首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
红外云顶亮温在西北太平洋热带气旋强度预报中的应用   总被引:3,自引:0,他引:3  
应用GMS-5气象卫星红外云顶亮温(TBB)资料,分析西北太平洋的热带气旋(TC)TBB、TBB的对称和非对称分量与滞后0—48h TC强度的相关关系。发现,TC眼墙附近东南侧的TBB、距TC中心半径0.8°—1.7°范围内TBB对称分量和1—10波振幅之和与0—48h的TC强度有很好的负相关关系,与滞后24h的TC强度相关极值分别达到-0.52,-0.59和-0.625。考虑气候持续因子、天气因子及TBB因子,针对1996—2002年西北太平洋远海区域(0°—50°N,120°—155°E)热带风暴(TS)等级以上样本,建立12,24h和48h强度预报方程并进行独立样本检验。结果表明,1.0°—1.5°环域平均的TBB对12h强度预报的方差贡献位居第4,TC东南侧TBB的平均值和1.1°—1.5°范围TBB极大与极小值之差对24h强度预报的方差贡献分列第3和第5位。考虑TBB因子的回归方程对TS和强热带风暴(STS)的强度预报能力有较大提高,对12h内强度减弱15m/s以上TC的12h预报、强度稳定TC的24h预报和强度48h增强10m/s以上TC的48h预报均有所改善。  相似文献   

2.
李勋  赵声蓉  王勇  吴俞  李玉梅 《气象科技》2016,44(4):585-595
利用2000—2014年热带气旋(TC)最佳路径、最终分析资料和静止卫星红外云顶亮温(TBB)资料,对比分析了西北太平洋(WNP),以及南海(SCS)的迅速加强(RI),与非迅速加强(non-RI)TC样本的环境背景和TBB统计特征,其中non-RI样本细分为不同的强度变化率即:缓慢加强(SI),强度稳定、缓慢减弱和迅速减弱等。结果表明,相对于SI,WNP海域的RI样本处于海表温度较高、海洋上层热容量较大、最大可能强度较大、高层辐散较强、风垂直切变(VWS)较弱和高层纬向风(U200)偏东分量较大等环境背景条件下;SCS海域的RI样本较易发生在VWS较弱的环境背景条件下。此外,相对于non-RI,支持RI发展的有利条件还包括中低层相对湿度较大、高层环境温度较低等。RI样本通常具备的TBB特征为TC内核的对流云覆盖率较大、TBB平均值相对较小。采用K最近邻分类算法进行RI预报试验,交叉检验结果表明,该方法对RI样本有一定的识别预报能力,RI样本概括率达到74.2%,技巧评分达到0.717。  相似文献   

3.
西北太平洋热带气旋迅速增强特征及其影响因子   总被引:3,自引:1,他引:2  
选取西北太平洋上热带气旋(TC)24小时风速变化累积频率达95%所对应的15.4 m/s作为迅速增强(RI)的标准,研究了RI个例的基本特征以及TC自身特征因子与环境因子对RI的作用。结果表明,TC迅速增强过程的持续时间平均为33小时,最长可达78小时,并且TC经过迅速增强过程几乎都达到了台风级别以上,其中,一半以上达到了强台风级别以上。对比迅速增强(RI)和非迅速增强(non-RI)个例得到,RI个例相对于non-RI个例发生区域偏南偏东,两者的移动速度没有明显差异,但RI个例有较大向西移动分量并且前12小时增强较大;相对于non-RI个例,RI个例离最大潜在强度较远并且发生在较暖水区和55%~75%的低层相对湿度的条件下;RI个例发生在较小的垂直风切变和较弱的对流层上层东风气流情况下,由上层槽或冷低压引起的强迫弱于平均状况时RI较易发生。TC前12小时强度变化(DVMX)、海表面温度(SST)和垂直风切变(SHR)是影响迅速增强的主要因子,当DVMX≥6.3 m/s时RI发生的可能性最大,达到17.2%。当有若干个影响因子共同起作用时发生RI可能性显著增加,其中以较大的前12小时强度变化(DVMX≥6.3 m/s)、较高的海表面温度(SST≥29.4℃)、较弱的垂直风切变(SHR≤5.9 m/s)、较小的相对涡旋角动量通量辐合(REFC≤-1.6 m/(s.d))、偏东经度(LON≥138.2°E)和低纬度(LAT≤16.7°N)共同作用时,RI发生的可能性达到最大,可达66.7%。  相似文献   

