的暖湿气流快速上升,触发条件对称不稳定能量释放,使气块在逆温层之上获得正浮力,是暴雪发生并伴有雷暴的主要物理机制。  相似文献   

2.
利用常规观测资料和NCEP 1°×1°再分析资料,采用天气动力学诊断方法,对河北中南部春末一次回流暴雨的风场、水汽、热力条件进行了详细分析。结果表明:(1)此次大暴雨发生在地面冷锋后部、近地层超低空急流产生回流的稳定气团中,850—700 hPa低空西南急流和切变线是其主要影响系统。(2)随高空急流发展,急流中心右前方强辐合引起气流下沉,使低层高压加强、高压南部风速加大,导致山东、河北南部低空东北风加强而产生近地面层超低空东北风急流,与其上层偏南急流相遇在太行山东麓产生耦合形成回流,有利于在河北南部、山东等地形成暴雨中心。(3)强暴雨发生在西南水汽通道北侧边缘,暴雨区水汽主要为西南急流输送;强暴雨区位于水汽通量散度强辐合区与水汽通量散度强辐散区之间的水汽通量散度锋区中,低层风切变辐合对暴雨触发起到关键作用。  相似文献   

3.
运用常规气象资料和FY-2C卫星云图TBB(云顶亮温)、多普勒雷达、NCEP等资料,对2010年4月13日晚到14日上午陕西中部暴雪以及陕南雷暴天气的特点、环境场条件和中尺度系统的演变进行对比分析。结果表明:强高空锋区和青藏高原东移的低槽是造成陕西关中北部暴雪及陕南南部雷暴的影响系统;700hPa西南风急流输送的水汽和不稳定能量,横切变上较强的风速、风向辐合产生强的上升运动是产生暴雪和雷暴的动力条件;动力强迫作用在这次雷暴、暴雪过程中起到重要作用,与高空锋区、高空急流及低空急流相联系的次级环流上升支是这次雷暴的触发机制之一;过程前期低层被冷空气控制,存在较明显的锋面逆温,逆温层之上的气块绝热上升获得浮力导致雷暴,说明这次过程存在着高架雷暴;暴雪过程存在着中尺度的地面辐合线,陕南南部雷暴天气是中-β尺度对流云团造成的。  相似文献   

4.
北京地区一次回流暴雪过程的锋区特征分析   总被引:2,自引:0,他引:2  
利用常规观测、加密自动站观测和NCEP再分析资料,以及风廓线雷达、微波辐射计观测的精细风场、温度和湿度资料,对2009年11月9日夜间北京地区的一次回流暴雪天气过程的锋区特征进行了详细分析。结果表明,该过程的主要影响系统为华北锢囚锋和中高层短波槽,与锢囚锋联系的中低空暖湿空气在回流干冷空气上爬升造成锋生,是北京地区出现暴雪的主要原因。北京地区锋区的坡度较小,锋区下半层存在明显逆温。逆温强度可以指示冷暖交汇程度,从而与降雪强度存在相关关系,地形对逆温的分布和强度有一定的影响。低层东北风与中高层西南气流形成了明显的风垂直切变和温度差异,动力锋生机制发挥了重要作用,其产生的锋面次级环流直接促进了中尺度系统的发展。锋区存在层结不稳定,锋面抬升和次级环流促进了对流的发展,从而导致高架雷暴的产生。  相似文献   

5.
利用我国数值预报产品T6390场预报资料和新疆天山北坡中部地区的地面降雪量资料,分析新疆天山北坡中部地区2010年2月23日发生的罕见特大暴雪天气的特征及这次过程形成的原因。结果表明:这场罕见特大暴雪天气具有降雪强度强、范围广、积雪深度异常偏厚、灾情严重等特点,属60a不遇。乌拉尔山长脊、西伯利亚冷涡东移为罕见特大暴雪天气的发生提供了大尺度环流背景,冷涡外围强锋区中分裂出的中尺度短波、西南急流、700hPa中尺度辐合带、850hPa"人"型切变场、中高压、中低压以及地面冷锋是特大暴雪的直接影响系统;高低空形势场、急流和锋区以及中尺度的动力、水汽因素的有利配合为特大暴雪的发生提供了必要条件。特大暴雪发生在高空锋区短波槽前的冷暖平流交汇区、700hPa中尺度辐合带、850hPa"人"型切变场、西南急流、地面冷锋、中低压后部和中高压前部、强的能量锋区、高湿区以及水汽通量辐合区的重合区域内。特大暴雪发生过程中,天山北坡中部上空维持一个由低层到高层强盛的动力性纬向垂直环流圈,为冷暖气流共同作用提供了动力条件;正、负涡度中心的配置,有助于天山北坡中部上空的低值系统和锋区的加强。高空急流加强了特大暴雪天气的上升运动;强盛的低空西南暖湿急流将里咸海地区的高温高湿不稳定气流输送到天山北坡中部上空,为特大暴雪天气提供了热力、水汽和不稳定能量的条件。  相似文献   

