首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study compares seasonal and interdecadal variations in surface sensible heat flux over Northwest China between station observations and ERA-40 and NCEP-NCAR reanalysis data for the period 1960-2000.While the seasonal variation in sensible heat flux is found to be consistent between station observations and the two reanalysis datasets,both land-air temperatures difference and surface wind speed show remarkable systematic differences.The sensible heat flux displays obvious interdecadal variability that is season-dependent.In the ERA-40 data,the sensible heat flux in spring,fall,and winter shows interdecadal variations that are similar to observations.In the NCEP-NCAR reanalysis data,sensible heat flux variations are inconsistent with and sometimes even opposite to observations.While surface wind speeds from the NCEP-NCAR reanalysis data show interdecadal changes consistent with station observations,variations in land-air temperature difference differ greatly from the observed dataset.In terms of land-air temperature difference and surface wind speed,almost no consistency with observations can be identified in the ERA-40 data,apart from the land-air temperature difference in fall and winter.These inconsistencies pose a major obstacle to the application in climate studies of surface sensible heat flux derived from reanalysis data.  相似文献   

2.
The Twentieth Century Reanalysis (20thCR) dataset released in 2010 covers the period 1871-2010 and is one of the longest reanalysis datasets available worldwide. Using ERA-40, ERA-Interim and NCEP-NCAR reanalysis data, as well as HadSLP2 data and meteorological temperature records over eastern China, the performances of 20thCR in reproducing the spatial patterns and temporal variability of the East Asian winter monsoon (EAWM) are examined. Results indicate that 20thCR data: (1) can accurately reproduce the most typical configuration patterns of all sub-factors differences in the main circulation fields over East Asia involved in the EAWM system, albeit with some in comparison to ERA-40 reanalysis data; (2) is reliable and stable in describing the temporal variability of EAWM since the 1930s; and (3) can describe the high-frequency variability of EAWM better than the low-frequency fluctuations, especially in the early period. In conclusion, caution should be taken when using 20thCR data to study interdecadal variabilities or long-term trends of the EAWM, especially prior to the 1930s.  相似文献   

3.
Validation of ECMWF and NCEP–NCAR Reanalysis Data in Antarctica   总被引:3,自引:0,他引:3  
The European Center for Medium-Range Weather Forecast (ECMWF) Re-Analysis (ERA-40) and the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) ECMWF (ERA-40) and NCEP-NCAR reanalysis data were compared with Antarctic station observations, including surface-layer and upper-layer atmospheric observations, on intraseasonal and interannual timescales. At the interannual timescale, atmospheric pressure at different height levels in the ERA-40 data are in better agre...  相似文献   

4.
This study compared precipitation, mean air temperature (MAT) and mean sea level pressure (MSLP) from two widely used reanalysis datasets (ERA-40 and NCEP) with those from observed stations across eastern China. The evaluation was based on a comparison of both temporal and spatial variability and included several assessment criteria such as the mean values, normalized root mean square error, Mann–Kendall test, empirical orthogonal functions (EOFs) and probability density functions. The results showed that both the ERA-40 and NCEP datasets could capture temporal and spatial variability of the observed precipitation, MAT and MSLP over eastern China. The results showed that the two reanalysis datasets performed better for MAT and MSLP than for precipitation. Overall, the two reanalysis datasets revealed reasonable agreement with observations according to the evaluation. ERA-40 was better at capturing the temporal and spatial distributions for these three variables than NCEP, especially for MAT and MSLP. NCEP tended to overestimate the annual precipitation for both mean and extreme values, while ERA-40 tended to underestimate it, particularly for extreme values. The two reanalysis datasets performed better in the east and northeast regions of the study area than in other regions for capturing the temporal variability of MAT and MSLP. ERA-40 was poor at capturing the temporal variability of precipitation in northeastern China. According to the trend analysis, the two reanalysis datasets showed lower trends for MAT and precipitation and higher trends for MSLP. Both ERA-40 and NCEP had larger explained variances for the first two EOFs than the observed precipitation. This implies that both reanalysis datasets tend to simulate a more uniform spatial distribution for precipitation in the study area.  相似文献   