4.
利用中国气象局上海台风研究所(CMA-STI)1949—2015年热带气旋(TC)最佳路径数据集和NCEP/NCAR再分析资料,对西北太平洋(含南海海域)1949—2015年TC快速增强(RI)集中区位置变化和影响因素等进行统计分析。结果表明:(1) RI的发生频数及伴有RI发生的TC频数均呈减少趋势,RI持续时间占TC生命史的比例及伴有RI发生的TC占TC总频数的比例呈震荡减小趋势。(2) RI集中区北界南移、南界北移,总体收缩南移,东界西移、西界东移,总体收缩西移。(3)西北太平洋环境风垂直切变(VWS)的弱切变区向西向南的气候漂移和海表面温度正距平区域的向南扩展是导致发生RI的TC最北纬度显著向南漂移的可能原因,发生RI的TC最南纬度向北的漂移则可能与高海表面温度(SST)向北扩展密切相关。(4) RI集中区的200 hPa高空辐散变强、850 hPa水汽输送加强等有利环境场条件的叠加,也对RI集中区的气候漂移有重要影响。  相似文献   

5.
对1961—2010年南海和西北太平洋不同时段生成热带气旋(tropical cyclone,TC)频数的时空分布及水汽条件对其产生的影响进行了分类研究。结果表明,可以将TC活动划分为活跃期(6—11月)和平静期(上年12—当年5月)两个时段。在TC活跃期和平静期,南海和西北太平洋上TC频数的EOF第一特征向量都表现为一致的增加或减少。活跃期EOF的第二特征向量表现为南海与西北太平洋中西部的TC频数存在相反的变化趋势,平静期EOF的第二特征向量则表现为130°E以西海域的TC频数与130~150°E范围内生成热带气旋存在相反的变化趋势。活跃期和平静期西北太平洋TC的生成频数与水汽通量散度均存在显著的负相关;而在活跃期南海TC频数与水汽通量散度仅在南海中北部有弱的负相关,在平静期南海东部到菲律宾附近海域有显著的负相关。因此,水汽条件的影响使得在活跃期南海和西北太平洋TC高频年中,南海北部和西北太平洋中东部TC频数明显偏多,而平静期高频年中,南海东部以及西北太平洋中西部TC频数明显偏多。  相似文献   

6.
利用1985—2015年6—8月登陆中国东南部(福建和浙江)的35个西北行热带气旋(TC)和站点观测的日降水量,根据区域TC过程降水量,分为强降水、适量降水和弱降水TC,分析影响各级TC降水的环境场异常特征及其季节内振荡(ISO)的调制作用。(1)对流层低层850 hPa表现为中心位于福建东部强的气旋异常,来自孟加拉湾和南海强水汽输送在中国东南部产生强的水汽辐合促使TC强降水的发生,其中10~20天和30~60天ISO的环流和水汽输送都有贡献,但东南部的水汽辐合主要受10~20天ISO的影响;与TC强降水相比,TC弱降水对应的异常气旋和水汽辐合明显减弱。(2)影响TC强降水的10~20天ISO环流异常在TC登陆过程,自菲律宾群岛附近向西北方向传播至中国东南部,30~60天ISO环流异常自南海向东北偏北方向传播至台湾西南部,且环流异常强度不断加强。(3)影响TC弱降水的10~20天ISO环流异常自菲律宾西部向北传播,30~60天ISO环流异常自南海南部向东北方向传播。   相似文献   

