首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
西南地区臭氧空间分布及变化趋势   总被引:1,自引:0,他引:1  
本文利用2003年1月—2012年12月的MSR2臭氧总量月平均资料对四川盆地(28~31°N,104~106°E)、青藏高原(27~37°N,80~95°E)、云贵高原(23~27°N,98~106°E)3个区域的臭氧总量空间分布及变化趋势进行了对比分析。得到了以下结论,四川盆地常年存在臭氧总量最大值,青藏高原次之,云贵高原最低。在2003—2012年这10 a间西南地区臭氧总量总体呈上升趋势,这同全球臭氧总量近几十年的变化趋势相一致,其中上升趋势云贵高原四川盆地青藏高原。西南地区在这十年间分别出现了臭氧总量最小值年(2008年)和臭氧总量最大值年(2010年),其中青藏高原还出现了一个臭氧总量最小值年(2004年)。就臭氧总量季节变化而言,在2003—2012年10 a间西南地区臭氧总量在春季存在最大值,但是青藏高原的臭氧总量在秋季存在最小值,而四川盆地和云贵高原的臭氧总量在冬季存在最小值。  相似文献   

2.
中国近30a臭氧气候场特征   总被引:3,自引:1,他引:2  
利用1979—2005年TOMS(total ozone mapping spectrometer)和2006—2007年OMI(ozone mo-nitoring instrument)的卫星观测资料,分析中国地区对流层臭氧含量(tropospheric ozone residue,TOR)、整层臭氧含量(total ozone,TO)的空间分布和季节变化特征,利用二项式加权平均法、Mann-Kendall突变检验法以及小波分析法分析南方典型地区广州臭氧序列的趋势、突变以及周期特征。结果表明,中国地区多年平均对流层臭氧柱含量为35.89DU,东中部地区高于西部,四川东部和重庆西部存在极高值区,青藏高原为极低值区;对流层臭氧夏季平均值最高,冬季最低,春季高于秋季。中国地区多年平均臭氧总量为298.61DU。臭氧总量随着纬度增大而增大,成带状分布,青藏高原为极低值区;臭氧总量春季平均值最大,秋季为最低。南方广州地区的对流层臭氧在1979—2007年之间存在明显的上升趋势,时间变率为0.38DU/(10a);TOR时间序列在1997年发生突变,存在显著的1a及2a的周期。臭氧总量在1979—2007年之间存在明显的下降趋势,变化率为-2.1DU/(10a);TO在1993年发生突变,存在显著的2a周期  相似文献   

3.
选用2008年1月—2014年10月的Cloud Sat/CALIPSO卫星资料,对中国北方两个4°×4°区域云垂直结构及其微物理参量进行了对比研究,区域1(114~118°E,37.5~41.5°N)和区域2(110°E~114°E,37.5~41.5°N)纬度相同经度不同。结果表明:1)区域1(E1)和区域2(E2)暖云层、混合云层和冷云层的云出现概率(Cloud Occurrence Probability,COP)差别较大。E1暖云层COP春季最大,E2则在夏、秋季达到较大值;E1混合层COP最大值出现在冬季,E2则出现在春季;2个区域冷云层COP均在春季达到最大。2)2个区域的COP高值区厚度有明显的季节性差异,E1的COP高值主要出现在夏、冬季,E2则主要出现在春、夏季。E1秋、冬季云体雷达回波最大值强于E2,但春、夏季弱于区域1。3)E2在春、秋季的液水含量、冰水含量、云滴有效半径均高于E1。  相似文献   

4.
管成功  田华 《气象科技》2006,34(5):587-591
利用1996年9月至2004年9月卫星观测臭氧总含量TOMS(第8版)资料,对全球60°S至60°N和北半球0°~60°N大气臭氧总量分布进行了分析,给出了大气臭氧总量的季节纬度变化特征;通过对位于我国40°N附近不同经度上北京、敦煌和丹东3个代表站大气臭氧总量的分布与演变状况的分析,给出了中国40°N附近大气臭氧总量的时空演变特征。研究结果显示:北半球臭氧总量的季节变化和分布随着纬度变化有明显的特征;中国40°N附近的北京、敦煌及丹东大气臭氧总量在不同时间尺度上变化特征比较一致,但也存在一定的差异。  相似文献   

