首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
有地形模式中气压梯度力误差扣除法   总被引:4,自引:0,他引:4  
:在现有有地形的数值模式中,陡峭地形区气压梯度力的计算存在一个普遍问题,即计算精度较高的格式比较繁琐而费时,简单省时的格式又不精确和不稳定。为解决这个问题,作者等在最近提出了一种方法,称为气压梯度力的误差扣除法。该方法假定:气压梯度力的计算误差主要来自地形而与气压形势关系较小。用理想场对该方法进行检验后表明,这一方法是成功的。本文则用气候模式对作者提出的有地形数值模式中气压梯度力的误差扣除法进行了模拟检验。所用模式是作者等使用多年的P-混合坐标系5层模式,选用了四种气压梯度力的计算格式,即DDD格式、Corby格式、平均温度格式和经典中央差格式。比较了这四种格式在有无误差扣除时的模拟结果,发现:对于计算精度较高的格式,如DDD格式、Corby格式及平均温度格式,有无误差扣除的结果相差不大,但误差扣除法仍可在一定程度上改善模拟效果。对于计算精度差的格式,如经典中央差格式,在无误差扣除时计算不稳定,得不到模拟结果,进行误差扣除后,从根本上提高了其计算精度,因而也提高了计算的稳定性,达到了较满意的模拟效果。而且与其它格式的模拟结果相当接近。本文提出的误差扣除法可同时用于格点模式和谱模式。  相似文献   

2.
有地形模式中气压梯度力误差和扣除法的模拟试验   总被引:9,自引:4,他引:9  
在现有有地形的数值模式中,陡峭地形区气压梯度力的计算存在一个普遍问题,即计算精度较高的格式比较繁琐而费时,简单省时的格式又精确和不稳定,为解决这个问题,作者等在最近提出了一种方法,称为气压梯度力的误差扣除法,该方法假定:气压梯度力的计算误差主要来自地形而与气压形势关系较小,用理想场对该方法进行检验后表明,这一方法是成功的。  相似文献   

3.
数值模式中气压梯度力的算法试验   总被引:4,自引:2,他引:4  
钱永甫  王云峰 《气象学报》1991,49(3):321-333
本文在差微差一致性二阶精度的坐标变换公式的基础上,推导出了气压梯度力计算的新公式。同时,根据静力扣除法原理,提出了初值静力扣除法,用以计算有地形数值模式中的气压梯度力。将这两种新的方法与二阶计算精度的回插法和局地等温法(Corby格式)相比后发现:新方法(文中称为经典修正法)与回插法精度相近,但可节省计算时间,比局地等温法精度高。静力扣除法则效果较差,但其原因可能在于地转风垂直插值方法有误差。本文的试验模式是上海台风研究所的业务数值预报模式,文中对模式及若干技术处理也作了简要介绍。  相似文献   

4.
陡峭地形区气压梯度力的误差扣除法   总被引:16,自引:0,他引:16  
设计一种计算陡峭地形区气压梯度力的新方法,限误差扣除法,给出了误差扣除法的基本原理。然后,选用理想大气,用3种近似计算式进行了检验。结果表明,这3种方法在单独用于气压梯度的计算时,计算值都有较大误差,在地形陡峭区,相对误差可以达到20%以上。即使在平缓地形区,相对误差也不可忽略,只有平均温度格式可以满足精度要求。但当这3种格式在误差扣除法中应用时,绝对误差和相对误差都大大减小,相对误差的量级可达到  相似文献   

5.
张玉玲  吴兴仁 《气象》1987,13(10):18-23
本文详细地讨论了σ坐标模式引入地形时气压梯度力的截断误差。通过理论分析和数值计算看到,对于不同的σ定义和模式变量的垂直分布,Corby格式的精度可以有很大差别。为了减小梯度力的计算误差,对于模式的垂直离散化和梯度力的差分格式提出了一些改进意见。  相似文献   

6.
强学民  琚建华 《高原气象》2001,20(2):148-157
使用云南中尺度数值预报试验模式^[1],引入实际地形,选用静力扣除格式、回插格式、局地等温格式、经典修正格式以及模式中原计算格式(Corby格式)等5种计算格式计算气压梯度力,对气压梯度力的误差和扣除法进行了模拟试验。比较了这5种格式在有、无误差扣除时的模拟结果之后,发现误差扣除法与上述格式结合使用时,均能够不同程度地提高预报效果,尤其是在与经典修正格式结合使用以后,预报效果进一步改善,得到了较满意的模拟效果。  相似文献   

