首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Six levels of simultaneously sampled ultrasonic data are used to analyse the turbulence structure within a mixed forest of 13 m height on a steep slope (35°) in an alpine valley. The data set is compared to other studies carried out over forests in more ideal, flat terrain. The analysis is carried out for 30-min mean data, joint probability distributions, length scales and spectral characteristics.Thermally induced upslope winds and cold air drainage lead to a wind speed maximum within the trunk space. Slope winds are superimposed on valley winds and the valley-wind component becomes stronger with increasing height. Slope and valley winds are thus interacting on different spatial and time scales leading to a quite complex pattern in momentum transport that differs significantly from surface-layer characteristics. Directional shear causes lateral momentum transports that are in the same order or even larger than the longitudinal ones. In the canopy, however, a sharp attenuation of turbulence is observed. Skewed distributions of velocity components indicate that intermittent turbulent transport plays an important role in the energy distribution.Even though large-scale pressure fields lead to characteristic features in the turbulent structure that are superimposed on the canopy flow, it is found that many statistical properties typical of both mixing layers and canopy flow are observed in the data set.  相似文献   

2.
Under neutral conditions and with low winds, profiles of mean and turbulent wind components have been measured at various points across an embankment with aspect ratio 0.3. These measurements have been compared with and related to those of undisturbed flow in a horizontal homogeneous area on the windward side. The speed-up ratio, the turbulent and mean kinetic energy and the turbulent shear stress are examined. It is found that the flow stagnates on the windward side, accelerates above the crest, and separates behind the crest. The results show a remarkable dependence on the angle of attack. With an angle smaller than 90 °, the influence of the embankment on the mean wind field is reduced but is increased on the turbulent part, as lateral gustiness components are amplified. With the incoming flow normal to the embankment, maximum turbulence is found on the top of the ridge near the surface but at greater heights farther downwind. The same is true for the shear stress, but only for oblique flow, whereas for normal flow a minimum is found above the crest and a maximum on the windward side. Therefore, with varying angle of attack the embankment acts in different ways on mean wind, turbulent kinetic energy, and turbulent stress. Although the winds were low, all effects are clearly evident in the data.  相似文献   

3.
This paper summarizes the recent progress in studies of the diurnal variation of precipitation over con- tiguous China. The main results are as follows. (1) The rainfall diurnal variation over contiguous China presents distinct regional features. In summer, precipitation peaks in the late afternoon over the south- ern inland China and northeastern China, while it peaks around midnight over southwestern China. In the upper and middle reaches of Yangtze River valley, precipitation occurs mostly in the early morning. Summer precipitation over the central eastern China (most regions of the Tibetan Plateau) has two diurnal peaks, i.e., one in the early morning (midnight) and the other in the late afternoon. (2) The rainfall diurnal variation experiences obvious seasonal and sub-seasonal evolutions. In cold seasons, the regional contrast of rainfall diurnal peaks decreases, with an early morning maximum over most of the southern China. Over the central eastern China, diurnal monsoon rainfall shows sub-seasonal variations with the movement of summer monsoon systems. The rainfall peak mainly occurs in the early morning (late afternoon) during the active (break) monsoon period. (3) Cloud properties and occurrence time of rainfall diurnal peaks are different for long- and short-duration rainfall events. Long-duration rainfall events are dominated by strat- iform precipitation, with the maximum surface rain rate and the highest profile occurring in the late night to early morning, while short-duration rainfall events are more related to convective precipitation, with the maximum surface rain rate and the highest profile occurring between the late afternoon and early night. (4) The rainfall diurnal variation is influenced by multi-scale mountain-valley and land-sea breezes as well as large-scale atmospheric circulation, and involves complicated formation and evolution of cloud and rainfall systems. The diurnal cycle of winds in the lower troposphere also contributes to the regional differences  相似文献   