5.
利用欧洲中心1979-2010年ERA-interim青藏高原地面感热资料与西南地区干湿指数,应用SVD方法与EOF分解对青藏高原地面感热在近32a的时空分布特征和高原地面感热与西南旱涝之间的相关关系进行分析,结果得出:青藏高原西部地面感热通量在近年来是显著增加的,而高原东部感热通量在减少,有明显的年际变化;西南地区夏季、秋季全区基本偏干,特别是秋季。前期高原东、西感热异常对春季、夏季和秋季西南全区特别是西南南部地区旱涝异常有很好的相关关系:当青藏高原中部地区和高原北部的春季地面感热增加(减少)而西部、高原主体北部地面感热减少(增加)时,春季西南地区东北部是偏湿(偏干)的趋势,西南部是偏干(偏湿)的趋势;当高原东部春季感热增强(减弱)时,夏季西南地区的四川北部、重庆市与云南南部异常偏湿(偏干);高原东部春季感热增加(减少),高原西部感热减少(增加)时,秋季西南地区主要偏湿(偏干)。青藏高原西部(78°E-81°E,30°N-36°N)、高原中部偏南的位置(88°E-95°E,28°N-35°N),为感热影响西南旱涝的关键区。这些研究对西南地区旱涝趋势有很好的预测作用。  相似文献   

6.
近30a北极平流层臭氧的季节和年际变化特征   总被引:1,自引:0,他引:1  
综合利用1978-2011年TOMS(Total Ozone Mapping Spectrometer)和OMI(Ozone Monitoring Instrument)臭氧总量资料,MLS(Microwave Limb Sounder)臭氧廓线资料以及NCEP/NCAR再分析气象场资料,对比研究了近30a南北极臭氧总量的年际变化和季节变化差异,重点分析了2010/2011年冬末春初北极臭氧出现的异常损耗现象,探讨北极春季臭氧低值产生的原因。结果表明:与南极地区一年四季都保持一个臭氧低值中心明显不同,北极臭氧总量的减少则是伴随着整个春夏季(4-8月),在秋季(10月)达到最低值,冬季(11月-次年2月)北极臭氧快速恢复,这主要是由于南北半球极地地区环流差异和温度差异造成的。南北两极年均O3总量呈下降趋势,两极地区O3总量年际变化最大的季节是春季。近30a,北极在1997和2011年春季(3-4月)分别达到极低值355DU和361DU,但近年来两极臭氧年际变化趋势不明显。2011年春季,北极地区出现的较严重臭氧低值现象从3月中旬至4月中旬持续了近1个月,2010/2011年冬春季平流层低温和臭氧低值对应关系很好。  相似文献   

7.
利用2002年9月至2012年12月北京地区臭氧探空资料分析了大气臭氧的垂直分布特征,重点分析了对流层顶附近区域臭氧的季节变化与变率。结果表明:北京地区对流层臭氧的垂直分布主要表现为随高度递增的特征;臭氧的平均浓度夏季最高,冬季最低,春季和秋季相当,各季节的臭氧浓度在不同高度范围内略有差别。在对流层上层至平流层下层(8—15 km),臭氧浓度的垂直分布与平均浓度受对流层顶高度的影响显著。基于对流层顶相对高度坐标的分析表明,对流层顶下方1—3 km高度的臭氧仍保持了对流层臭氧的垂直分布特征;而在对流层顶高度附近,各季节臭氧浓度均随高度显著增加;由于垂直增速有显著的季节差异,导致臭氧平均浓度在对流层顶上方1—3 km出现明显变化。臭氧浓度归一化标准差表明:在对流层低层,大气臭氧浓度的变率在冬季最强,秋季、春季和夏季臭氧浓度的变率依次减弱;在对流层顶附近,大气臭氧浓度的变率在春季最强,冬季、秋季和夏季臭氧浓度的变率依次减弱,其中冬季和春季的强臭氧变率可能与对流层顶附近活跃的大气波动及对流层顶高度的频繁扰动密切联系。  相似文献   

