首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
利用1972-2011年阳泉市3个国家级气象站资料、2011年36个乡镇区域自动站气温资料,分析了阳泉市城市热岛效应的年际变化、季节变化、月变化和日变化特征。结果表明:阳泉市存在弱的城市热岛效应,1972-2011年平均热岛强度0.554 ℃。阳泉市城市热岛强度整体呈显著上升趋势,热岛强度的增加主要是由于夏季热岛强度的增强;热岛强度冬、秋季强,春、夏季弱;12月最强,5月最弱;热岛强度日变化表现为12时最小,从傍晚开始随降温逐渐增大,到早晨气温降到最低时最大,日出之后迅速减小;2008-2011年最强热岛强度出现在2010年1月14日08时,达7.9 ℃。阳泉在升温天气热岛强度变幅增大,易在早晨形成较强城市热岛,下午形成城市冷岛;降温天气热岛强度变幅减小;温度变化较小时则易维持弱的城市热岛。阳泉市主要城市发展因子与霾日数、气温呈显著正相关,在目前的经济发展水平条件下,阳泉市城市化发展可能使城市温度增高,城市绿地面积的增加可能对热岛效应有缓解作用。  相似文献   

2.
基于MODIS的安徽省代表城市热岛效应时空特征   总被引:2,自引:0,他引:2       下载免费PDF全文
利用2001—2010年覆盖安徽省的MODIS数据,选取在气候、地理、城市化等方面具有代表性的合肥、芜湖、阜阳作为研究对象,并结合GIS技术,分析地表温度的日变化及季节变化特征,得到安徽省代表城市热岛效应的时空分布。结果表明:安徽省省会合肥的热岛效应最为显著,安徽省南部代表城市芜湖的热岛效应强于北部代表城市阜阳, 同时具有显著的日变化和季节变化特征。近10年来,安徽代表城市热岛面积和热岛强度均呈增加趋势,但合肥热岛强度大于3 ℃的极端热岛效应有一定缓解。白天大片水体对缓解城市的热岛效应作用明显,而夜晚则不明显,甚至成为地表温度的高值中心。夏季地表温度与归一化植被指数的负相关最显著,即提高城市植被覆盖度对降低地表温度和缓解城市热岛效应有重要影响。  相似文献   

3.
利用威海市1965—2013年地面气象观测资料和1977—2012年经济社会统计资料,采用城郊气温对比、相关分析等方法,分析了典型滨海城市威海的城市热岛效应特征及其与城市化进程的关系。结果表明:1)近50 a威海城市热岛强度阶段性变化明显,20世纪90年代以前呈现缓慢上升趋势,从90年代开始上升日益显著,平均上升速率为0.13℃/(10 a);2)城市热岛强度季节变化明显,春、夏季热岛效应较为显著,上升速率分别为0.02和0.18℃/(10 a),秋、冬季由于受海洋影响出现冷岛效应,但是随着城市化进程加快,2010年之后冬季也由"冷岛"转变为"热岛";3)城市化对威海市城区增温的贡献率达到36.4%,城市发展指标与城市热岛强度均有较好的正相关关系,其中市区人口规模、经济发展、住宅建设相关性显著,相关系数分别为0.76、0.73和0.44。  相似文献   

4.
黄群芳 《气象科技》2023,51(1):66-74
随着全球气候变暖和快速城市化,城市夏季高温及热浪出现频次和强度明显增加,但人口高度集聚的特大城市中夏季高温长期变化特征对城市热岛的影响程度和作用机制仍不甚明了。本文选择京津冀特大型城市群的核心城市北京为研究对象,基于长期气象观测数据计算夏季高温和城市热岛强度,阐明5—8月夏季高温长期变化特征及对城市热岛强度的影响。研究发现,1978—2020年北京城区夏季高温日数、强度和极端高温均呈现显著增加趋势,相伴随的是高温起始时间明显提前,结束时间显著推迟;高温天最高气温热岛强度呈显著降低趋势,而平均气温和最低气温热岛强度则呈轻微下降趋势;5—8月高温天最高、平均和最低气温多年平均热岛强度分别为0.73 ℃、1.61 ℃和2.40 ℃,明显高于非高温天的0.09 ℃、0.80 ℃和1.40 ℃,高温和非高温天热岛强度差值均在0.6 ℃以上,表明夏季高温放大城市热岛强度。预估未来全球变暖和快速城市化背景下北京城市热岛效应将进一步加剧,会形成更频繁和持续更长的夏季高温,给城市居民带来严重的健康风险。  相似文献   

5.
利用大庆市2个国家站和5个区域气象站的气温、风速、云量资料对大庆市热岛特征进行了分析,结果表明:1991-2012年大庆市热岛强度的年平均值为0.3℃,城市热岛强度较弱,近几年呈显著增强趋势;大庆市热岛效应强度存在冬季强,春秋弱,夏季无热岛效应的特点,热岛效应最强出现在1月份,热岛效应最弱出现在6月份;1-6月热岛强度呈单调下降趋势;7-12月热岛强度呈单调上升趋势;大庆市热岛强度的日变化特征具有夜间强白天弱、快生快消、难以维持24 h的特点;城市热岛效应与云量、风速呈明显的负相关;晴天和较阴天容易出现城市热岛效应,热岛强度晴天强于阴天;城市热岛一般出现在风力1-3级的条件下,当风力3级时,城市热岛消失;在气象条件满足的情况下,充分利用"热岛效应"增加的低云开展人工增雨,可缓解热岛效应给城市带来的不利影响。  相似文献   