6.
利用气象常规观测资料、NCEP 1°×1°再分析资料、卫星云图及呼和浩特多普勒天气雷达资料,对2015年11月22日内蒙古中部地区暴雪天气过程进行诊断分析,结果表明:在中高纬"两槽一脊"的环流形势下,500和700 h Pa短波槽、700h Pa西西南急流和地面倒槽是这次暴雪的主要影响系统,属于回流暴雪天气过程。700 h Pa西西南急流对暖湿空气的输送和水汽的强烈辐合为暴雪提供了充足的水汽条件,低层水汽辐合出现时刻降雪开始且辐合最强时出现最强降雪;高低空急流耦合加强了系统性上升运动,700 h Pa西西南暖湿空气在850 h Pa偏东气流上爬升,冷暖空气交汇及其垂直切变导致强烈的上升运动;"冷垫"与"暖盖"相配合是产生暴雪的热力条件,强降雪出现在锋区最强至减弱期间且低空急流建立后。中尺度系统云团是造成暴雪天气的直接系统,最强降雪中心与TBB≤220 K移动区域一致。片状回波中30~35 d Bz的强带状回波造成此次暴雪过程中局部强降雪,零速度线呈现"S"结构,当冷锋过境,低层转为偏北风后降雪趋于结束。  相似文献   

7.
利用常规观测资料和天津新一代天气雷达资料,对20022017年发生在天津城区的4次暴雪天气过程进行了分析,结果表明:4次暴雪过程均属于回流型降雪,但环流形势和影响系统却不尽相同;暴雪主要产生在500 hPa和700 hPa高空槽、850 hPa切变线东移的形势下;水汽主要来源于700 hPa西南急流及850 hPa低空和925 hPa超低空急流的水汽输送。回流东北风在天津地区形成冷空气垫,有利于西南暖湿气流的爬升,加强了地面的动力抬升作用。通过对暴雪过程的雷达径向速度场分析看到,暴雪过程具有零速度等值线闭合特征,此特征是冬季降雪过程独有的特征,反映了近地面层与中高层之间的风切变,闭合越完整表明切变越强烈,可以直观地预警暴雪量级。另外,高仰角上中尺度辐合线维持时间的长短与降雪量之间对应关系较好,可以作为预警降雪量级的一个指标。VWP图上从观测到西北风出现到降雪结束平均需要12 h,这可以作为暴雪结束时间的预报指标。  相似文献   

8.
本文针对2009年11月10日出现在大同地区的大到暴雪天气过程,从天气形势,物理量诊断及雷达产品等进行了综合分析后得出:此次降雪是在稳定的500hPa西风槽背景下,地面回流形势影响下造成的;高低层散度的垂直配置及高低空急流的耦合作用是此次过程的动力原因,充足的水汽条件和不稳定能量的积累是此次大到暴雪产生的根本因素。雷达产品分析表明:低空持续的偏东气流以及风向垂直切变的风场结构是这次暴雪产生的主要环境特征,暖平流和中层强西南急流有利于产生持续的降雪。  相似文献   