7.
环境场对西北太平洋热带气旋快速增强过程的影响   总被引:5,自引:5,他引:0  
梅耀  余锦华 《气象科学》2016,36(6):770-778
利用美国联合台风预警中心整编的西北太平洋1970—2012年热带气旋(TC)最佳路径数据集及ERA-Interim再分析资料,利用极端天气法确定TC快速增强(RI)的阈值为30 kn,分析了快速增强(RI)TC的时空分布特征;从RI的样本中选取9个个例,采用动态合成分析法,对TCRI过程的环境场进行比分析。研究表明:(1)菲律宾群岛以东(10~15°N,130°E)海域为RI发生频数最多的区域,南海地区发生RI的情况明显偏少。(2)RI在1972年发生的概率最大,而在2005年发生的概率最小,1997年后,RI发生的概率波动性较大。(3)西风与西南风水汽输送结合150h Pa附近的反气旋强辐散作用,有利于TCRI过程的进行。(4)RI发生前24 h至RI发生后的6 h,TC中心附近区域平均东风切变较快增大,其值由0.5 m·s~(-1)增加到2.5 m·s~(-1)左右,之后保持在2.0~3.0 m·s~(-1),使TC处于一个有利于其RI过程的纬向风切变环境。  相似文献   

8.
环境风速垂直切变对西北太平洋热带气旋强度变化的影响   总被引:2,自引:0,他引:2  
利用2000—2006年中国气象局《热带气旋年鉴》和NCEP再分析日资料,对环境风垂直切变对西北太平洋热带气旋(TC)强度变化的影响进行统计分析。首先比较了不同高度层之间、不同水平区域平均的全风速垂直切变和纬向风速垂直切变对TC强度变化的影响,结果表明,全风速切变对TC强度变化的抑制作用显著大于纬向风速垂直切变;以200~800 km的圆环区域平均计算的风速垂直切变与TC强度变化的负相关最显著;中高层的风速垂直切变与TC强度变化的相关优于中低层。其次,全风速切变大于8 m/s后抑制TC增强,且这种抑制作用存在6~60 h的滞后。全风速垂直切变大时,滞后时间较短:当全风速切变为8~9 m/s(9~10 m/s)时,TC强度在未来60(48) h开始减弱;当全风速切变大于10 m/s时,TC在6 h内开始减弱。最后,利用偏最小二乘回归建立TC强度变化的预报模型PLS-STIPSV。结果表明,加入风速垂直切变因子后对TC强度预报有所改进,并通过分析标准化回归系数进一步证实了上述的统计结果。   相似文献   

9.
使用Emanuel和Nolan完善的潜在生成指数(GPI)的计算方法,利用美国联合台风警报中心提供的热带气旋(TC)资料和欧洲中期数值天气预报中心提供的全球ERA-40再分析资料,比较了1970-2001年西北太平洋海域的TC生成频数和GPI的气候特征,分析了包含于GPI中的环境要素对西北太平洋TC频数年代际变化空间分布的影响.结果表明:GPI能近似地表述西北太平洋TC频数的季节变化和空间分布.各环境要素对TC、较弱类TC和较强类TC生成频数的影响有显著差异,相对湿度随着TC强度的增强而减弱,风速垂直切变则相反.西北太平洋TC频数年代际变化空间分布的正异常主要分布于130°E以东,(15°N,140°E)附近最大的正异常频数中心主要受绝对涡度和相对湿度正异常变化的影响;负的风速垂直切变和正的相对湿度异常变化引起了(10~15°N,160°E)附近的TC频数正异常.  相似文献   

