首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glaciers around the world retreated as the climate warmed substantially. For the majority of alpine and arctic areas, however, the lack of meteorological data over a long period makes it difficult to build long-term climate and glacial fluctuation relationships, emphasizing the importance of natural proxy archives. Here we use the 230-year record of stem radial growth of birch trees (Betula ermanii) from the treeline forests above the receding glaciers in eastern maritime Kamchatka to analyse temporal variations of climate as well as glacial advance and retreat. Glaciers in Kamchatka Peninsula represent the southern limit of glaciation in far eastern Eurasia, which makes them prone to global warming. Using instrumental climate data (1930–1996) from local meteorological stations, we find that the July temperature had most prominent positive impact on birch growth. On the contrary, smaller ring increments are associated with the positive summer and net annual ice mass balance of Koryto Glacier. The prevailing trend of higher summer temperatures and lower snowfall over the past 70 years has enhanced tree growth while causing the glacier’s surface to lower by about 35 m and its front to retreat by about 490 m. Assuming these same relationships between climate, tree growth, and glacier mass balance also existed in the past, we use tree rings as a proxy record of climatically induced temporary halts in the glacier’s retreat over the past two centuries, which in total was over 1,000 m. Both direct observations and tree ring proxies indicate several prolonged warm periods (1990s, 1960s, 1930–1940s, 1880–1900s) interspersed with cooler periods (1984–1985, 1970–1976, 1953–1957, 1912–1926, 1855–1875, 1830–1845, 1805–1820 and 1770–1780) when the glacier re-advanced, creating several consecutive terminal moraine ridges. We conclude that birch tree-rings are suitable for assessing tree growth/climate/glacial relationships over a longer timescale in maritime Kamchatka.  相似文献   

2.
Alpine glaciers directly and indirectly respond to climate and play a significant role in mountain geodynamics. Many glaciers around the world have been found to be retreating and downwasting, although these patterns are highly variable due to variations in local topography, regional climate and ice-flow dynamics. Unfortunately, limited information is available on glacier fluctuations in the Wakhan Pamir of Afghanistan, and no data exist from there in the World Glacier Monitoring Services (WGMS) database. Our general circulation model (GCM) climate simulations represent a double carbon-dioxide-loading scenario, and results suggest that glaciers in this region should be downwasting and retreating. Therefore, as part of the Global Land Ice Measurements from Space (GLIMS) project, we evaluated ASTER and Landsat MSS data to assess glacier fluctuations from 1976–2003, in the Wakhan Corridor of Afghanistan. We sampled 30 alpine valley, compound alpine valley or cirque-type glaciers of varying size and orientation. Results indicate that 28 glacier-terminus positions have retreated, and the largest average retreat rate was 36 m year???1. Satellite image analysis reveals non-vegetated glacier forefields formed prior to 1976, as well as geomorphological evidence for apparent glacier-surface downwasting after 1976. Climatic conditions and glacier retreat have resulted in disconnection of tributary glaciers to their main trunk, the formation of high-altitude lakes, and an increased frequency and size of proglacial lakes. Collectively, these results suggest increased hazard potential in some basins and a negative regional mass balance.  相似文献   

3.
The Health of Glaciers: Recent Changes in Glacier Regime   总被引:2,自引:1,他引:2  
Glacier wastage has been pervasive during the last century; small glaciers and those in marginal environments are disappearing, large mid-latitude glaciers are shrinking slightly, and arctic glaciers are warming. Net mass balances during the last 40 years are predominately negative and both winter and summer balances (accumulation and ablation) and mass turnover are increasing, especially after 1988. Two principal components of winter balance time-series explain about 50% of the variability in the data. Glacier winter balances in north and central Europe correlate with the Arctic Oscillation, and glaciers in western North America correlate with the Southern Oscillation and Northern Hemisphere air temperature. The degree of synchronization for distant glaciers relates to changes in time of atmospheric circulation patterns as well as differing dynamic responses.  相似文献   

