首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
青藏高原积雪对地表能量和水分交换有重要影响。本文通过选取青藏高原东部玛多、玛曲和垭口3个站点多雪年和少雪年的气象资料,对比分析了多雪年和少雪年的地表能量和土壤水热特征。结果表明:在地表辐射平衡方面,多雪年或积雪较多的时期可以反射掉较多的向上短波辐射。玛多站多雪年反射掉的向上短波辐射是少雪年的2.3倍,玛曲站主要积雪期(3-5月)中多雪时期比少雪时期多反射掉10.07 W·m-2的向上短波辐射,垭口站多雪年的年平均向上短波辐射分别比两个少雪年高出37.49 W·m-2和31.92 W·m-2。多雪年或积雪较多的时期还可以减少向上长波辐射的发射。玛多站多雪年与少雪年向上长波辐射的差值在整个研究时段中基本为负,垭口站两个少雪年在当年12月初到次年1月和次年2月末到4月初这两个时段,积雪越深,向上长波辐射值越小。向上短波和向上长波辐射的差异使得多雪年的地表净辐射少于少雪年。不论多雪年还是少雪年,土壤热通量的值都很小,地表能量分配主要以感热通量和潜热通量为主。玛多站少雪年以感热通量为主且感热通量为正,但多雪年感热通量为负;玛曲站的...  相似文献   

2.
张海宏  肖建设  陈奇  姜海梅 《气象》2019,45(8):1093-1103
利用青海省甘德两次降雪过程的微气象观测数据,探讨了两场降雪过程雪深、雪密度、雪中含冰量、雪中含水量和雪面温度的变化情况,分析了地表反照率与雪密度、雪中含冰量及雪中含水量的关系,结合降雪过程近地面温、湿、风廓线特征分析了积雪对近地面温、湿、风梯度的影响。结果表明:积雪覆盖会导致地表反照率显著增加,降雪过后正午时地表反照率可高达0.8~0.9。随着积雪的消融,地表反照率逐渐减小;积雪反照率与雪密度和雪中含冰量呈正相关,与雪中含水量呈负相关;地表积雪覆盖会导致近地面温度梯度绝对值减小,相对湿度梯度绝对值在凌晨减小、午后增大,地表积雪覆盖对近地面风速梯度变化并无特定的影响。  相似文献   

3.
张薇  宋燕  王式功  李智才 《气象科技》2019,47(6):941-951
本文利用国家气象中心提供的逐日地面积雪深度和积雪日数数据,以及NOAA的大气环流再分析资料,通过合成分析等方法,对1961—2013年青藏高原冬春季积雪高原整体、高原东部、高原西部进行了年际和年代际趋势分析,结果表明,青藏高原整体冬、春季积雪的变化趋势一致,雪深呈现"少雪—多雪—少雪—多雪"的变化趋势,积雪日数呈现"少雪—多雪—少雪"的变化趋势。高原东(西)部积雪在20世纪60—70年代均明显增加,20世纪80—90年代均减少,20世纪90年代末东部春季和冬季积雪减少更为显著,而西部地区除了春季积雪日数变化不大,春、冬季积雪雪深和冬季积雪日数均明显增加。其次,对青藏高原东、西部地区多(少)雪年的划分,发现高原东部和西部地区积雪异常年对应的大气环流形势也存在差异。最后,进一步分析了青藏高原不同区域积雪异常年环流形势变化特征及其对我国夏季降水的影响,发现高原东(西)部积雪异常年时我国夏季降水分布存在显著差异,因此,在将高原积雪作为气候预测因子的时候,应当考虑东部和西部积雪异常不同所产生影响的差异。  相似文献   

4.
积雪的定义是雪覆盖地面达到气象站四周能见面积一半以上。由于本站四周能见面积冬季大部分地表被冬小麦所覆盖,因而给观测员判断是否有积雪增加了难度。常常会出现这种情况:一方面雪下得较大,气温、地温也不高(不满足随下随化的条件);另一方面从气象站向四周望去仍绿油油一片。走近大田观测麦根部垄畦问已存在积雪。这种上青下白或远看青近看白的现象,在积雪开始融化时也会出现(麦梢积雪先融化露青,麦根部融化完要滞后数天)。这种情况如果判定无积雪,显然与事实不符。  相似文献   