9.
利用常规气象观测资料、NCEP再分析资料(1°×1°)、FY-2C卫星云图及呼和浩特多普勒天气雷达资料,从环流形势、物理量场及红外云图和雷达回波特征方面,对2015年11月5—6日和21—22日内蒙古自治区两次回流与倒槽作用引发的暴雪过程进行分析。结果表明:500 h Pa西风槽、700 h Pa急流和切变线及地面倒槽是内蒙古自治区两次暴雪过程的主要影响系统,中尺度云团是造成两次暴雪过程的直接原因。700 h Pa急流对暖湿空气的输送及强烈的水汽辐合为暴雪产生提供了充足的水汽,700 h Pa急流越强且持续时间越长,降雪持续时间越长,降雪量也越大;系统性抬升为暴雪产生提供了动力条件,高低空急流耦合有利于上升运动加强,冷空气"楔入"构成低层冷垫,温度差异及其垂直切变导致动力锋生,锋面次级环流产生强烈的上升运动;暖湿气流在"冷空气楔"上爬升,"冷垫"与"暖盖"是暴雪产生的热力条件;最强降雪出现在锋区最强且开始减弱期间,暴雪区对应相当黑体温度低值中心(TBB≤220 K)、850 h Pa水汽辐合中心及最大上升运动中心;基本反射率因子达30—35 d Bz,可导致局部强降雪;径向速度图上零速度线呈"S"型结构,"牛眼"结构长时间存在可使降雪持续或加强。  相似文献   

10.
受强冷空气和低空切变共同影响,2009年2月12日17时至13日08时,集安市出现了历史同期最强的冬季大到暴雨天气,其它市县出现了历史同期最强的雨转暴雪天气过程,本文以常规气象资料及数值预报资料为基础,从大尺度环流特征、影响天气系统、雨转暴雪的前期气温分析、温度场结构特征、各气压层大气温度结构特征,动力条件及高低空急流配置、水汽条件、卫星云图等方面对此次天气过程进行分析。结果表明:本次强降水是产生在欧亚中高纬度呈-槽-脊经向环流形势下,500hPa北涡南槽、地面江淮气旋、850hPa切变线是主要影响天气系统:地面江淮气旋东移加强北上对雨转暴雪天气的形成和维持起到重要作用,2月12日最高气温上升到6~8℃,如此高温为通化地区降水积累了强大动力和能量来源,也是本次降水开始是雨原因。降水开始时我省的东南部受暖锋控制,降水以雨的性质为主,随着冷锋东移南下,我区自北到向南依次转为降雪。高低空急流的动力耦合作用、低空的西南急流水汽输送带从孟加拉湾、南海、东海、黄海带来异常充沛的水汽和强烈的辐合所产生的垂直上升运动是本次强降水的重要原因;低层北方冷空气与南方暖湿气流交汇使低层形成强锋区,为雨转暴雪的产生提供了动力。  相似文献   

11.
利用常规观测资料、NCEP 1°×1°再分析资料、云顶亮温资料,对2018年1月发生在陕西的一次回流暴雪天气过程从环流形势、水汽、热力、动力等方面进行分析,研究表明:此次暴雪发生在南支槽与西风槽东移加深的大尺度环流背景下,冷暖空气在陕西中部长时间交汇,偏南风急流为暴雪发生提供了充足的水汽供应;暖湿空气在低层冷垫上爬升,配合高空急流的通风抽吸作用,加速高层辐散、中低层辐合,垂直上升运动发展,为暴雪提供了充足的动力和能量条件。冷暖空气在暴雪区上空对峙,陕西中部形成明显锋区,锋区次级环流加速了暴雪区上空垂直运动,对降雪起到增幅作用。暴雪区位于带状云系tBB≤-50 ℃强中心移过的区域,对暴雪预警有一定指示意义。  相似文献   

12.
使用NCAR再分析资料,对新疆北部阿勒泰地区2000.11.20-24特大暴雪天气进行诊断分析,结果表明:500hPa极涡、贝加尔湖后部的东南气流、850hPa暖切变以及地面气旋的共同作用是产生新疆北部阿勒泰地区2000.11.20-24特大暴雪天气过程的环流背景条件。特大暴雪天气发生在较强的能量锋区、高湿区和水汽通量辐合区内。特大暴雪天气发生时,在阿勒泰地区上空形成一个由低层到高层强盛的动力性纬向垂直环流圈,为冷暖气流共同作用提供了持续不断的动力条件。正涡度的输送,使得阿勒泰地区上空的低值系统和锋区得以维持和加强。高空急流加强了特大暴雪天气的上升运动;低空偏南急流将巴尔喀什湖以南的高温高湿的不稳定大气源源不断地输送到阿勒泰地区上空,为特大暴雪天气提供了热力、水汽和不稳定能量的条件。  相似文献   