5.
印度夏季风的年代际变化与我国北方的气候跃变   总被引:5,自引:1,他引:5       下载免费PDF全文
利用NCEP/NCAR再分析资料及台站实测资料分析了近几十年印度夏季风的年代际变化特征及我国北方所发生的气候变化,揭示了印度夏季风的减弱与我国北方地区的气候演变具有密切的联系。分析结果表明:在1960年代中期和1970年代后期印度夏季风环流经历了两次明显的减弱过程,这两次减弱过程的出现与我国北方地区所发生的气候跃变在时间上十分接近;印度夏季风的年代际变化与北方地区(包括华北、东北、蒙古东部及朝鲜半岛)对流层温度变化存在显著的正相关关系,北方地区对流层温度的不断下降改变了海陆之间的热力对比,从而引起印度夏季风的减弱。  相似文献   

6.
The interannual variability of autumn precipitation over South China and its relationship with atmospheric circulation and SST anomalies are examined using the autumn precipitation data of 160 stations in China and the NCEP-NCAR reanalysis dataset from 1951 to 2004. Results indicate a strong interannual variability of autumn precipitation over South China and its positive correlation with the autumn western Pacific subtropical high (WPSH). In the flood years, the WPSH ridge line lies over the south of South China and the strengthened ridge over North Asia triggers cold air to move southward. Furthermore, there exists a significantly anomalous updraft and cyclone with the northward stream strengthened at 850 hPa and a positive anomaly center of meridional moisture transport strengthening the northward warm and humid water transport over South China. These display the reverse feature in drought years. The autumn precipitation interannual variability over South China correlates positively with SST in the western Pacific and North Pacific, whereas a negative correlation occurs in the South Indian Ocean in July. The time of the strongest lag-correlation coefficients between SST and autumn precipitation over South China is about two months, implying that the SST of the three ocean areas in July might be one of the predictors for autumn precipitation interannual variability over South China. Discussion about the linkage among July SSTs in the western Pacific, the autumn WPSH and autumn precipitation over South China suggests that SST anomalies might contribute to autumn precipitation through its close relation to the autumn WPSH.  相似文献   

7.
In this study, we examine a long-term increasing trend in subtropical potential vorticity (PV) intrusion events over the Pacific Ocean in relation to the global mean temperature rise, based on multiple reanalysis datasets. The frequency of the PV intrusions is closely related to the upper-tropospheric equatorial westerly duct and the subtropical jet (STJ). An overall strengthening of the westerly duct and weakening of the STJ are found to be driven by the warming-induced strengthening of Walker circulation and regional changes in Hadley circulation on multi-decadal timescale, leading to an increase in the PV intrusion frequency over the tropics. The results are robust in all datasets. The multi-decadal strengthening in the Pacific Walker circulation is consistent with the global mean temperature rise. In this way, the PV intrusions are correlated with the warming related global mean temperuate rise. When the interannual variability of ENSO is removed from the intrusion time series, the long-term trend in PV intrusions due to external forcing associated with anthropogenic warming (global mean temperature rise) becomes clearer. The link between the global mean temperature rise and intrusion frequency is further verified by performing a correlation analysis between the two. The significant (> 95%) correlation coefficient is 0.85, 0.94, 0.84, 0.83, and 0.84 for ERA-40, ERA-Interim, NCEP-NCAR, JRA-55, and JRA-25, respectively. This unequivocally indicates that the global mean temperature rise can explain around 69%–88% of the variance related to the long-term increase in PV intrusion frequency over the Pacific Ocean.  相似文献   

8.
利用站点观测资料和再分析资料,采用相关分析,Morlet小波功率谱分析和复合分析等方法,研究了 1961-2011年南半球夏季后期(1-3月)坦桑尼亚降水的年际变化特征,并探讨了相关的大气环流和海温异常情况,以及坦桑尼亚干,湿年发生的机制.研究结果表明:坦桑尼亚1-3月降水变化存在显著的2-8年的年际变化周期和8-12年准年代变化周期.在坦桑尼亚1-3月降水异常偏少的典型干旱年,来自热带西印度的异常反气旋的东北气流和北印度洋东南气流造成干燥空气下沉,从而抑制坦桑尼亚地区降水;而在典型多雨年,来自非洲大陆热带和东南大西洋的异常西风气流在刚果盆地上空显著偏强,从而带来更多降水.热带印度洋和印度洋东南部,大西洋东南部和热带大西洋均表现出显著的相关性.此外,热带中太平洋和南太平洋中部也存在显著的相关.这些海温异常型与坦桑尼亚1-3月的降水及相关大气环流异常有密切的关联.  相似文献   