10.
利用中国科学院那曲高寒气候环境观测研究站那曲/BJ观测点的野外观测数据,估算了青藏高原那曲地区典型高寒草地下垫面的热量和水汽总体输送系数以及地表大气相对湿度因子,在此基础上利用中国气象局那曲气象站1980-2016年的常规业务观测数据,采用总体输送法计算并分析了那曲高寒草地地表通量特征。研究结果表明:(1)那曲/BJ观测点地表大气相对湿度因子γ的数值在33%~62%,9月最大,2月最小,热量和水汽输送系数CH和Cλ的季节变化范围分别在1.6×10^-3~2.7×10^-3和1.0×10^-3~2.0×10^-3,两者存在较大的差异。(2)1980-2016年那曲高寒草地感热通量总体呈现减弱趋势,而潜热通量呈现增强趋势,导致地面热源变化趋势不明显;分阶段来看,感热通量的变化在2004年前后发生转折,转折点前后的趋势为先减弱后增加,潜热通量在1994-2005年下降趋势明显,这也导致地面热源在1995-2005年有一个明显的减少。(3)年内季节变化上潜热通量相较于感热通量更明显,地面热源的季节变化更依赖于潜热通量的季节变化。  相似文献   

11.
尹浩  王咏青  钟玮 《气象科学》2016,36(2):194-202
利用2002—2011年JTWC最佳路径资料和NCEP的1°×1°全球最终分析资料以及热带气旋年鉴,分析了西北太平洋不同路径下热带气旋(TC)快速加强(RI)的时空分布特征,并对不同路径下快速加强(RITC)和缓慢加强(Non-RITC)两组TC进行合成分析和对比分析。结果表明:转向路径发生RI频率最大,且转向路径中西转向的TC最易发生RI过程;其次是东北和西北行路径。在时间分布上,各个路径下RI的月际和日变化具有不同的位相分布特征;在空间分布上,大多数RI过程发生在菲律宾和台湾岛以东洋面,西行路径在南海北部也出现较多RI过程,转向路径RI过程多发生在转向处。各个路径下RITC与Non-RITC环境场存在较明显差异,RITC对流层上层的南亚高压相对较弱,中低层副高相对较强,对流层低层存在较大的相对湿度,且湿度大值区域位于TC移动方向前侧。不同路径下的快速加强的环境影响因素也有所不同。  相似文献   

12.
西北太平洋热带气旋快速增强阶段的风速分布特征   总被引:1,自引:2,他引:1  
利用联合台风预警中心的最优路径(best-track)资料,筛选出西北太平洋地区快速增强和非快速增强两类热带气旋样本。利用美国国家海洋与大气管理局(NOAA)的多平台热带气旋表面风分析资料,对比分析了两类样本的风速和涡度的分布特征。结果显示,快速增强的热带气旋样本通常结构更紧凑,最大风速较大,最大风速半径较小,台风内区的风速较大。在涡度上表现为快速增强热带气旋样本内区的涡度和涡度梯度较大。对两类样本进行t检验,结果显示两类样本内区的切向风差异明显,说明热带气旋的内区风速分布与其发展之间存在密切联系。其物理机制可能是:当存在较大的内区涡度梯度时,涡度隔离机制有利于对流单体向涡旋中心汇聚,此外较大的涡度意味着较大的惯性稳定度,有利于非绝热加热向热带气旋动能的转换,二者共同作用有利于热带气旋的快速发展。   相似文献   

13.
热带太平洋和印度洋热源对大气影响的季节变化特征   总被引:2,自引:0,他引:2  
本文利用1970—1979年COADS2°×2°格点月平均资料,计算了30°S—30°N热带太平洋和印度洋洋面上的有效长波辐射、感热和潜热通量以及它们的季节变化和年变化。结果指出:在冬季半球热带海洋外侧有大量的长波辐射、感热和潜热向大气输送,输送通量的季节变化大;热带太平洋地区西北部热通量的季节变化最大,赤道洋面地区热通量的年变化最小,潜热是洋面上热量输送的最大项,季节变化也最大;感热的输送量虽不及有效长波辐射,但其季节变化与有效长波辐射的变化相当;赤道地区是有效长波辐射和潜热通量的低值区,暖池地区是有效长波辐射的低值中心,靠近秘鲁海域的东南赤道太平洋是感热通量的负值区;热带太平洋西北部和阿拉伯海、孟加拉湾地区的热通量及年、季变化与亚洲季风有密切的关系,同时对我国和南亚地区的气候有重要的影响。   相似文献   