5.
中国冬季多种积雪参数的时空特征及差异性   总被引:6,自引:2,他引:4  
利用1979~2006年冬季中国站点最大雪深和站点雪日、卫星遥感雪深、积雪覆盖率和雪水当量5种积雪资料,从多角度深入细致地分析了我国冬季积雪的时空变化特征。结果表明:5种积雪资料的经验正交分解第一模态都表现为中国南、北方反位相的特征,即当新疆和东北三省-内蒙古地区积雪偏多(少)时,青藏高原和南方地区积雪偏少(多)。新疆和东北三省-内蒙古地区的雪深、积雪覆盖率和雪日随时间有逐渐增多的趋势,而其中边缘山区的雪水当量表现出减少的趋势,青藏高原地区的积雪表现出与其完全相反的特征。南方地区站点最大雪深和雪日表现出随时间减少的趋势,卫星遥感难以监测到该区积雪。相比较而言,卫星遥感资料比较适合高原和山区缺少气象站的地区及北半球更大区域积雪的研究,而站点资料更适用于中国中东部和平原地区积雪的区域研究。雪深、雪日、积雪覆盖率和雪水当量这些多样性积雪参数存在一定的差异性,因此5种积雪资料结合使用才能得到更准确的结论。  相似文献   

6.
地面温度测定的是地表与空气交界面的温度,冬季有积雪时测定的是雪面与空气交界面的温度。在观测工作中,发现冬季地温场有积雪时,14时观测地温有时会出现0cm温度表读数与地面最高温度表读数差值较大的现象。经反复观测,发现是由于地面温度表经过太阳直射,感应部分的积雪融化,与地面脱离,造成0 cm温度表与地面最高温度表读数均迅速上升。观测前30分钟巡视仪器时,因发现温度表下陷雪内,便重新埋放,使0cm温度表感应部分与雪面重新接触,温度迅速下降,而地面最高温度表则不会下降,这就造成了上述情况。 建议在冬季有积…  相似文献   

7.
利用1967~1997年500hPa高度场及同期副热带高压资料,分别将年、春、夏、秋、冬季的青藏高原积雪与这两者之间的联系进行分析,并“借用”他人通过数值模拟所得结果来印证由统计分析而得到的相关关系,从而揭示青藏高原积雪对广西气候影响的过程和物理机制。结果表明:青藏高原积雪多、少雪年时,在高原主体所处的范围以及我国以北以贝加尔湖为中心的区域范围内,500hPa高度场的距平符号呈反向变化形式,高原多雪时,高原主体上层500hPa高度场为负距平,高原少雪时,则为正距平。而青藏高原多雪时,太平洋副热带高压脊线要比少雪年位置偏南。  相似文献   

8.
青藏高原冬春积雪和地表热源影响亚洲夏季风的研究进展   总被引:2,自引:0,他引:2  
青藏高原冬春积雪和地表热源的气候效应是青藏高原气候动力学的两个重要内容。大量资料分析和数值试验研究均表明这两个因子对亚洲季风有一定的预测意义,本文对此做了比较系统的回顾和总结,并进一步比较了青藏高原积雪和地表热源影响东亚和南亚夏季降水的异同。结果表明,东亚夏季降水在年际和年代际尺度上均存在"三极型"和"南北反相"型的空间分布特征,高原春季地表热源在年代际和年际尺度上主要影响东亚夏季降水"三极型"模态;在年代际尺度上它是中国东部出现"南涝北旱"格局的重要原因,而高原冬季积雪的作用相反。另一方面,高原冬季积雪在年际和年代际尺度上对印度夏季风降水的预测效果均要优于高原地表热源。无论是空间分布还是时间演变特征,高原冬季积雪与春季地表热源整体上均无统计意义上的显著联系。不断完善高原地面观测网和改进模式在高原地区的模拟性能,将是进一步深入理解高原积雪和地表热源影响亚洲季风物理过程和机制的关键所在。  相似文献   