9.
Trajectories of surface cyclones and anticyclones were constructed using an automated scheme by tracking local minima and maxima of mean daily sea level pressure data in the NCEP-NCAR reanalysis and the Centre National de Recherches Météorologiques coupled global climate Model (CNRM-CM3) SRES A2 integration. Mid-latitude lows and highs traveling in the North Pacific were tracked and daily frequencies were gridded. Transient activity in the CNRM-CM3 historical simulation (1950–1999) was validated against reanalysis. The GCM correctly reproduces winter trajectories as well as mean geographical distributions of cyclones and anticyclones over the North Pacific in spite of a general under-estimation of cyclones’ frequency. On inter-annual time scales, frequencies of cyclones and anticyclones vary in accordance with the Aleutian Low (AL) strength. When the AL is stronger (weaker), cyclones are more (less) numerous over the central and eastern North Pacific, while anticyclones are significantly less (more) numerous over this region. The action of transient cyclones and anticyclones over the central and eastern North Pacific determines seasonal climate over the West Coast of North America, and specifically, winter weather over California. Relationships between winter cyclone/anticyclone behavior and daily precipitation/cold temperature extremes over Western North America (the West) were examined and yielded two simple indices summarizing North Pacific transient activity relevant to regional climates. These indices are strongly related to the observed inter-annual variability of daily precipitation and cold temperature extremes over the West as well as to large scale seasonally averaged near surface climate conditions (e.g., air temperature at 2 m and wind at 10 m). In fact, they represent the synoptic links that accomplish the teleconnections. Comparison of patterns derived from NCEP-NCAR and CNRM-CM3 revealed that the model reproduces links between cyclone/anticyclone frequencies over the Northeastern Pacific and extra-tropical climate conditions but is deficient in relation to tropical climate variability. The connections between these synoptic indices and Western weather are well reproduced by the model. Under advanced global warming conditions, that is, the last half of the century, the model predicts a significant reduction of cyclonic transients throughout the mid-latitude North Pacific with the exception of the far northern and northeastern domains. Anticyclonic transients respond somewhat more regionally but consistently to strong greenhouse forcing, with notably fewer anticyclones over the Okhotsk/Kamchatka sector and generally more anticyclones in the Northeastern Pacific. These modifications of synoptic weather result in regional feedbacks, that is, regional synoptic alterations of the anthropogenic warming signal around the North Pacific. In the eastern Pacific, for example, synoptic feedbacks, having to do especially with the northward shift of the eastern Pacific storm-track (responding, in turn, to a weaker equator-to-pole temperature gradient), are favorable to more anticyclonic conditions off the American mid-latitude west coast and more cyclonic conditions at higher latitudes. These circulation feedbacks further reduce the equator-to-pole temperature gradient by favoring high-latitude mean winter warming especially over a broad wedge of the Arctic north of the Bering Sea and moderating the warming along the mid-latitude west coast of north America while also reducing precipitation frequencies from California to Northern Mexico.  相似文献   

10.
利用澳大利亚海平面气压和中国夏季气温站点资料,使用SVD和线性回归方法揭示了澳大利亚高压(以下简称澳高)的年际变化与中国夏季气温异常的联系。结果表明,SVD的第一模态(简称SVD1)时间系数与通常使用澳高指数相关可达到0.97。SVD1表示出澳大利亚高压的年际变化与中国江南地区夏季气温存在密切联系。澳高增强(减弱)时,江南地区夏季气温偏低(偏高)。整层垂直积分大气加热场、海平面气压场、500hPa的高度场变化以及降水和总云量的变化都对夏季气温的形成有一定作用。澳高对中国夏季气温的可能影响途径为:澳高强(弱)年时,澳大利亚地区低层的异常辐散风场在菲律宾东侧的暖池附近产生辐合(辐散),引起正(负)涡度源,激发P-J型波列,伴随着在南海-西太平洋地区产生副高正异常(负异常),导致副高偏西(偏东),进而增强(减弱)来自孟加拉湾的水汽输送,同时江南地区水汽和异常风场辐合(辐散),有利于(不利于)该地区降水异常的发生和维持,有益于气温降低(升高)。  相似文献   