7.
胡江林  王盘兴 《大气科学》2007,31(1):109-118
地形跟随坐标系中水平气压梯度力的算法一直是困扰数值模式发展的关键问题之一。目前数值模式中使用的方法只能在天气尺度的模式中部分缓解气压梯度力的计算误差问题。在高分辨率中尺度模式中,随着地形坡度的进一步加大,气压梯度力的计算误差问题更加突出。作者通过理想场的计算分析了几种主要气压梯度力算法的误差,结果显示在中尺度模式分辨率下,计算的水平气压梯度力不但不收敛于真值,而且随着地形坡度的加大或模式分辨率的提高,计算误差逐渐增大。作者提出了基于静力方程订正的回插等压面改进方案,理想场的计算结果表明该方案的计算误差可显著减小,在典型中尺度模式参数的设置下计算精度可达10-6m/s2。其最大特点是随着模式分辨率的提高,该方案的计算误差将逐步收敛到零。  相似文献   

8.
温度初值确定之合理性与气压梯度力项的计算   总被引:1,自引:0,他引:1  
沈如金 《大气科学》1983,7(2):189-200
本文讨论数值试验中两个基本问题:温度初值确定和气压梯度力的计算。首先比较几种利用静力方程差分解求温度初值方案所引起的误差,提出一种把等压面高度场插值与静力方程微分解结合起来求取等σ面温度初值的方法,结果表明用这种方法确定的温度初值及其水平分布和垂直递减率接近实测值。文章又讨论山脉地区气压梯度力计算问题,表明气压梯度力的计算精度不仅与计算方案有关,而且与温度初值有很大的关系。利用本文提出的方案得到的温度初值来计算气压梯度力,误差达到比较满意的精度。  相似文献   

9.
曹杰  谢应齐  严华生 《大气科学》1997,21(6):698-704
针对经典递推算法的平稳性和初值敏感性问题,根据描述运动变化的一般性原理,导出一种新的递推算法,并将其引入到气候预报中。理论和实践证明,该方案成功地解决了经典递推算法存在的平稳性和初值敏感性问题。初步的预报应用结果也表明,该方案具有明显的优越性。  相似文献   

10.
张旭  黄伟  陈葆德 《气象学报》2015,73(2):331-340
将一种新的高度地形追随坐标(Klemp坐标)引入了GRAPES区域模式,并与传统追随坐标(Gal-Chen坐标)和平缓地形追随坐标(SLEVE,Smooth Level Vertical coordinate)进行了比较。对不同坐标下气压梯度力的计算误差通过理想静止大气试验进行了评估,结果表明:与Gal-Chen坐标和SLEVE坐标相比,Klemp坐标有效地减小了气压梯度力的计算误差。理想重力波模拟试验表明,Klemp坐标下对重力波的模拟相比其他两种坐标也更接近于解析解。模式进一步采用了Mahrer气压梯度计算方案减少了计算误差,并提高了模式的精度和稳定性。实际个例试验与理想试验的结论相似。  相似文献   

11.
利用集合变分法研究了大气边界层EK模式(考虑了水平气压梯度力、科氏力和湍流粘性力3力平衡的大气边界层模式)中湍流粘性系数的反演问题.首先利用集合变分法推导了目标函数关于反演参数的梯度表达式,然后给出了反演计算方案,最后再就反演湍流粘性系数k进行了一系列理想数值试验.数值试验结果表明:利用集合变分法对EK模式中的湍流粘性系数的反演比较成功.通过适当调整集合数,初始扰动均方差及初始值的大小,可以进一步提高集合变分法对湍流粘性系数k的反演精度.将集合变分法应用于大气边界层参数的反演是一种值得研究的计算方案.  相似文献   

12.
利用C3连续双三次曲面拟合了全球数值模式地形曲面;讨论构建了有复杂地形数值模式引入地形追随高度坐标((z)坐标)后,同时引入包含定常斜率、曲率和挠率的双三次曲面地形,又进一步讨论了双三次曲面地形模式大气的水平气压梯度力计算问题.结果表明,对(z)坐标模式大气的压、温、湿场,通过做经、纬向三次样条拟合,求得地形斜率“静力平衡”气压差,从而插值(反演)任一水平面(海平面)上的气压场,同时可以求得时变的参考大气,则计算水平气压梯度(力)的精度,完全依赖于插值(反演)对应的水平面(海平面)气压场的计算精度.并指出,理论上可按三次样条的曲率判断,做变量场(地形)的局域或单点平滑.  相似文献   

13.
模式低空急流结构与水汽输送精度的数值试验   总被引:1,自引:0,他引:1  
李峰  葛孝贞 《气象科学》1997,17(3):250-257
本文所使用的中尺度模式MM4改进了水汽平流的计算精度,引入了Prather和Bott两种高精度正定闰流差分格式。首先探讨了仅考虑模式平流过程的情况下不同平流差分格式的误差特征对模式结果的可能影响。结果显示:MM4中原有的水汽平流差分格式在水汽梯度较大处产生水汽负值,而引入搞精度格式能正确模拟水汽为分布的特征,对不同精度的水汽平流分格式作了数值试验,不同格式下模式的低突急流结构有较明显差别,水汽输送  相似文献   