14.
Observations show that the summer precipitation over East China often goes through decadal variations of opposite sign over North China and the Yangtze River valley (YRV), such as the “southern flood and northern drought” pattern that occurred during the late 1970s–1990s. In this study it is shown that a modulation of the Pacific Decadal Oscillation (PDO) on the summer precipitation pattern over East China during the last century is partly responsible for this characteristic precipitation pattern. During positive PDO phases, the warm winter sea surface temperatures (SSTs) in the eastern subtropical Pacific along the western coast of North American propagate to the tropics in the following summer due to weakened oceanic meridional circulation and the existence of a coupled wind–evaporation–SST feedback mechanism, resulting in a warming in the eastern tropical Pacific Ocean (5°N–20°N, 160°W–120°W) in summer. This in turn causes a zonal anomalous circulation over the subtropical–tropical Pacific Ocean that induces a strengthened western Pacific subtropical high (WPSH) and thus more moisture over the YRV region. The end result of these events is that the summer precipitation is increased over the YRV region while it is decreased over North China. The suggested mechanism is found both in the observations and in a 600-years fully coupled pre-industrial multi-century control simulations with Bergen Climate Model. The intensification of the WPSH due to the warming in the eastern tropical Pacific Ocean was also examined in idealized SSTA-forced AGCM experiments.  相似文献   

15.
Summary One of the greatest challenges in tropical weather forecasting is the rapid intensification (RI) of the tropical cyclone (TC), during which its one-minute maximum sustained wind speed increases at least 30 knots per 24 hours. Here we identify and elucidate the climatic conditions that are critical to the frequency and location of the RI on annual, intraseasonal, and interannual time scales. Whereas RI and formation share common environmental preferences, we found that the percentage of TCs with RI varies annually and from year to year. In August, only 30% of TC actually experiences RI, in contrast to the annual maximum of 47% in November. The proportion of RI in July–September is higher during El Ni?o years (53%) than the corresponding one in the La Ni?a years (37%). Three climate factors may contribute to the increase in the proportion of RI: the southward shift in the monthly or seasonal mean location of the TC formation, the increase in the low-level westerly meridional shear vorticity, and the decrease in northerly vertical shear. When the mean latitude of TC formation increases, the mixed-layer heat content decreases while TC’s inertial stability increases; both are more detrimental to the RI than to TC formation because the RI requires large amount of latent heat energy being extracted efficiently from the ocean mixed layer and requires accelerated low-level radial inflow that carries latent heat reaching the inner core region. We further demonstrate that the RI frequency in the Philippine Sea and South China Sea can be predicted 10 to 30 days in advance based on the convective anomalies in the equatorial western Pacific (5° S–5° N, 130°–150° E) on intraseasonal time scale. The Ni?o 3.4 SSTA in June is a potential predictor for the peak TC season (July–September) RI activity in the southeast quadrant of the western North Pacific (0–20° N, 140–180° E). The RI is an essential characteristic of category 4 and 5 hurricanes and super typhoons because all category 4 and 5 hurricanes in the Atlantic basin and 90% of the super typhoons in the western North Pacific experience at least one RI process in their life cycles. Over the past 40 years, the annual total of RI in the western North Pacific shows pronounced interdecadal variation but no significant trend. This result suggests that the number of supper typhoons has no upward trend in the past 40 years. Our results also suggest that when the mean latitude, where the tropical storms form, shifts southward (either seasonally or from year to year) the proportion of super typhoon or major hurricane will likely increase. This shift is determined by large scale circulation change rather than local SST effects. This idea differs from the current notion that increasing SST can lead to more frequent occurrence of category 4 or 5 hurricanes through local thermodynamics. Corresponding author’s address: Bin Wang, Department of Meteorology, University of Hawaii, 2525 Correa Rd., Honolulu, Hawaii 96822, USA (also visiting professor at the Ocean University of China)  相似文献   