11.
In this study, the global Lorenz atmospheric energy cycle is evaluated using the Modern Era Retrospective analysis for Research and Applications (MERRA) and the National Center for Environmental Prediction and the Department of Energy (NCEP R2) reanalysis datasets over a 30-year period (1979–2008) for the annual, JJA, and DJF means. The energy cycle calculated from the two reanalysis datasets is largely consistent, but the energy cycle determined using the MERRA dataset is more active than that determined from the NCEP R2 dataset. For instance, with regard to the annual mean, the general discrepancy between the energy components in the global integral is about 5 %, whereas the discrepancy between the conversion components is about 16  %, with the exception of C(PM, KM), which has a different sign in the global integrals. The latitude-altitude cross-section indicates that the difference in the energy cycle of the two reanalysis datasets is larger in the southern hemisphere than in the northern hemisphere. The conversion rates of mean available potential energy to mean kinetic energy [C(PM, KM)] and eddy available potential energy to eddy kinetic energy [C(PE, KE)] are also calculated using two formulations (so-called ‘v·grad z’ and ‘ω·α’) for the two reanalysis datasets. The differences in the conversion rate between the two reanalysis datasets for the global integral are not appreciable for the two formulations.  相似文献   

12.
Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial–temporal analyses of rainfall have been studied by using 107 (1901–2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and north central Indian region.  相似文献   

13.
利用1948~2003年NCEP再分析凝结加热率资料,研究了北太平洋地区整层凝结加热的季节演变,着重研究了阿留申低压地区(30~50°N,160~210°E)凝结加热的长期变化,探讨了它对北太平洋年代际变率可能的反馈。研究表明:冬季阿留申低压地区上空存在较强的凝结加热,它与阿留申低压的强度存在显著的正相关关系;该处凝结加热的垂直分布不均匀可引起大气环流热力适应,从而可能有利于阿留申低压的加强;该处凝结加热在20世纪70年代末发生了一次明显的阶段性转折,70年代末以后增强,它可能对阿留申低压的强度形成反馈,从而有利于阿留申低压在70年代末以后加强。作者进一步讨论了该处凝结加热发生这种阶段性转折的原因和传播机制。  相似文献   

14.
20CR再分析资料在东亚夏季风区的质量评估   总被引:2,自引:1,他引:1  
宋丰飞  周天军 《大气科学》2012,36(6):1207-1222
本文利用NCEP1和ERA40再分析资料, 并结合观测资料, 对最新公布的一套再分析资料——20CR再分析资料在东亚夏季风区的质量进行了综合评估。本文主要是从气候态、年际变率、年代际变化三个方面, 来评估20CR再分析资料在东亚夏季风区的质量。结果表明, 在气候平均态上, 20CR再分析资料基本合理再现了东亚夏季风区的高低层环流场(包括南亚高压、副热带西风急流、近地层风场)以及经向环流圈特征。但相较于NCEP1和ERA40, 20CR所刻画的南亚高压偏强, 西风急流偏北, 对流层中上层温度系统性偏高。在年际变率方面, 除了NCEP1在1967年之前存在偏差, 使其结果和ERA40、20CR不同之外, 三套再分析资料刻画的东亚夏季风变率在其它时段高度一致。三套资料在以纬向风为基础的东亚夏季风指数上的一致性, 高于以经向风为基础的东亚夏季风指数, 其中以低层纬向风为基础的东亚夏季风指数的一致性最高。20CR再分析资料可以较好地再现与东亚夏季风相联系的地表气温和降水年际变化特征, 其刻画的地表气温正相关中心位置偏西、强度最强, 且在河套平原地区有一个弱的负相关中心, 而其描述的降水在孟加拉湾和长江流域较之另外两套再分析资料更接近观测结果, 在热带地区和海上却反之。在年代际变化方面, 20CR再分析资料未能合理再现东亚夏季风年代际减弱的现象, 这也体现在不能合理再现青藏高原下游年代际变冷和“南涝北旱”降水型上, 这主要是因为20CR再分析资料所刻画的东亚地区对流层中上层年代际变冷信号偏弱所致。而在百年时间尺度上, 20CR再分析资料所刻画的东亚夏季风变化与观测较为一致;20CR再分析资料可以合理再现出东亚夏季风区1920年代前的显著冷期和1990年代之后的迅速增暖期, 但对1920~1950年代相对暖期和1950~1980年代相对冷期的再现能力较差。  相似文献   