13.
2011年1月九江地区暴雪过程的流场特征及强回波成因分析   总被引:1,自引:0,他引:1  
余政  邹伦硕  王秀明  孙家驰  徐洁玲 《气象》2013,39(8):1014-1022
利用九江、南昌多普勒天气雷达资料和常规气象观测资料及0.5°×0.5°的NCEP再分析资料,对2011年1月19-20日九江地区的暴雪天气过程进行了分析.结果表明:南支槽前强盛的西南暖湿气流沿低层东北冷回流在长江流域形成的冷垫爬升是暴雪产生的动力机制;高低空急流的耦合作用形成次级环流,700 hPa以上正涡度平流和低层暖平流表明天气尺度上升运动较强;700 hPa等θ se线密集,表明锋区稳定维持.低层暖平流,中下层风速加强,急流中心降低,预示降雪回波将发展;低层暖平流结构转为冷平流漉场结构,预示降雪减弱.分析表明,本次过程没有强雷暴影响,回波异常增强不是由大水滴和霰雹等固态水凝物粒子造成,雪花下降经过0℃以上的暖层时表面融化,使雪花外裹了一薄层水膜,产生类似于大水滴的等同效果,从而出现了雷达图上反射率因子异常增强的现象;同时,中下层强的上升运动和凝结潜热释放的反馈机制可导致局部较强的反射率因子而产生强降雪.  相似文献   

14.
1引言回流天气是冬季黑龙江省产生暴雪的一种特殊的天气形势,黑龙江省回流天气特征是在一定的环流形势下.中低层有由东部或东南部海上伸向陆地的暖脊,风向以出现偏东风为标志,地面气压场上,黑龙江省处于低压北部的偏东气流里。2009年冬季,黑龙江省出现了两场典型回流暴雪天气过程,通过分析发现:在回流暴雪形成与发展的过程中,动力锋生机制发挥了重要作用。强降雪产生在锋区靠近暖区一侧.地形在回流暴雪过程中,通过其强迫分别位于迎风坡和背风坡的正负垂直速度中心,对降雪起明显的增幅作用。  相似文献   

15.
吴剑坤  黄初龙  雷蕾 《气象科技》2021,49(1):107-113
利用2001—2018年北京市20个国家级气象站冬季降水资料、常规气象观测资料和北京新一代天气雷达资料,在统计分析北京地区暴雪天气过程的气候和环流特征的基础上,对雷达回波特征进行分析。结果表明:北京地区出现暴雪的天气形势主要有四种,分别是低涡低槽型,地面倒槽型,横槽型和回流型,其中低涡低槽型最多。按照雷达回波类型划分,北京暴雪一般可以分为混合型和层状云型,混合型占多数,回波形态呈片絮状,最强反射率因子可达35dBz以上,回波顶高在4km以上。速度场上,大部分个例出现较为明显的“牛眼”结构,且全部是边界层低空急流,该低空急流的存在对暴雪的产生和维持至关重要。该研究结果可为冬季暴雪天气过程的业务预报服务提供参考。  相似文献   

16.
2014年2月4—7日河南暴雪过程的环流特征及其持续原因   总被引:1,自引:0,他引:1  
顾佳佳  武威 《湖北气象》2015,(2):117-125
利用常规观测资料、地面自动站资料、NCEP 1°×1°间隔6 h再分析资料、云顶亮温(TBB)资料以及多普勒天气雷达资料,对2014年2月4—7日河南省大范围暴雪过程的环流特征及其持续原因进行了分析。在此基础上,总结出此次暴雪过程的三维空间结构特征。结果表明:河套地区低槽东移发展配合近地层冷空气活动,有利于冷暖气流在黄淮地区交汇,是暴雪发生的大尺度环流背景,干冷东北急流与强盛暖湿急流在暴雪区交汇,为暴雪提供了有利的水汽和动力条件;从卫星云图和雷达回波变化特征看,暴雪发生在TBB≤-30℃的冷云团边缘等值线梯度最大处,雷达回波的移动与强度变化与降雪落区和强度实况相吻合;持续的水汽辐合为暴雪提供了充沛的水汽条件;干冷空气从低层南下导致暖湿气流抬升形成强烈上升运动,两支干冷下沉气流在对流层中层(600—400 h Pa)形成明显干层,致使底层形成饱和层,导致大量能量堆积;冷暖空气交汇处出现明显锋生,形成垂直于锋面的次级环流,导致上升运动进一步增强,对暴雪维持和发展具有重要作用。  相似文献   