8.
文中使用欧洲中期天气预报中心臭氧柱总量资料分析了西北太平洋地区大气臭氧柱总量的时空分布特征,结果表明:低纬度地区是臭氧柱总量最低的地区,纬向分布明显,臭氧柱总量随着纬度向北极的增加而增大;夏季臭氧柱总量最大值出现在北半球高纬度约80°N的地区,最低值出现在热带地区;秋季臭氧柱总量最大值出现在55°N左右的地区;最小值出现在赤道地区。冬春季,臭氧柱总量的最低值均出现在热带地区,最高值出现在北半球约50°~60°N的高纬度地区。   相似文献   

9.
青藏高原上空气溶胶含量的分布特征及其与臭氧的关系   总被引:7,自引:5,他引:2  
采用1991年10月—2005年11月的HALOE资料,分析了青藏高原(27°~40°N,75°~105°E)上空气溶胶数密度、体积密度、面积密度的分布和变化特征,探讨了它们与臭氧的关系,并且与同纬度带中国东部地区(107°~122°E,27°~40°N)、北太平洋(170°E~170°W,27°~40°N)上空进行了对比。结果表明:高原上空气溶胶的体积密度、面积密度受Pinatubo火山喷发的影响主要发生在1991—1995年,然而气溶胶数密度受火山影响则不如前二者明显;高原上空气溶胶在对流层顶附近存在一个极大值区,在夏季该极大值区位于对流层顶下方(约120 hPa),而其他季节则位于对流层顶上方(约100hPa);青藏高原、中国东部地区、北太平洋三地上空气溶胶数密度的差异主要出现在60 hPa以下的气层,夏季差异最突出,高原上120 hPa附近的气溶胶数密度约为平原上的1.8倍,约为海洋上的5.5倍;在高原上空对流层顶附近以及平流层低层,气溶胶数密度与臭氧体积混合比呈很好的负相关关系,而在20 hPa以上则有明显的正相关关系;对比三地上空气溶胶与臭氧的关系,得到在对流层顶附近及平流层低层气溶胶在高原和平原上空与臭氧的变化呈很好的负相关,其中以高原上空的负相关关系更好,但是在海洋上空气溶胶和臭氧的相关不明显。而在20 hPa以上气层中,三地上空的气溶胶与臭氧的变化都具有很好的正相关关系。  相似文献   

10.
气候变暖背景下我国四季开始时间的变化特征   总被引:11,自引:2,他引:9  
利用中国气象局国家气象信息中心提供的中国599个测站1961~2007年逐日温度资料,分析了我国近47年来四季开始日期的变化趋势。结果表明,四季开始日期在全国范围内主要表现为春季、夏季提早,秋季、冬季推迟的变化趋势,其中以夏季的变化最为明显,且在显著增温的21世纪初最为明显。这种趋势在空间分布上有所差异,北方比南方明显,东部比西部明显。东北最北部、华南最南部以及新疆局部区域春季推迟,青海东部以及内蒙古最北部的小范围地区夏季推迟,华南及西南局部地区冬季提早。此外,全国平均四季开始日期的年代际变化在20世纪并不是很明显,而在21世纪初非常明显。但年代际变化特征存在区域性差异,高原地区20世纪80年代和90年代春季提早,冬季推迟。而在21世纪初春季、冬季均推迟,但冬季的变化比春季明显得多。华南南部地区春季推迟、冬季提早。西南地区在21世纪初春季、夏季明显提早,秋季、冬季推迟,但之前这种趋势并不明显。  相似文献   

11.
Based on the Stratospheric Aerosol and Gas Experiment (SAGE) II and the Halogen Occultation Ex-periment (HALOE) ozone profiles and the Total Ozone Mapping Spectrometer (TOMS) total ozone data sets,the characteristics and variations of the vertical distribution of stratospheric ozone covering the latitude bands of 50oN±5oN,40oN±5oN,30oN±5oN,and 20oN±5oN and the longitude range of 75-135oE are investigated.The results indicate that the ozone distribution pattern over China not only has general behaviors,but also has particular char-acteristics.In view of the situation that ozone distribu-tions have substantial deviation from zonal symmetry in northern China,the differences of the vertical ozone dis-tribution between the east and the west part of northern China are studied.The results indicate that during winter,spring,and autumn,in the latitude bands of 50oN±5oN,40oN±5oN,ozone concentrations in the eastern part (105 -135oE) are obviously higher than those of the west (75-105oE) at the altitudes of ozone density maximum and below;during summer,in the latitude band of 50oN±5oN,the east-west ozone profile difference is small,but in the latitude band of 40oN±5oN,the east-west total ozone difference becomes as large as 14.0 DU,and the east-west ozone profile difference mainly exists in the lowermost stratosphere and troposphere.  相似文献   