4.
中国大陆降水日变化研究进展   总被引:32,自引:4,他引:28  
文章概述了中国大陆降水日变化的最新研究成果,给出了中国大陆降水日变化的整体图像,指出目前数值模式模拟降水日变化的局限性,为及时了解和掌握降水日变化研究进展、开展相关科学研究和进行降水预报服务提供了有价值的科学依据和参考。现有研究表明:(1)中国大陆夏季降水日变化的区域特征明显。在夏季,东南和东北地区的降水日峰值主要集中在下午;西南地区多在午夜达到降水峰值;长江中上游地区的降水多出现在清晨;中东部地区清晨、午后双峰并存;青藏高原大部分地区是下午和午夜峰值并存。(2)降水日变化存在季节差异和季节内演变。冷季降水日峰值时刻的区域差异较暖季明显减小,在冷季南方大部分地区都表现为清晨峰值;中东部地区暖季降水日变化随季风雨带的南北进退表现出清晰的季节内演变,季风活跃(间断)期的日降水峰值多发生在清晨(下午)。(3)持续性降水和局地短时降水的云结构特性以及降水日峰值出现时间存在显著差异。持续性降水以层状云特性为主,地表降水和降水廓线的峰值大多位于午夜后至清晨;短时降水以对流降水为主,峰值时间则多出现在下午至午夜前。(4)降水日变化涉及不同尺度的山-谷风、海-陆风和大气环流的综合影响,涉及复杂的云雨形成和演变过程,对流层低层环流日变化对降水日变化的区域差异亦有重要影响。(5)目前数值模式对中国降水日变化的模拟能力有限,且模拟结果具有很强的模式依赖性,仅仅提高模式水平分辨率并不能总是达到改善模拟结果的目的,关键是要减少存在于降水相关的物理过程参数化方案中的不确定性问题。  相似文献   

5.
Dual-Doppler data collected from 1646 to 1648 MDT on 14 July, 1982 in Colorado were employed to study the eddy kinetic energy budget in the subcloud layer of a microburst-producing thunderstorm during its mature stage. Each term in the budget equation was computed from the Doppler-derived winds and retrieved thermodynamic fields within the 10 by 10 km horizontal domain. Results show that in the atmospheric boundary layer (ABL) where the microburst dominates, the turbulent flow extracts energy from the mean flow in order for the microburst to maintain its strong diverging outflow at low levels. The vertical transport of eddy kinetic energy is predominantly downward in the low layer due to the organized downdrafts in the microburst area. The horizontal flux convergence (divergence) of eddy kinetic energy by the mean and eddying motions is approximately balanced by that of the vertical flux divergence (convergence). Similarly, the contributions from the pressure and buoyancy production terms are nearly in balance. As a result, a net change of the eddy kinetic energy generation in the subcloud layer is relatively small in comparison with the individual term in the budget equation.  相似文献   

6.
刘蓓 《气象科技》2016,44(1):67-75
利用门源、祁连气象站2004—2013年6—8月逐时常规观测资料,分析了地形云的日变化特征,结果表明:两站夏季总、低云量的日变化呈现双峰型特征;层积云和积雨云的日变化呈反相特征。层积云出现频率最高在清晨,积雨云在午后至傍晚出现频率最高;门源站层积云出现频率高于祁连站,而祁连站积雨云出现频率高于门源站。两站山谷风环流特征明显,风速最大值出现在午后,最小值出现在清晨;门源站谷风控制时间长于山风,祁连站山风控制时间长于谷风。两站积雨云出现时间与山谷风风速最大值出现时间之间具有对应关系;有天气系统影响时形成的积雨云,持续时间较长,降水较多;仅由地形风及热力、湍流作用形成的积雨云,持续时间较短,降水较少。层积云的形成有3种类型:第1种由高层云演变而来;第2种由积雨云对流发展受到抑制而形成;第3种由局地山谷风环流形成,云的形成与山谷风环流以及边界层日变化特征相关。  相似文献   

7.
Wind-flow dynamics has been extensively studied over horizontally uniform canopies, but agricultural plantations structured in rows such as vineyards have received less attention. Here, the wind flow over a vineyard is studied in neutral stratification from both large-eddy simulation (LES) and in situ measurements. The impact of row structure on the wind dynamics is investigated over a range of wind directions from cross-row to down-row, and a typical range of row aspect ratio (row separation/height ratio). It is shown that the mean flow over a vineyard is similar to that observed in uniform canopies, especially for wind directions from cross-row to diagonal. For down-row winds, the mean flow exhibits noticeable spatial variability across each elementary row-gap pattern, as the wind is channeled in the inter-row. This spatial variability increases with the aspect ratio. With down-row winds the turbulent structures are also more intermittent and generate larger turbulent kinetic energy and momentum flux. The displacement height and roughness length of the vineyard vary with the aspect ratio in a way similar to their variation with canopy density in uniform canopies. Both parameters take smaller values in down-row wind flow, for which the canopy appears more open. The analysis of velocity spectra and autocorrelation functions shows that vineyard canopies share similar features to uniform canopies in terms of turbulent coherent structures, with only minor changes with wind direction.  相似文献   