9.
欧亚积雪异常分布对冬季大气环流的影响Ⅱ.数值模拟   总被引:7,自引:1,他引:7  
基于观测分析的结果,采用NCAR CCM2模式,设计了三组数值试验方案,研究了积雪的异常分布对冬季大气环流的影响及其可能的物理过程.结果表明,数值模拟与观测分析所得结果一致,冬季积雪的异常分布,通过积雪的辐射冷却效应,可以改变地表的热状况以及地表对大气加热的异常,引起大气温度、位势高度场的调整,激发冬季大气EUP遥相关型,导致东亚冬季风环流的异常.  相似文献   

10.
欧亚积雪异常分布对冬季大气环流的影响 II.数值模拟   总被引:2,自引:0,他引:2  
基于观测分析的结果 ,采用NCARCCM2模式 ,设计了三组数值试验方案 ,研究了积雪的异常分布对冬季大气环流的影响及其可能的物理过程。结果表明 ,数值模拟与观测分析所得结果一致 ,冬季积雪的异常分布 ,通过积雪的辐射冷却效应 ,可以改变地表的热状况以及地表对大气加热的异常 ,引起大气温度、位势高度场的调整 ,激发冬季大气EUP遥相关型 ,导致东亚冬季风环流的异常  相似文献   

11.
青藏高原冬季积雪影响我国夏季降水的模拟研究   总被引:23,自引:9,他引:14  
利用区域气候模式 (NCC_RegCM1.0) 对青藏高原前冬积雪对次年夏季中国降水的影响进行了数值模拟研究, 所得结果与实际观测的积雪和降水的关系较为吻合, 即长江流域、 新疆地区夏季多雨, 华北和华南少雨, 这与我国最近二十年来维持的 “南涝北旱” 雨型较为一致。因此, 可以认为青藏高原冬季多雪, 是引起中国东部夏季降水出现 “南涝北旱” 的一个重要原因。本文揭示了青藏高原冬季积雪影响我国夏季降水的可能物理机制。青藏高原冬季多雪, 会导致青藏高原地面感热热源减弱, 这种热源的减弱在冬季导致冬季风偏强, 可以影响到我国华南、 西南及孟加拉湾地区。同时, 由于高原热源的减弱可持续到夏季, 成为东亚夏季风和南亚夏季风减弱的一个原因。在积雪初期, 地面反射通量的增加起了主要作用; 在积雪融化后, “湿土壤” 在延长高原积雪对天气气候的影响过程中起了重要作用。初期的反射通量增加减少了太阳辐射的吸收、 融雪时的融化吸热, 以及后期的湿土壤与大气的长期相互作用, 作为异常冷源, 减弱了春夏季高原热源, 是高原冬季积雪影响夏季风并进而影响我国夏季降水的主要机理。本文的模拟结果表明, 青藏高原冬季积雪的显著影响时效可以一直持续到6月份。  相似文献   

12.
为了得到适用于青藏高原积雪研究的高分辨率、长时间序列的区域尺度资料,利用近30年逐月区域气候系统模式BCC?CSM(m)模拟的1. 125°×1. 125°积雪深度资料、卫星遥感反演的0. 25°×0. 25°积雪深度资料、ERA?Interim 0. 75°×0. 75°地面感热再分析资料和中国气象数据网提供的0. 5°×0. 5°降水资料,评估了BCC?CSM(m)模式对高原积雪深度时空演变的模拟性能及其对高原感热和我国夏季降水的影响,为夏季降水预测提供参考依据。结果表明,BCC?CSM(m)模式能够较好再现冬季高原积雪的时空变化特征,在缺少有效实测积雪资料的高原地区不失为一种分辨率高、时间序列长的代用资料。冬季高原积雪和春季地表感热之间存在反相变化,而且两者的空间分布型存在显著的负相关关系。冬季高原积雪与我国夏季降水存在一定的相关关系,即:与长江中下游地区、四川地区、新疆北部地区、东北东部和高原南部夏季降水呈显著正相关关系,而与华南和东北北部地区呈显著负相关关系。冬季高原积雪存在全区多雪型、全区少雪型、东南少西北多型和东南多西北少型4种空间分布模态,而且不同高原积雪模态对我国夏季降水的影响不同。  相似文献   