16.
两类ENSO背景下中国东部夏季降水的环流特征及关键系统   总被引:1,自引:0,他引:1  
利用全国160站逐月降水资料、74项环流指数、HadISST月平均海温资料以及NCEP/NCAR月平均再分析资料,对比分析了两类ENSO事件衰减阶段中国东部夏季降水及相应大气环流的差异,并探讨其可能成因。结果表明:1)EP型El Ni?o(La Ni?a)事件次年夏季,中国东部降水由北至南呈正负正(负正负)的三极型反相分布;CP型El Ni?o(La Ni?a)事件次年夏季,中国东部降水由北至南呈正负(负正)的偶极型反相分布;2)El Ni?o事件次年夏季,西北太平洋副热带高压(以下简称西太副高)及南亚高压均偏强,EP型西太副高偏西、南亚高压偏东,CP型西太副高范围更大、强度更强;La Ni?a事件次年夏季,西太副高及南亚高压强度偏弱,CP型强于EP型但弱于气候平均;3)El Ni?o事件期间西北太平洋上存在异常反气旋,EP型位置偏南,强度更强,持续时间更长,CP型位置偏北,范围更大;La Ni?a事件期间,西北太平洋区域至中国东南部存在异常气旋,EP型异常气旋的强度及范围均不及CP型;4)两类El Ni?o事件期间异常反气旋的差异可能与印度洋海盆增暖及太平洋海温持续性偏冷有关;两类La Ni?a事件期间异常气旋的差异可能由赤道西太平洋海温持续偏暖造成。  相似文献   

17.
陈小宇  张静  李超  曹璐 《气象科学》2020,40(1):114-122
利用再分析资料及时间滤波方法,重点分析了低频环境场变化以及相关大尺度环境因子对台风强度突变的影响。结果表明:在“利奇马”强度突变前后,西北太平洋低频季风系统发展起了至关重要的作用,季风环流显著增强,西南季风东进,同时季风槽建立加强。这一现象为快速增强过程提供了水汽输送通道和理想的动力条件。西南季风增强使得台风南侧的水汽通道建立,同时季风槽发展有利于低层涡度的迅速积累,这些有利因子最终导致“利奇马”快速增强过程的发生。此外,弱的环境垂直风切变以及海表面温度的上升等因子同样对“利奇马”强度突变有重要影响。  相似文献   

18.
应用一个嵌套了海洋生物地球化学循环的太平洋环流碳循环模式,分析了1960~2000年太平洋不同海区海气碳通量随时间的变化。模拟结果显示,赤道太平洋为大气CO2的排放区,南、北太平洋(南、北纬15°至模式计算区域南、北边界)为吸收区。3个海区海气碳通量随时间均存在显著的波动,其中赤道太平洋海气碳通量年际波动最显著。3个海区海气碳通量年际波动对气候事件的响应并不一致,在El Niño年赤道太平洋冷舌的强度和总溶解无机碳(DIC)的浓度以及输出生产力均会受到上升流减弱的影响而降低,La Niña年这些海气碳通量控制要素的分布情况则正好相反,但在南北太平洋副热带以及高纬度海区,El Niño和La Niña对这些要素带来的影响却并不一定相反,对输出生产力的影响甚至是一致的。以海表温度(SST)为例考察海气碳通量与物理场之间的关系表明,在赤道太平洋上升流对DIC的影响是控制海气碳通量变化的主要因素,而在其他海区,尤其是副热带海区,由于垂直运动的年际变化较小,且生物生产力水平较低,SST的波动对海气碳通量年际变化的影响更加重要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号