8.
We present the main results from the second model intercomparison within the GEWEX (Global Energy and Water cycle EXperiment) Atmospheric Boundary Layer Study (GABLS). The target is to examine the diurnal cycle over land in today??s numerical weather prediction and climate models for operational and research purposes. The set-up of the case is based on observations taken during the Cooperative Atmosphere-Surface Exchange Study-1999 (CASES-99), which was held in Kansas, USA in the early autumn with a strong diurnal cycle with no clouds present. The models are forced with a constant geostrophic wind, prescribed surface temperature and large-scale divergence. Results from 30 different model simulations and one large-eddy simulation (LES) are analyzed and compared with observations. Even though the surface temperature is prescribed, the models give variable near-surface air temperatures. This, in turn, gives rise to differences in low-level stability affecting the turbulence and the turbulent heat fluxes. The increase in modelled upward sensible heat flux during the morning transition is typically too weak and the growth of the convective boundary layer before noon is too slow. This is related to weak modelled near-surface winds during the morning hours. The agreement between the models, the LES and observations is the best during the late afternoon. From this intercomparison study, we find that modelling the diurnal cycle is still a big challenge. For the convective part of the diurnal cycle, some of the first-order schemes perform somewhat better while the turbulent kinetic energy (TKE) schemes tend to be slightly better during nighttime conditions. Finer vertical resolution tends to improve results to some extent, but is certainly not the solution to all the deficiencies identified.  相似文献   

9.
The Near-Calm Stable Boundary Layer   总被引:3,自引:3,他引:0  
For the near-calm stable boundary layer, nominally 2-m mean wind speed <0.5 ms−1, the time-average turbulent flux is dominated by infrequent mixing events. These events are related to accelerations associated with wave-like motions and other more complex small-scale motions. In this regime, the relationship between the fluxes and the weak mean flow breaks down. Such near-calm conditions are common at some sites. For very weak winds and strong stratification, the characteristics of the fluctuating quantities change slowly with increasing scale and the separation between the turbulence and non-turbulent motions can become ambiguous. Therefore, a new analysis strategy is developed based on the scale dependence of selected flow characteristics, such as the ratio of the fluctuating potential energy to the kinetic energy. In contrast to more developed turbulence, correlations between fluctuating quantities are small, and a significant heat flux is sometimes carried by very weak vertical motions with large temperature fluctuations. The relation of the flux events to small-scale increases of wind speed is examined. Large remaining uncertainties are noted.  相似文献   

10.
An analysis of 3 years' (1967–70) radiosonde wind data on the windward (Salt Lake City, Utah) and lee (Denver, Colorado) sides of mountains indicates that at these two stations: (1) the distributions of the kinetic energy of the mean and turbulent motions are similar above the mountain top; (2) below the mountain top, on the windward side, mountains tend to divert the component of the mean motion normal to the mountains to that parallel to the mountains; (3) the meridional eddy transport of westerly momentum is affected by the presence of the mountains to a higher level to the lee of the mountains than upwind of them; (4) the production of turbulent energy is higher below the mountain top in the vicinity of mountains than it is for the zonal average; (5) high frequencies of the motion show a more pronounced contribution in the meridional motion in the windward side, but in the zonal motion in the lee of the mountains; (6) disturbances of 1–2 day periods can be maintained deep into the valley, whereas disturbances of longer periods reduce their amplitudes rapidly with decreasing height from the mountain top; (7) the cospectra of the wind velocities show that the southward/northward transport of westerly momentum results from a southward/northward contribution from most frequencies. The main contributions come from eddies with periods longer than two days.  相似文献   

11.
Summary Features of the mean flow structure in a small valley system in the Rosalian mountain range are discussed using data from a wind measurement network. Tethered balloon measurements during periods of clear sky form the basic dataset for the analysis of drainage winds and temperature inversions. During periods of weak ambient winds the existence of a pure thermally driven nocturnal valley wind system is shown. With strong ambient winds opposing the drainage flow, a reduced drainage height but the same jet maximum as with weak ambient winds is found. On the other hand with aiding flow the drainage winds are suppressed and flow reversal can occur. This strong valley flow interaction with the ambient wind indicates considerable dynamic influence on the evolution of drainage winds and on the breakup of temperature inversion structure for small valleys.With 15 Figures  相似文献   