15.
Statistical Downscaling of Wind Variability from Meteorological Fields   总被引:1,自引:0,他引:1  
Measurements show that on numerous occasions the low-level wind is highly variable across a large portion of south-eastern Australia. Under such conditions the risk of a large rapid change in total wind power is increased. While variability tends to increase with mean wind speed, a large component of wind variability is not explained by wind speed alone. In this work, reanalysis fields from the US National Centers for Environmental Prediction (NCEP) are statistically downscaled to model wind variability at a coastal location in Victoria, Australia. In order to reduce the dimensionality of the problem, the NCEP fields are each decomposed using empirical orthogonal function (EOF) techniques. The downscaling technique is applied to two periods in the seasonal cycle, namely (i) winter to early spring, and (ii) summer. In each case, data representing 2 years are used to form a model that is then validated using independent data from another year. The EOFs that best predict wind variability are examined. To allow for non-linearity and complex interaction between variables, all empirical models are built using random forests. Quantitatively, the model compares favourably with a simple regression of wind variability against wind speed, as well as multiple linear regression models.  相似文献   

16.
利用目前国际上应用较为广泛的两套再分析资料:NCEP/NCAR再分析的陆地表面温度(1and surface temperature or skin temperature,简称LST)及欧洲中期天气预报中心ERA40表层土壤温度(ECMWF—STLl)资料,揭示了两组资料反映的春、夏季陆面热力状况分布特征及变率的异同。结果表明:1)两套资料的全球春季陆面热力状况气候态分布均反映出表面温度从赤道向两极递减的趋势,但在中低纬地区,ECMWF—STLl高于LST,高纬度地区情况相反。夏季,除格陵兰岛外,两套资料陆面热力状况气候态分布基本相同。2)春季ECMWF—STLl、LST变率类似,均表现为北半球中高纬地区表面温度变率大的特征。相比而言,欧亚大陆北部ECMWF—STLl变率较LST明显,南部相反。夏季,温度变率较大的区域主要位于非洲中部、欧亚大陆北部及美洲部分地区,其中,南北美洲两套资料温度变率差别较大。3)分析EOF第一模态发现,两套资料均表现出春季欧亚大陆热力状况南北反相变化的特征,澳大利亚及南北美洲地区两套资料空间分布型位相正好相反。对于夏季而言,两套资料均反映出欧亚大陆及非洲的一致性变化特征,而其他地区差别较大;4)春季增温显著的地区主要位于欧亚大陆中高纬,相比而言,欧亚大陆北部ECMWF—STLl升温较明显,南部LST降温较明显。夏季,非洲、欧亚以及北美洲地区,两套资料升降温趋势分布相似,但LST升降温幅度均较ECMWF—STLl大。总之,两套资料对热力状况的描述在非洲及欧亚大陆上相似性较大,而在澳大利亚、格陵兰岛及南北美洲地区有一定的差别。另外,对青藏高原地区的热力状况的描述两套资料差别较大。  相似文献   

17.
利用不同资料研究我国大陆上空柱水汽含量   总被引:2,自引:1,他引:1       下载免费PDF全文
利用1971—2001年探空资料以及ERA-40和NCEP/NCAR再分析资料分别得到地面到300 hPa我国大陆上空大气柱水汽含量,对3种不同资料所得的柱水汽含量的空间分布特征以及线性趋势进行对比分析。结果表明:3种资料得到的柱水汽含量年平均和季节平均的空间分布特征一致;3种资料年平均的线性变化趋势在东北地区、内蒙古东部地区,西南地区北部、华南沿海和新疆北部地区均呈增加趋势;在华北和华东的部分地区,ERA-40和NCEP/NCAR再分析资料为降低趋势,而探空资料得到的柱水汽含量变化相对较小,但未通过信度检验;探空资料得到的柱水汽含量的相对变化显示我国东北地区、内蒙古东部地区、新疆地区的增加更显著。  相似文献   