13.
卫星反演积雪信息的研究进展   总被引:10,自引:0,他引:10  
吴杨  张佳华  徐海明  何金海 《气象》2007,33(6):3-10
综合分析了积雪信息反演的主要遥感信息源和提取方法。在光学遥感方面,应用较广的主要是改进型甚高分辨率扫描辐射仪(AVHRR)资料和中分辨率成像光谱仪(MODIS)资料;提取积雪信息大多是根据积雪在可见光波段的高反射率和近红外波段的低反射率,并通过建立回归模型反演积雪面积和深度。由于传感器的改进,MODIS卫星资料在空间分辨率、积雪反演算法等方面明显优于AVHRR资料。光学仪器受云层和大气的影响很大,由于云和积雪在可见光和近红外波段上都具有高反射率。并且由于云层的遮挡。云下的地表信息不能被光学遥感仪器所接收到。微波遥感方面,被动微波遥感仪如微波辐射计成像仪(SSM/I)、高级微波扫描辐射计(AMSR—E)等可以全天候穿过云层进行监测,具有光学仪器所没有的优势,并通过提取地表的亮温差,建立雪深反演模型得到积雪深度。被动微波传感器存在分辨率低。无法监测浅雪区信息等问题。另外影响地表微波亮温的因素很多,这些都在一定程度上影响了反演结果的精确度。主动微波遥感仪如合成孔径雷达、微波散射计等利用积雪与其它地物的后向散射系数的不同来识别积雪,但也同样存在分辨率低等问题。最后探讨了卫星反演积雪信息中仍然存在的问题和进一步发展的方向。  相似文献   

14.
青藏高原东西部积雪效应的模拟对比分析   总被引:7,自引:1,他引:6  
采用引入次网格尺度地形重力波拖曳的NCAR区域气候模式(RegCM2),以SMMR微波逐候积雪深度观测值为依据,加入较合理的积雪强迫,通过数值模拟,研究了青藏高原(下称高原)东、西部积雪异常对后期区域环流的不同影响。模拟结果的对比分析表明,高原西部多雪对高原东部积雪存在正的反馈作用,有利于高原东部积雪的增加,而高原东部多雪对高原西部积雪的影响很小。高原西部积雪偏多和高原东部积雪偏多对后期大气温度场和高度场的影响具有基本相同的分布形态,只是影响强度有所不同。高原西部积雪的融化要迟于高原东部积雪,高原西部积雪效应的持续性较强。另外,高原西部多雪对高原东部积雪存在正的反馈作用,高原东部积雪的增加进一步加大了整个高原积雪的异常,因此,高原西部积雪偏多对后期环流的综合影响明显大于高原东部积雪偏多的影响。  相似文献   

15.
冬季出现积雪时,应把地面3支温度表放在未被破坏的雪面上进行观测.若继续下雪,或者天气放晴,温度表重新被雪埋或下陷积雪内时,均应在巡视仪器时把温度表重新放置在雪面上.否则,若扒雪观测,读数就会偏高;若是晴天积雪融化,温度表球部下陷雪内,0 cm和地面最高温度表读数则会偏低.  相似文献   

16.
欧亚积雪异常分布对冬季大气环流的影响I. 观测研究   总被引:13,自引:1,他引:13       下载免费PDF全文
陈海山  孙照渤 《大气科学》2003,27(3):304-316
利用ECMWF 1979~1993年2.5°×2.5°的网格点积雪深度资料、中国气象局整编的海平面气压、500 hPa高度场和NCEP再分析资料,探讨了欧亚冬季积雪异常对同期大气环流的影响.结果表明:(1) 欧亚中高纬冬季积雪面积与同期大气环流具有密切的联系:积雪面积为正(负)异常时,冬季500 hPa高度场对应正(负)欧亚-太平洋(简称EUP)遥相关型,东亚冬季风活动偏强(弱).(2)诊断结果表明,积雪异常与大气环流之间的密切联系在一定程度上反映了冬季积雪的异常分布可能对大气EUP遥相关型和东亚冬季风活动产生影响.(3)SVD分析得到的冬季积雪的异常分布与同期大气环流的耦合模态,证实了前面所得结果.  相似文献   