4.
 The contribution of glacier melt, including the Greenland ice-sheet, to sea-level change since AD 1865 is estimated on the basis of modelled sensitivity of glacier mass balance to climate change and historical temperature data. Calculations are done in a regionally differentiated manner to overcome the inhomogeneity of the global distribution of glaciers. A distinction is made between changes in summer temperature and in temperature over the rest of the year. Our best estimate of the ice melt in the period 1865–1990 in terms of sea-level change equivalent is 5.7 cm (2.7 cm for glaciers and 3.0 cm for the Greenland ice-sheet). Additional calculations show that simpler methods, like using annual or even global mean temperature anomaly give estimates that differ by up to 55%. Consequently, a regionally differentiating approach is advised for making projections of glacier melt with GCM output. Received: 6 December 1996/Accepted: 30 May 1997  相似文献   

5.
The variability of the main components of the annual water balance (precipitation, evaporation, glacial alimentation, and dynamic water reserves in the basin) for 1935–1990 is, for the first time, determined for the area where the Zeravshan runoff is formed, higher than hydrological post Dupuli is located. Long-term data on the annual Zeravshan River runoff from an area of 10 200 km2 were derived from the measurements at Dupuli hydrological post. The other water balance components were determined with the help of computation methods. Comparison of the measured and calculated volumes of the annual runoff demonstrated that a relative difference between them is systematic, and as a whole for a computation period it is in the interval from ?0.31 to ?4.78%. The annual balance of accumulation and thawing of solid precipitation on glaciers and in the extraglacial area is also determined in the Zeravshan River basin. A new method for computing and mapping spatial variability of the maximum snowline altitude is developed.  相似文献   

6.
Hydrologic Sensitivity of Global Rivers to Climate Change   总被引:12,自引:1,他引:12  
Climate predictions from four state-of-the-art general circulation models (GCMs) were used to assess the hydrologic sensitivity to climate change of nine large, continental river basins (Amazon, Amur, Mackenzie, Mekong, Mississippi, Severnaya Dvina, Xi, Yellow, Yenisei). The four climate models (HCCPR-CM2, HCCPR-CM3, MPI-ECHAM4, and DOE-PCM3) all predicted transient climate response to changing greenhouse gas concentrations, and incorporated modern land surface parameterizations. Model-predicted monthly average precipitation and temperature changes were downscaled to the river basin level using model increments (transient minus control) to adjust for GCM bias. The variable infiltration capacity (VIC) macroscale hydrological model (MHM) was used to calculate the corresponding changes in hydrologic fluxes (especially streamflow and evapotranspiration) and moisture storages. Hydrologic model simulations were performed for decades centered on 2025 and 2045. In addition, a sensitivity study was performed in which temperature and precipitation were increased independently by 2 °C and 10%, respectively, during each of four seasons. All GCMs predict a warming for all nine basins, with the greatest warming predicted to occur during the winter months in the highest latitudes. Precipitation generally increases, but the monthly precipitation signal varies more between the models than does temperature. The largest changes in the hydrological cycle are predicted for the snow-dominated basins of mid to higher latitudes. This results in part from the greater amount of warming predicted for these regions, but more importantly, because of the important role of snow in the water balance. Because the snow pack integrates the effects of climate change over a period of months, the largest changes occur in early to mid spring when snow melt occurs. The climate change responses are somewhat different for the coldest snow dominated basins than for those with more transitional snow regimes. In the coldest basins, the response to warming is an increase of the spring streamflow peak, whereas for the transitional basins spring runoff decreases. Instead, the transitional basins have large increases in winter streamflows. The hydrological response of most tropical and mid-latitude basins to the warmer and somewhat wetter conditions predicted by the GCMs is a reduction in annual streamflow, although again, considerable disagreement exists among the different GCMs. In contrast, for the high-latitude basins increases in annual flow volume are predicted in most cases.  相似文献   