12.
The diurnal variation of tropical rainfall is examined through the analysis of an equilibrium cloud-resolving model experiment. Model domain mean rain rate is defined as a product of rain intensity and fractional rainfall coverage. The diurnal variation of the mean rain rate is associated with that of fractional rainfall coverage because the diurnal variation of rain intensity is significantly weakened through the decrease in rainfall in early morning hours. The decrease in rainfall corresponds to the reduction in secondary circulations through the barotropic conversion from the perturbation kinetic energy to the mean kinetic energy under the imposed negative vertical gradient of westerly winds. The fractional rainfall coverage shows the diurnal signal with the maximum in the early morning hours primarily due to nocturnal infrared radiative cooling.  相似文献   

13.
This study investigates the roles of the boreal summer intraseasonal oscillation (BSISO) in the diurnal rainfall cycle over Hainan Island during the warm season (April-September) using 20-year satellite-based precipitation, ERA5 and the outgoing longwave radiation data with the phase composite analysis method. Results show that the spatial distributions of the hourly rainfall anomaly significantly change under the BSISO phases 1-8 while no clear variations are found on the daily and anomaly daily area-averaged rainfall over the island. During the BSISO phase 1, the rainfall anomaly distinctly increases in the morning over the southwest and late afternoon over the northeast of the island, while suppressed convection occurs in the early afternoon over the southwest area. Under this circumstance, strong low-level westerly winds bring abundant moisture into the island, which helps initiate the nocturnal-morning convection over the south coastal area, and drives the convergence region of sea breeze fronts to concentrate into the northwest. Opposite to Phase 1, an almost completely reversed diurnal cycle of rainfall anomaly is found in Phase 5, whereas a positive anomalous rainfall peak is observed in the early afternoon over the center while negative peaks are found in the morning and late afternoon over the southwest and northeast, owing to a strong low-level northeasterly anomaly flow, which causes relatively low moisture and enlarges a sea-breeze convergence area over the island. During Phase 8, strongest moisture is found over the island all through the day, which tends to produce highest rainfall in the afternoon with enhanced anomalous northerly. These results further indicate that multiscale interactions between the large-scale circulations and local land-sea breeze circulations play important roles in modulating diurnal precipitation cycles over the tropical island.  相似文献   

14.
The structure of turbulence in an inversion layer and in an homogeneous convective field of the planetary boundary layer is described. In the first part of the paper, we validate the sodar estimates of turbulent dissipation, by using measurements with an hot-wire anemometric system in situ. Limitations of an ε measurement technique using structure function calculations are given, taking account of atmospheric properties and acoustic Doppler instrumental effects. By comparison between isopleths of backscattering intensity and of turbulent dissipation rates, we observe that in the early morning, turbulence is advected by mechanical turbulence generated by wind shear. The same mechanism seems to be operating in the case of an inversion layer capping thermal instability, when the convective activity is not too greatly developed. A turbulent kinetic energy budget is examined using aircraft, sodar, and tower measurements. This indicates a constant turbulent dissipation profile through a deep convective layer.  相似文献   

15.
Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.) Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer / Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Mean-flow results are compared with those given in a previous paper where the same problem was attacked using a Prandtl mixing-length hypothesis. The diffusion and convection of turbulence kinetic energy not accounted for in the Prandtl mixing-length concept cause departures of the mean wind profiles from those previously computed, primarily in the regions of strong pressure gradients. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow. They highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient.  相似文献   

16.
The interaction of katabatic winds with ambient winds has been investigated for an idealized valley using Clark's nonhydrostatic model. Ambient ridgetop wind speeds ranged from 0.5 to 6 m/s, and made angles with the valley axis ranging from 0 ° to 90 °: cooling of the valley was based on measured values of sensible heat fluxes taken from observations in Colorado's Brush Creek Valley. The depth and strength of the down-valley winds decreased with increasing ambient wind speeds but showed relatively little sensitivity to wind directions in the range of 10 ° to 60 ° from the valley axis. An observed inverse linear decrease of drainage depth with wind speed in a 100 m thick layer above the ridgetops was also found in the simulations for parts of the valley but not near the valley mouth. Vertical motions over the valley showed marked patchiness, and implications of this structure on valley flow dynamics are discussed.This work was supported by the U.S. Department of Energy (DOE) under Contract DE-AC06-76RLO 1830.  相似文献   