17.
《高原气象》2021,40(4):943-953
基于1980-2017年陕西省地面气象观测站观测资料、NCEP/NCAR月平均再分析资料和日本JRA-55再分析陆地雪深资料,对1980-2016年陕西冬季霾日数的时空变化及可能原因进行了分析。根据陕西冬季霾日数偏多年与偏少年的高度场环流背景,研究了影响陕西省冬季霾日数的主要环流系统。对欧亚大陆积雪深度分布对于陕西省冬季霾日数的影响进行了探讨。研究表明:(1)乌拉尔山地区的500hPa高度场负(正)异常中心,是有利于陕西省冬季霾日数增多(减少)的大气背景环流,影响陕西省霾日数变化的海平面气压存在地中海地区与中亚至西伯利亚地区反位相变化的特征。(2)欧洲地区积雪深度增加(减小),会造成陕西省冬季霾日数的减少(增多)的气象条件。(3)欧亚大陆积雪深度分布与陕西省冬季霾日数的相关呈现欧洲地区与西伯利亚地区反位相的分布,冬季积雪深度指数与陕西省冬季霾日数相关大于0.41,积雪深度指数正(负)异常会造成乌拉山地区位势高度负(正)异常,不利于(有利于)冷空气向东亚移动,造成有利于陕西省冬季霾日数的增多(减少)的气象条件。  相似文献   

18.
青藏高原化雪迟早的辐射效应对季节变化的影响   总被引:12,自引:0,他引:12  
利用大气物理所九层菱形截断15波大气环流谱模式进行数值试验,研究青藏高原化雪迟早之辐射效应对季节变化的影响。共进行了正常态(CON),化雪迟(MSN),化雪早(LSN)三个试验。高原第i月积雪状况在CON中取i月气候平均值,在MSN中取(i—1)月的气候平均状况,在LSN中则取(i+l)月的气候状况。每个试验都从1月1日气候平均状况出发,积分至10月。通过比较各试验结果分析化雪迟早的气候效应。结果表明,高原化雪的迟早改变了进入地表的辐射通量,从而改变了地表对大气的加热,由此影响东亚地区的季节变化。化雪迟则高原上春季进入地表的辐射通量减少,导致地表的潜热通量和向外长波辐射减弱。尤其是感热通量的减弱更为严重。一般情况下,高原在冬季为大气的感热汇,3月下旬变为大气的感热源。多雪时,这一变化推迟了近1个月。与之相应,200hPa高原上空的南亚高压建立迟,印度西南季风爆发也迟。造成夏季风降水在印度偏少,在中印度半岛和广东沿海偏多。  相似文献   

19.
地面温度测定的是地表与空气交界面的温度,冬季有积雪时测定的是雪面与空气交界面的温度.在观测工作中,发现冬季地温场有积雪时,14时观测地温有时会出现0 cm温度表读数与地面最高温度表读数差值较大的现象.经反复观测,发现是由于地面温度表经过太阳直射,感应部分的积雪融化,与地面脱离,造成0 cm温度表与地面最高温度表读数均迅速上升.观测前30分钟巡视仪器时,因发现温度表下陷雪内,便重新埋放,使0 cm温度表感应部分与雪面重新接触,温度迅速下降,而地面最高温度表则不会下降,这就造成了上述情况.  相似文献   

20.
冬季出现积雪时 ,应把地面 3支温度表放在未被破坏的雪面上进行观测。若继续下雪 ,或者天气放晴 ,温度表重新被雪埋或下陷积雪内时 ,均应在巡视仪器时把温度表重新放置在雪面上。否则 ,若扒雪观测 ,读数就会偏高 ;若是晴天积雪融化 ,温度表球部下陷雪内 ,0cm和地面最高温度表读数则会偏低地面温度表在雪面上的观测@冯昌运$台前县气象局!河南台前457600  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号