17.
一次湖北暴雪天气的诊断与模拟   总被引:3,自引:1,他引:2       下载免费PDF全文
利用NCEP GFS资料分析了2007年1月15—16日鄂东南地区降雪过程,对造成暴雪过程的天气系统发生、发展背景场进行分析。并利用中尺度数值天气模式WRF模拟了这次暴雪过程,探讨了其发生发展的机制。天气系统的背景分析表明,这次暴雪过程主要是受700 hPa西南急流和地面冷空气的共同影响而产生的,降水过程与西南急流的变化密切联系。WRF模式较好地再现了此次暴雪的过程。模拟结果表明西南急流的减弱和移出,对应着降雪的开始和停止;在西南急流的左侧,由于低层涡度的增加,使低空辐合、高空辐散,在连续性原理和动力机制约束下导致上升运动的加强是该次暴雪的形成机制。模式结果说明,产生暴雪的上升运动要远小于产生暴雨的上升运动,且在暴雪过程中,中层为上升运动,近地层和高层伴随着下沉运动。  相似文献   

18.
利用常规气象资料、FY-2C卫星云图和鄂尔多斯多普勒雷达资料,对2017年2月20—21日内蒙古河套地区的暴雪天气过程进行分析,结果表明:此次暴雪天气是在两脊一槽的环流形势中,高空槽、低层切变线与低空急流配合地面倒槽产生的;高低空急流耦合,为降雪天气的发生提供动力条件,低层700h Pa低空急流源源不断的将南海水汽输送至河套地区上空,为降雪天气的发生提供水汽条件;卫星云图上显示,强降雪主要发生在明亮密实的盾状云区,高低空急流与云区一一对应;雷达回波强度整体偏弱且稳定,但持续时间近12h,长时间的停留是此次暴雪天气发生的主要原因,回波顶高度基本位于6km以下,低层有暖平流进入,反映出此次降雪过程为稳定的层状云降雪。  相似文献   

19.
急流次级环流对局地持续强风暴天气的作用   总被引:7,自引:4,他引:7       下载免费PDF全文
刘勇 《气象科技》2005,33(3):214-217
利用天气图、雷达回波和地面风场资料对1994年6月28日陕西中部发生的一次罕见的长时间局地大风、冰雹、暴雨天气进行诊断分析。结果表明:这次过程出现在500hPa槽前和700hPa低涡暖式切变线附近;强风暴发生在高空急流入口区右侧辐散和低空急流左前侧辐合重叠区,与地面中尺度气旋活动紧密相关;证实了地面中尺度气旋是由高低空急流耦合产生的次级环流引起,次级环流控制着中尺度系统发展变化。  相似文献   

20.
利用常规观测资料和风廓线雷达产品对平顶山市2014年2月5—6日的暴雪天气过程进行诊断分析,结果表明:欧亚地区"两槽一脊"的环流背景下,700 h Pa西南急流、850 h Pa切变线和地面中尺度辐合线是这次暴雪的影响系统。风廓线雷达水平风资料可以清楚地展示暴雪过程风场"天南地北"的垂直结构及其变化特点。2500 m以上出现西南急流,同时720 m以下出现东北风,降雪开始。2500 m以上西南急流最大风速达到20m·s~(-1),近地面出现12 m·s~(-1)的东北风,降雪开始加大;近地面东北风减弱,降雪减弱;西南急流消失,近地面层出现偏北风,降雪停止。垂直速度的大小与降雪的强弱一致,降雪越强,速度越大;垂直速度小于0.5 m·s~(-1),降雪停止。大气折射率常数C2n在-144~-120 d B且接地,为降雪时段。降雪越强,C2n越大;C2n小于-144 d B时,降雪停止。垂直速度、折射率结构常数等指标的变化能够反映降雪的开始、发展和结束及降雪的强度,为精细化预报提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号