7.
The large uncertainty in future global glacier volume projections partly results from a substantial range in future climate conditions projected by global climate models. This study addresses the effect of global and regional differences in climate input data on the projected twenty-first century glacier contribution to sea-level rise. Glacier volume changes are calculated with a surface mass balance model combined with volume-area scaling, applied to 89 glaciers in different climatic regions. The mass balance model is based on a simplified energy balance approach, with separated contributions by net solar radiation and the combined other fluxes. Future mass balance is calculated from anomalies in air temperature, precipitation and atmospheric transmissivity, taken from eight global climate models forced with the A1B emission scenario. Regional and global sea-level contributions are obtained by scaling the volume changes at the modelled glaciers to all glaciers larger than 0.1 km2 outside the Greenland and Antarctic ice sheets. This results in a global value of 0.102 ± 0.028 m (multi-model mean and standard deviation) relative sea-level equivalent for the period 2012–2099, corresponding to 18 ± 5 % of the estimated total volume of glaciers. Glaciers in the Antarctic, Alaska, Central Asia and Greenland together account for 65 ± 4 % of the total multi-model mean projected sea-level rise. The projected sea-level contribution is 35 ± 17 % larger when only anomalies in air temperature are taken into account, demonstrating an important compensating effect by increased precipitation and possibly reduced atmospheric transmissivity. The variability in projected precipitation and atmospheric transmissivity changes is especially large in the Arctic regions, making the sea-level contribution for these regions particularly sensitive to the climate model used. Including additional uncertainties in the modelling procedure and the input data, the total uncertainty estimate for the future projections becomes ±0.063 m.  相似文献   

8.
《大气与海洋》2013,51(2):245-256
Abstract

The 1994/95 water year in the lower Mackenzie Valley was an extraordinary year hydrologically, with the important winter to summer transition being the earliest on record. Unlike more temperate areas, the northern water year is dominated, to a great extent, by this onset of spring which results in the melting of nearly half of the annual precipitation over a period of a few weeks, initiates the thawing of the river and lake ice and the soil active layer, and marks the beginning of the evaporation season. An early winter to summer transition occurred at two small research basins in the Inuvik area and at the East Channel of the Mackenzie River Delta. At the research basins, for example, the spring of 1994/95 had the earliest onset of continuous above‐freezing air temperatures, removal of the snow cover, and initiation of runoff. Consideration of the entire water year at the research basins demonstrates that rain and snow were nearly equal in magnitude, evaporation exceeded runoff, and the annual change in storage was negative to near zero. This negative change in storage was related to the long, snow‐free evaporation season, above‐average air temperatures, and below‐normal precipitation. The unusual winter to summer transition on the Mackenzie River in the eastern portion of the Mackenzie Delta was, in many ways, even more remarkable than that in the research basins. Earlier work had suggested that the timing of the spring breakup was very consistent from year to year. An analysis of the timing of breakup from the early 1960s to the late 1990s, however, shows a trend towards earlier spring breakup, with the mean for the 1990s being nine days earlier than that for the 1960s, and with the 1995 breakup being the earliest on record. Such an early breakup is not only an indication of warm local conditions, but of warm temperatures and an early runoff event over the more southerly areas of the Mackenzie basin. A companion Mackenzie Global Energy and Water Cycle Experiment study illustrates the importance of a high pressure circulation pattern centred east of the basin to this early melt event.  相似文献   

9.
A modeling system for investigating meteorological controls on glacier mass balance is described and applied to the Southern Patagonian Icefield. Output from a mesoscale atmospheric model is used to drive a glacier mass balance model using model precipitation and turbulent fluxes adjusted to account for the unrealistically low surface elevations of the icefield in the atmospheric model. Simulations of January and July conditionsproduce glacier equilibrium line altitudes (ELAs) that are higher than the observed, but the ELA gradient is realistically simulated. The high ELAs are primarily due to underestimates of vertical temperature gradients in the atmospheric model and uncertainties in the ablation season length. The model shows that both winter and summerprecipitation, as well as summer temperatures, are important determinants of the mass balance of the Southern Patagonia glaciers. The position of the icefield on the continent is also relevant. On the western side of the icefield, precipitation rates are high and dominate the mass balance calculation. In the east, ablation is much more important for determining the mass balance, and this introduces an enhanced sensitivity to atmospheric temperature, wind speed, and atmosphericmoisture levels.  相似文献   