17.
Monthly mean afternoon (maximum) and early morning (minimum) mixing heights have been calculated for the winter, pre-monsoon, monsoon and post-monsoon seasons for eleven stations in India, with the assumption of a dry adiabatic lapse rate in the mixing layer. The morning mixing heights have been calculated by adding +5 °C to the surface minimum temperature except for the monsoon season for which a value of +3 °C has been utilized to account for the urban heat island effect. The spatial variation of mean maximum mixing heights over India has also been studied by isopleth analysis. The morning and afternoon ventilation coefficients have been calculated for the eleven stations under consideration. The spatial distribution of afternoon ventilation coefficients has also been studied. The optimum siting industries to minimize our pollution has been discussed.  相似文献   

18.
利用横断山脉纵向岭谷典型区域2005~2019年28个地面气象观测站逐时降水数据,分析纵谷区短时强降水时空分布特征,结果表明:(1)纵谷区年降水量自西向东减少,而短时强降水量对年降水量的贡献则从西北向东南增加,短时强降水发生频率空间分布极不均匀,在0.1~6.7次/年之间,纵谷区上段发生频率很低,怒江下游和金沙江下游周边流域出现2个大值中心。(2)纵谷区短时强降水年发生频率具有0.022次/年的增加趋势。发生频率逐月变化峰值在7~8月出现,纵谷区下段2个大值中心在6~9月均明显存在;逐候变化多峰值特征突出(36、39~44、47和51候4个峰值),且51候后的下降趋势强于36候前的增加趋势,候频率高峰到达时间的空间分布表现出东北早、西南晚的特点。(3)发生频率日变化主峰值多出现在凌晨,次峰值在傍晚。子夜前后、凌晨、清晨三个时段频率空间分布均自北向南、东南增加,怒江和金沙江下游的2个大值中心明显,而午后、傍晚二个时段频率的空间分布差异较小。纵谷区中上段发生频率日变化幅度大,其西部多为夜发性短时强降水,而东部则以午后至傍晚的短时强降水为主,纵谷区下段发生频率日变化幅度小,午后、傍晚、夜间都会出现。短时强降水的这些时空分布特征与横断山脉纵向岭谷地形及南亚季风活动特性密切相关。   相似文献   

19.
Model Simulations of the Boundary-Layer Evolution over an Arid Andes Valley   总被引:1,自引:1,他引:0  
The boundary layer of the Elqui valley in the arid north of Chile exhibits several interesting phenomena, such as a very shallow convective boundary layer (CBL) during the day. In the morning, warming is observed in and above the CBL, while the humidity decreases in the CBL. At midday, in and above the CBL of the valley, the temperature stagnates. In the afternoon in the CBL the temperature decreases and humidity increases, although the latent heat flux is very low. Because the characteristic features of the valley atmosphere are hard to interpret from observations alone, model simulations were applied. The simulations indicate that all components of the budget equations, i.e. the turbulent flux divergences, advection via the sea breeze, the upvalley and upslope wind systems, as well as subsidence, contribute to the evolution of the valley atmosphere.  相似文献   

20.
In this study, a 47-day regional climate simulation of the heavy rainfall in the Yangtze-Huai River Basin during the summer of 2003 was conducted using the Weather Research and Forecast (WRF) model. The simulation reproduces reasonably well the evolution of the rainfall during the study period’s three successive rainy phases, especially the frequent heavy rainfall events occurring in the Huai River Basin. The model captures the major rainfall peak observed by the monitoring stations in the morning. Another peak appears later than that shown by the observations. In addition, the simulation realistically captures not only the evolution of the low-level winds but also the characteristics of their diurnal variation. The strong southwesterly (low-level jet, LLJ) wind speed increases beginning in the early evening and reaches a peak in the morning; it then gradually decreases until the afternoon. The intense LLJ forms a strong convergent circulation pattern in the early morning along the Yangtze-Huai River Basin. This pattern partly explains the rainfall peak observed at this time. This study furnishes a basis for the further analysis of the mechanisms of evolution of the LLJ and for the further study of the interactions between the LLJ and rainfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号