18.
By analyzing NCEP-NCAR reanalysis daily data for 1979–2016, the modulation by Madden-Julian Oscillation (MJO) of the wintertime surface air temperature (SAT) over high latitude is examined. The real-time multivariate MJO (RMM) index, which divides the MJO into eight phases, is used. It is found that a significantly negative SAT anomaly over the northern high latitude region of (180°–60 °W, 60°–90 °N) lags the MJO convection for 1∼2 weeks in phase 3, in which the enhanced convective activity exists over the Indian Ocean. While a significantly positive SAT anomaly appears over the same region following the MJO phase 7, as the tropical heating shows an opposite sign. Analysis of the anomalous circulation indicates that the observed SAT signal is probably a result of the northeastward propagating Rossby wave train triggered by MJO-related tropical forcing through Rossby wave energy dispersion. By using an anomalous atmospheric general circulation model (AGCM), the significant effect of tropical forcing on organizing the extratropical circulation anomaly is confirmed. Analysis of a temperature tendency equation further reveals that the intraseasonal SAT anomaly is primarily attributed to the advection of the mean temperature by the wind anomaly associated with the anomalous circulation of the MJO-related variability.  相似文献   

19.
刘刚  徐士琦  廉毅 《气象学报》2019,77(2):303-314
基于阻塞高压(阻高)客观识别方法,利用1979-2016年夏季(6-8月)NCEP-Ⅰ、NCEP-Ⅱ逐日再分析资料和ERA-interim逐6 h再分析资料对识别结果进行对比分析;并以D类(130°-160°E)阻高为例,讨论其对6月中国东北地区气候的可能影响。结果表明:NCEP-Ⅰ和NCEP-Ⅱ再分析资料对阻高活动天数、发生频次及年代际变化的识别结果差异较小,而ERA-interim与前两种资料的结果差别较大。3种再分析资料下,夏季各类阻高活动天数均与500 hPa高度场存在相应的显著相关区,且形态相近。但前两种资料对于各类阻高的表征结果较为一致,而ERA-interim再分析资料对各类阻高面积和范围的表征偏小。6月D类阻高活动日数与东北地区气温和降水关系密切,D类阻高活跃年,大气环流以经向型为主,东北地区低层低温、暖平流,高层高温、冷平流的结构指示大气层结不稳定,且东北上空为异常低压环流控制,上升气流较强,有利于6月东北地区出现低温多雨天气。鄂霍次克海地区是6月罗斯贝波的重要来源地之一,而6月D类阻高的形成可能与海-陆温差有关。   相似文献   

20.
A method for studying patterns of interannual variability arising from intraseasonal variability has been applied to the extratropical Northern Hemisphere wintertime 500 hPa geopotential height, using data from the NCEP-NCAR. These patterns describe the effects predominantly of intraseasonal variability and blocking. Removing this component from the sample interannual covariance matrix, one can define a residual, or slow, component of interannual variability that is more closely related to external forcings and very slowly varying (interannual/supra-annual) internal dynamics. For the Northern Hemisphere NCEP-NCAR reanalysis data, there are considerable differences between the intraseasonal patterns and the total patterns. The intraseasonal patterns are more spatially localized and more closely related to known intraseasonal variability, especially blocking events and the Madden-Julian Oscillation. Although the slow patterns and the total patterns look similar, they have some important differences. The slow patterns are more closely related to the slowly varying external forcing and very low-frequency internal dynamics than those derived by the sample covariance matrix. This is evidenced by the fact that the principal component time series of the slow patterns have a larger proportion of variability related to these factors. Where tropical SST forcing is important, the slow patterns tended to be more highly correlated with the interannual variations in the forcing. Three slow modes, related to the Tropical Northern Hemisphere, East Atlantic and Western Pacific teleconnections, are all significantly related to tropical SST variability associated predominantly with the El Nino-Southern Oscillation, in the case of the first two, and Indian Ocean variability, in the third case. The derived slow patterns and intraseasonal patterns may help to better understand the long-range predictability, uncertainty, and forcing of climate variables, for the wintertime circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号