10.
This paper outlines the effects of climate change by the 2050s on hydrological regimes at the continental scale in Europe, at a spatial resolution of 0.5×0.5°. Hydrological regimes are simulated using a macro-scale hydrological model, operating at a daily time step, and four climate change scenarios are used. There are differences between the four scenarios, but each indicates a general reduction in annual runoff in southern Europe (south of around 50°N), and an increase in the north. In maritime areas there is little difference in the timing of flows, but the range through the year tends to increase with lower flows during summer. The most significant changes in flow regime, however, occur where snowfall becomes less important due to higher temperatures, and therefore both winter runoff increases and spring flow decreases: these changes occur across a large part of eastern Europe. In western maritime Europe low flows reduce, but further east minimum flows will increase as flows during the present low flow season – winter – rise. “Drought” was indexed as the maximum total deficit volume below the flow exceeded 95% of the time: this was found to increase in intensity across most of western Europe, but decrease in the east and north. The study attempted to quantify several sources of uncertainty, and showed that the effects of model uncertainty on the estimated change in runoff were generally small compared to the differences between scenarios and the assumed change in global temperature by 2050.  相似文献   

11.
In the 20th century on the territory of the northern slope of the Greater Caucasus the number of glaciers increased by 245 (or by 19%) and the glaciation area decreased by 849 km2 (or by 52.6%). It is revealed that the increase in the number of glaciers occurred as a result of the disintegration of larger glaciers into smaller parts and as a result of the cutoff of their tributaries, and the decrease in the glaciation area, due to the negative balance of the mass of glaciers. The length of all glaciers decreased by 128–3520 m during that period. It is demonstrated that in 1970–2011 the decrease in the glaciation area occurred with the rate being smaller than in 1895–1970 by 1.6 times that is associated with more favorable climatic conditions in 1970–2011. According to the computations of the climate model by the Main Geophysical Observatory (moderate scenario) for 2011–2099, average annual air temperature will increase by 1.06–2.70°C and the annual amount of precipitation, by 2.09–2.77%. According to the results of computations, the glaciation area in 2011–2099 will reduce by 585 km2 or by 76.5%. In the region under consideration, glaciation with the area of 180 km2 which will be concentrated only in the central part of the Greater Caucasus will maintain by 2099. The glacier runoff will decrease by 74–80%.  相似文献   

12.
Glaciers in Himalaya have been studied with respect to their mass balance to assess their response, if any, to global warming. Naradu glacier in the Baspa Valley of Himachal Pradesh is one such glacier that has been studied in the backdrop of the impact of inter- and intra-annual variation in weather parameters on the health of glaciers. The trends in seasonal and monthly mean temperatures from 1994 to 2003 show an interesting shift of peak summer (late August–September) and winter seasons (February–March). The data also suggest night warming during summer (June, August, and September) and winter (November, January, April), and cooling during peak summer seasons (July) and very cold during winter (December, February, March). The fluctuation in ELA, snout position and surface ablation of Naradu glacier is attributed to variation in albedo of rock debris and valley walls from season to season and year to year.  相似文献   

13.
The analysis of climate change impact on the hydrology of high altitude glacierized catchments in the Himalayas is complex due to the high variability in climate, lack of data, large uncertainties in climate change projection and uncertainty about the response of glaciers. Therefore a high resolution combined cryospheric hydrological model was developed and calibrated that explicitly simulates glacier evolution and all major hydrological processes. The model was used to assess the future development of the glaciers and the runoff using an ensemble of downscaled climate model data in the Langtang catchment in Nepal. The analysis shows that both temperature and precipitation are projected to increase which results in a steady decline of the glacier area. The river flow is projected to increase significantly due to the increased precipitation and ice melt and the transition towards a rain river. Rain runoff and base flow will increase at the expense of glacier runoff. However, as the melt water peak coincides with the monsoon peak, no shifts in the hydrograph are expected.  相似文献   