12.
蒋艳蓉  何金海  温敏  祁莉 《高原气象》2009,28(5):945-954
受高原地形影响, 低层西风气流在高原西侧分支, 从南北两侧绕流, 在高原东侧汇合, 并在南(北)侧形成定常的正(负)涡度带。本文利用NCEP/NCAR提供的1951-2004年再分析资料, 发现这两个涡度带在700 hPa上最明显, 常年存在一正一负两个对称的涡旋(下称“涡旋对”), 且冬, 春季较强。根据各月涡旋对的位置及强度, 本文定义冬, 春季绕流指数为正\, 负涡旋对平均涡度之差, 定量地表征高原绕流作用的强弱, 绕流指数大则高原绕流作用强。结果表明, 1951-2004年中2/3的年份高原绕流作用春季强于冬季, 高原绕流作用不仅是高原大地形的动力作用造成的, 而且受到热力作用的影响。冬季绕流指数以年代际变化为主, 近50年冬季高原绕流作用有显著的增强趋势; 春季绕流指数年代际和年际变化均不明显。冬、 春季, 强高原绕流作用均有利于中高纬冷空气向我国北方输送, 使东北及新疆北部地区气温偏低。春季强高原绕流作用还有利于高原东南侧的暖湿气流向华南及江南地区输送, 使西南、 华南部分地区气温偏高; 偏南暖湿气流和来自中高纬的偏北冷干气流在31°N附近辐合, 有利于江淮地区降水。无论冬\, 春季, 亚洲中纬度西风强度是影响高原绕流作用的重要因子。  相似文献   

13.
A one-dimensional time-dependent photochemical model is used to simulate the influence of ion-produced NOx, and HOx radicals on the Antarctic ozone depletion in polar night and polar spring at a latitude of 73 degrees south.Vertical transport and nitrogen-oxygen (NOx), hydrogen-oxygen (HOx) production by ionic reactions have been introduced into the model.NOx and HOx produced by precipitating ions are transported into the lower stratosphere by vertical motion and have some effects in the development of the Antarctic ozone depletion.From winter through spring the calculated ozone column decreases to 269.4 DU. However, this value is significantly higher than the total ozone observed at several Antarctic ozone stations.  相似文献   

14.
2019-2020冬季北极平流层极涡异常并且持续的偏强,偏冷.利用NCEP再数据和OMI臭氧数据,本文分析了此次强极涡事件中平流层极涡的动力场演变及其对地面暖冬天气和臭氧低值的影响.此次强极涡的形成是由于上传行星波不活跃.持续的强极涡使得2020年春季的最后增温出现时间偏晚.平流层正NAM指数向下传播到地面,与地面AO指数和NAO指数相一致,欧亚大陆和北美地面气温均比气候态偏暖,在欧亚大陆的一些地区,2020年1月和2月的气温甚至偏高了 10K.2020年2月以来北极臭氧出现了2004年以来的最低值,2020年3-4月60°-90°N的平均臭氧柱总量比气候态偏低了 80DU.  相似文献   

15.
This study simulates the effective radiative forcing(ERF) of tropospheric ozone from 1850 to 2013 and its effects on global climate using an aerosol–climate coupled model, BCC AGCM2.0.1 CUACE/Aero, in combination with OMI(Ozone Monitoring Instrument) satellite ozone data. According to the OMI observations, the global annual mean tropospheric column ozone(TCO) was 33.9 DU in 2013, and the largest TCO was distributed in the belts between 30°N and 45°N and at approximately 30°S; the annual mean TCO was higher in the Northern Hemisphere than that in the Southern Hemisphere;and in boreal summer and autumn, the global mean TCO was higher than in winter and spring. The simulated ERF due to the change in tropospheric ozone concentration from 1850 to 2013 was 0.46 W m~(-2), thereby causing an increase in the global annual mean surface temperature by 0.36℃, and precipitation by 0.02 mm d~(-1)(the increase of surface temperature had a significance level above 95%). The surface temperature was increased more obviously over the high latitudes in both hemispheres, with the maximum exceeding 1.4?C in Siberia. There were opposite changes in precipitation near the equator,with an increase of 0.5 mm d~(-1)near the Hawaiian Islands and a decrease of about-0.6 mm d~(-1)near the middle of the Indian Ocean.  相似文献   