6.
为揭示贵阳市城市热岛效应时空变化规律,利用2003—2019年的MODIS地表温度产品(MYD11A2),获取贵阳市长时间序列地表温度,结合3S技术对地表温度进行局地热岛强度计算,划分城市热岛强度等级,并从年代际、年际、季节变化以及日时间尺度对贵阳市城市热岛变化的分布特征及其演变规律进行分析。结果表明:(1)2003—2019年贵阳市城市热岛效应总体呈增强趋势,且在2012年发生突变现象,此后热岛效应更加显著,出现强热岛区,中热岛以上区域面积扩大;(2)贵阳市2003、2004、2005、2008年为热岛强度偏弱年,2016—2019年为热岛强度偏强年,偏弱年和偏强年热岛强度空间分布与突变前后相似,热岛区面积比例整体变化不大,偏强年除弱热岛区面积比例变小外,其他各热岛等级面积均增加;(3)贵阳市城市热岛效应夏季最强,其次是春季和冬季,秋季最弱。就空间分布而言,贵阳市城市热岛区在秋、冬季分布较分散,而在春、夏季分布较为集中;(4)城市热岛区主要集中在主城区,夜晚相比于白天分布更为集中,且热岛效应夜晚强于白天。  相似文献   

7.
为了探究近10年福州发展对城市热环境产生的影响,利用Landsat TM/OLI/TIRS卫星影像资料开展福州市城市热岛效应卫星遥感监测,分析福州市城市热环境变化特征.结果显示,2010-2020年福州市城市热岛面积有所扩大,特别是长乐区、福清市、闽侯县上街镇等区域扩大明显.城市热岛强度统计显示,强热岛和较强热岛面积均...  相似文献   

8.
宁波市城市热岛效应特征分析   总被引:2,自引:0,他引:2  
利用1961—2005年城郊两气象站气温资料,分析了宁波市城市热岛效应的年、月、日变化特征,以及几种特殊天气事件下的逐时城市热岛强度变化。结果表明:宁波市城市热岛效应呈逐年增强的趋势,秋冬季的热岛强度较春夏季强,热岛效应具有较明显的日变化,“夜热岛”强于“日热岛”。  相似文献   

9.
利用拉萨、墨竹工卡、尼木建站以来的多年历史资料和近两年新建的区域自动站、8个城市热岛效应自动气象站资料分析拉萨城市热岛强度日、季、年变化,时空分布及其可能的影响因子。分析表明:拉萨城市热岛强度呈显著的逐年增强趋势,在1978~2011年间平均每10年增加0.24℃;多年热岛强度冬季最强(2.0℃),其次是春季(1.8℃)和秋季(1.7℃),夏季强度最小(1.6℃);拉萨城市高温中心主要在城市中心,气温分布沿着高值区向两侧呈递减状态,郊外的气温比城区平均低0.9℃左右,夜间热岛效应强度明显高于白天。随着城市化进程的不断增强,大量改变的下垫面状况,不断增多的城市建筑群,骤增的人类活动和能源消耗,导致城市热岛强度不断增强。   相似文献   

10.
利用阳泉市3个国家级气象站资料分析了阳泉市城市热岛效应的年际变化、季节变化、月变化和日变化特征,结果表明:阳泉市存在弱的城市热岛效应,1972年-2011年平均热岛强度0.554℃。阳泉市热岛强度冬、秋季强,春、夏季弱;12月最强,5月最弱;阳泉市热岛强度整体呈显著上升趋势,热岛强度的增加主要是由于夏季热岛强度的增强。热岛强度日变化表现为12时最小,从傍晚开始随降温逐渐增大,到早晨气温降到最低时最大,日出之后迅速减小;2008年-2011年最强热岛强度出现在2010年1月14日08时达7.9℃。阳泉市主要城市发展因子与霾日数、气温呈显著正相关,在目前的经济发展水平条件下,城市化发展可能使阳泉城市温度增高,城市绿地面积的增加可能对热岛效应有缓解。  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

13.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

14.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

15.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

16.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

17.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

18.
正ERRATUM to: Atmospheric and Oceanic Science Letters, 4(2011), 124-130 On page 126 of the printed edition (Issue 2, Volume 4), Fig. 2 was a wrong figure because the contact author made mistake giving the wrong one. The corrected edition has been updated on our website. The editorial office is sincerely sorry for any  相似文献   

19.
20.
Index to Vol.31     
正AN Junling;see LI Ying et al.;(5),1221—1232AN Junling;see QU Yu et al.;(4),787-800AN Junling;see WANG Feng et al.;(6),1331-1342Ania POLOMSKA-HARLICK;see Jieshun ZHU et al.;(4),743-754Baek-Min KIM;see Seong-Joong KIM et al.;(4),863-878BAI Tao;see LI Gang et al.;(1),66-84BAO Qing;see YANG Jing et al.;(5),1147—1156BEI Naifang;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号