14.
This paper examines the impacts of climate change on various forms of water resources and on some critical water management issues. The study area is the Aliakmon river basin including three subbasins of hydrological interest located in northern Greece. A monthly conceptual water balance model was calibrated for each subbasin separately, using historical hydrometeorological data. This model was applied to estimate runoff values at the outlet of each subbasin under different climate change scenarios. Two equilibrium scenarios (UKHI, CCC) referring to years 2020, 2050 and 2100 and one transient scenario (UKTR) referring to years 2032 and 2080 were implied. It was found that reduction of the mean annual runoff and mean winter runoff values, as well as serious reduction of the summer runoff values would occur in all cases and basins. However, the runoff values for November, December and January were increased, whereas the spring runoff values were decreased, leading to a shifting of the wet period towards December and severe prolongation of the dry period. Moreover, the results indicate that all subbasins exhibit almost the same behavior under the different climate change scenarios, while the equilibrium scenarios (UKHI, CCC) seem to give more reasonable and consistent results than the transient scenario (UKTR). Finally, the negative effects of the climatically induced changes on the hydroelectric production and the water use for agricultural purposes in the study basin were assessed.  相似文献   

15.
Jiang  Chong  Li  Daiqing  Gao  Yanni  Liu  Wenfeng  Zhang  Linbo 《Theoretical and Applied Climatology》2017,129(1-2):667-681

Under the impacts of climate variability and human activities, there is violent fluctuation for streamflow in the large basins in China. Therefore, it is crucial to separate the impacts of climate variability and human activities on streamflow fluctuation for better water resources planning and management. In this study, the Three Rivers Headwater Region (TRHR) was chosen as the study area. Long-term hydrological data for the TRHR were collected in order to investigate the changes in annual runoff during the period of 1956–2012. The nonparametric Mann–Kendall test, moving t test, Pettitt test, Mann–Kendall–Sneyers test, and the cumulative anomaly curve were used to identify trends and change points in the hydro-meteorological variables. Change point in runoff was identified in the three basins, which respectively occurred around the years 1989 and 1993, dividing the long-term runoff series into a natural period and a human-induced period. Then, the hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. In the human-induced period, climate variability was the main factor that increased (reduced) runoff in LRB and YARB (YRB) with contribution of more than 90 %, while the increasing (decreasing) percentage due to human activities only accounted for less than 10 %, showing that runoff in the TRHR is more sensitive to climate variability than human activities. The intra-annual distribution of runoff shifted gradually from a double peak pattern to a single peak pattern, which was mainly influenced by atmospheric circulation in the summer and autumn. The inter-annual variation in runoff was jointly controlled by the East Asian monsoon, the westerly, and Tibetan Plateau monsoons.

  相似文献   

16.
利用区域气候模式RegCM3以及考虑作物生长过程的耦合模式RegCM3_CERES对东亚区域进行20年模拟,研究作物生长对流域水文过程与区域气候的影响。结果表明:考虑作物生长过程的耦合模式模拟海河流域、松花江流域、珠江流域多年平均降水效果明显改进,在除黑河流域外的各流域模拟的温度负偏差有所减小,其中在海河流域、淮河流域的夏季改进尤为明显。各流域夏季(6、7、8月)月蒸散量最高,其中长江流域、海河流域、淮河流域、珠江流域的夏季月蒸散量基本上在100 mm左右,并且七大流域蒸散发的季节变化趋势跟总降水基本一致。多数流域考虑作物生长过程的耦合模式模拟得出蒸散发减少且进入的水汽增加,导致局地水循环率减小;黑河流域与黄河流域降水有所增加,其他流域均有不同程度的减小。针对长江流域,比较耦合模式RegCM3_CERES与模式RegCM3模拟结果显示,叶面积指数减少1.20 m2/m2,根区土壤湿度增加0.01 m3/m3,进而导致潜热通量下降1.34 W/m2(其中在四川盆地地区减少16.00 W/m2左右),感热通量增加2.04 W/m2,从而影响到降水和气温。  相似文献   