16.
通过对1960-2013年在越南登陆或登陆前停编后海南岛出现暴雨的秋冬季台风历史个例的分析,结果表明:秋冬季台风中有47%是南海台风,台风登陆越南或在登陆前停编时的纬度介于11.3°N-20.6°N之间,其中15.0°N-15.9°N最多(23.5%),而19.0°N-19.9°N没有满足条件的台风;秋冬季暴雨出现的主要时段为9月下旬-10月下旬,其中10月中旬暴雨日最多(23.8%);秋冬季暴雨落区集中在海南岛东部、中部和北部内陆地区,琼中县最多(12.7%),西部沿海地区明显偏少;秋冬季暴雨的主要影响系统是热带低值系统(台风或低压环流)、东路或西路冷空气;低空急流和暴雨落区密切相关,暴雨区一般位于低空急流左前侧和切变线南侧;海南岛东北部暴雨偏东风低空急流位于两广南部;东中部暴雨偏东风低空急流位于两广南部至海南岛北部;西南部暴雨东南东风低空急流位于海南岛北部,同时南海存在西南风低空急流;西北部暴雨两广南部有东北东风低空急流;全岛性暴雨两广南部至南海中部为广阔的偏东风低空急流区。  相似文献   

17.
浮力频率用来描述大气层结稳定性,反映大气扰动强弱。利用2014年6月-2017年5月中国地区高垂直分辨率的秒级探空资料,分析了中国地区浮力频率的时空分布特征。结果表明:中国地区大气浮力频率总体随高度的增加而增大,低平流层值大于对流层值;对流层和低平流层中浮力频率随高度变化均较小可视为常数,过渡层浮力频率随高度变化较大,对流层中浮力频率受地形影响较平流层大。对流层中北方地区5 km高度以下的浮力频率随时间呈现出较弱的周期变化,周期为1年,峰值出现在冬季,南方地区随时间无明显变化;在过渡层中南北地区的浮力频率随时间均呈现出1年的周期变化,峰值出现在冬季,谷值出现在夏季;在低平流层中南北地区浮力频率随时间均无明显变化。浮力频率的大小变化对重力波参数有较大影响,秒级探空资料计算的的浮力频率和风速切变更精细,较常规探空资料更准确地反映大气稳定度的变化。  相似文献   

18.
郑倩  孙杭媛  潘欣  顾振海  黄亿  叶飞 《气象科学》2022,42(3):390-401
利用2008年9月—2016年8月的CloudSat卫星资料对发生在我国低纬度陆地区域(5°~36.5°N,78°~124°E)的卷云物理特征进行统计分析,并分别讨论东部沿海、中部、西部3个子区域的卷云物理特征的季节变化。结果表明:卷云的整层发生率西部地区整体低于中部与东部沿海地区。3个子区域整层发生率均在夏季最高、冬季最低。卷云的主要发生高度在5.04~18.71 km,垂直分布中卷云发生率的最大值出现在春季中部地区,为15.34%,高度为9.83 km。冰水路径最大值出现在夏季的东部沿海,液水路径最大值在秋季的西部地区。冰水含量、冰粒数浓度、冰粒有效半径的主要分布高度与卷云的发生高度一致,液水含量、液滴数浓度、液滴有效半径的主要分布高度在5.04~9.35 km。3个子区域卷云冰水含量、冰粒数浓度、冰粒有效半径垂直分布中大多集中在中上部;液水含量垂直分布主要集中在分布高度的中下部。四季卷云雷达反射率因子的最大值在-19.89~-16.78 dBZ,分布高度在7.19~10.55 km。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号