17.
The status and dynamics of glaciers are crucial for agriculture in semiarid parts of Central Asia, since river flow is characterized by major runoff in spring and summer, supplied by glacier- and snowmelt. Ideally, this coincides with the critical period of water demand for irrigation. The present study shows a clear trend in glacier retreat between 1963 and 2000 in the Sokoluk watershed, a catchment of the Northern Tien Shan mountain range in Kyrgyzstan. The overall area loss of 28% observed for the period 1963–2000, and a clear acceleration of wastage since the 1980s, correlate with the results of previous studies in other regions of the Tien Shan as well as the Alps. In particular, glaciers smaller than 0.5 km2 have exhibited this phenomenon most starkly. While they registered a medium decrease of only 9.1% for 1963–1986, they lost 41.5% of their surface area between 1986 and 2000. Furthermore, a general increase in the minimum glacier elevation of 78 m has been observed over the last three decades. This corresponds to about one-third of the entire retreat of the minimum glacier elevation in the Northern Tien Shan since the Little Ice Age maximum.  相似文献   

18.
The magnitude and even direction of recent Antarctic climate change is still debated because the paucity of long and complete instrumental data records. While along Antarctic Peninsula a strong warming coupled with large retreat of glaciers occurred, in continental Antarctica a cooling was recently detected. Here, the first existing permafrost data set longer than 10 years recorded in continental Antarctica is presented. Since 1997 summer ground surface temperature showed a strong warming trend (0.31°C per year) although the air temperature was almost stable. The summer ground surface temperature increase seemed to be influenced mainly by the increase of the total summer radiation as confirmed also by the increase of the summer thawing degree days. In the same period the active layer exhibited a thickening trend (1 cm per year) comparable with the thickening rates observed in several Arctic locations where air warming occurred. At all the investigated depths permafrost exhibited an increase of mean annual temperature of approximately 0.1°C per year. The dichotomy between active layer thickness and air temperature trends can produce large unexepected and unmodelled impacts on ecosystems and CO2 balance.  相似文献   

19.
Recent studies predict that projected climate change will lead to significant reductions in summer streamflow in the mountainous regions of the Western US. Hydrologic modeling directed at quantifying these potential changes has focused on the magnitude and timing of spring snowmelt as the key control on the spatial–temporal pattern of summer streamflow. We illustrate how spatial differences in groundwater dynamics can also play a significant role in determining streamflow responses to warming. We examine two contrasting watersheds, one located in the Western Cascades and the other in the High Cascades mountains of Oregon. We use both empirical analysis of streamflow data and physically based, spatially distributed modeling to disentangle the relative importance of multiple and interacting controls. In particular, we explore the extent to which differences in snow accumulation and melt and drainage characteristics (deep ground water vs. shallow subsurface) mediate the effect of climate change. Results show that within the Cascade Range, local variations in bedrock geology and concomitant differences in volume and seasonal fluxes of subsurface water will likely result in significant spatial variability in responses to climate forcing. Specifically, watersheds dominated by High Cascade geology will show greater absolute reductions in summer streamflow with predicted temperature increases.  相似文献   

20.
天山乌鲁木齐河源1号冰川消融对气候变化的响应   总被引:5,自引:0,他引:5  
目前气候变暖导致的冰川退缩,引起了全世界的广泛关注。 以新疆天山乌鲁木齐河源1号冰川为例,根据1958年以来的观测资料,研究了冰川消融对气候变化的响应。结果表明,近50 a来冰川在表面粒雪特征、成冰带、冰川温度、面积、厚度及末端位置等方面发生了显著变化,而这些变化均与气温的升高有着密切的联系;20世纪80年代以来的快速升温,使冰川的退缩出现了加速趋势,冰川融水径流量也呈加速增大趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号