14.
钱永甫  施丹平 《气象科学》1990,10(3):215-225
本文假设温度场与气压对数成逐段线性分布。在有地形时,气压梯度力项采用在P坐标系计算的方法,即回插法。分别用理想地形和温压场分布及两个实例检验了高度场垂直插值不同方法的误差。结果表明,假设高度场随气压对数平方成逐段线性分布的方法,可以简化计算,节省机时,计算精度也较高。  相似文献   

15.
"地形追随坐标系中气压梯度力误差的特征分析"一文通过几何分析和理想实验,对比了地形追随坐标系两种方案(经典方案和协变方案)中气压梯度力(PGF)误差的特征。结果表明:(1)经典方案的PGF误差受"垂直气压梯度","气压梯度的方向(α)","垂直层的坡度(φ)"三者影响,垂直气压梯度越大,气压梯度与水平方向的夹角越大,垂直层坡度越大,误差越大;(2)协变方案的PGF误差不受上述三因子影响。此外,通过定义参数TT(TT=tanφ·tanα)能定量分析经典方案的PGF误差。  相似文献   

16.
传统的高阶精度有限差分格式通常是在均匀网格的基础上推导得到的,在非均匀网格的情况下它会出现精度退化的问题。基于泰勒展开方法构造了一种适用于非均匀网格的2阶、4阶和6阶精度中央有限差分方案,利用Burgers方程和一维平流方程对新方案的性能进行测试,着重分析新方案对其误差大小及分布形态的改进效果。数值模拟结果表明:在非均匀网格下,提高差分方案的精度可明显减小数值解误差(降低了70%~88%),特别是当差分精度从2阶提高到4阶的时候。同时,高阶精度方案在梯度变化较大或者网格距较粗区域的模拟结果更有优势,4阶和6阶精度方案在以上区域的误差远小于2阶精度方案。方案可用于提高数值天气预报模式中非均匀分层模式的垂直差分计算精度。   相似文献   

17.
李超  陈德辉  李兴良 《气象学报》2012,70(6):1247-1259
采用一种统一的地形追随坐标的形式,对Gal-Chen & Somerville(简称Gal.C.S坐标)、平缓坐标(smoothed level vertical coordinate,简称SLEVE坐标)等几种典型的高度地形追随坐标进行了气压梯度力计算误差影响和二维质量平流试验的理论分析,并与一种新提出的高度地形追随坐标——三角函数平缓坐标(简称COS坐标)进行比较.气压梯度力计算误差分析结果显示,与Gal.C.S坐标相比,单尺度平缓坐标(简称SLEVE1坐标)、双尺度平缓坐标(简称SLEVE2坐标)和COS坐标在减小气压梯度力计算误差上有不同程度的改进,SLEVE2坐标和COS坐标比其他两种坐标更具优势,衰减系数b和坐标转换的雅可比项对减小误差起决定性作用.二维质量平流试验也有类似的结果,与无地形的参考试验结果相比,COS坐标的质量输送计算误差最小,且经优化的COS坐标的质量输送计算误差几乎和参考计算误差完全重合,在4种坐标中最优.  相似文献   

18.
马淑萍  冉令坤  曹洁 《大气科学》2021,45(5):1127-1145
利用WRF模式对2018年11月30日伊犁河谷和天山北坡强降雪过程进行数值模拟,并分析复杂地形强降雪过程垂直速度和垂直动能变化机制。研究表明,冷锋过境造成地表气压升高,干空气气柱质量增大,从而导致垂直气压梯度力和干空气气柱浮力发生变化,进而引起垂直运动发生发展。垂直速度局地时间变化主要取决于扰动垂直气压梯度力、水物质拖曳力和扰动干空气浮力。在天山北坡,气流过山时,迎风坡的扰动垂直气压梯度力较大,扰动干空气浮力较小,二者合力促进上升运动;在背风坡,扰动垂直气压梯度力和扰动空气浮力形成向下的合力,产生下沉加速度,导致背风坡下沉大风。扰动垂直气压梯度力做功和扰动干空气浮力做功情况基本相反,背风坡扰动垂直气压梯度力和综合强迫做功项抑制垂直动能,扰动干空气浮力和水物质拖曳力做功项增强垂直动能。此外,扰动垂直气压梯度力和扰动干空气浮力做功项主要出现在中低层,水物质拖曳力做功项主要位于低层,平缓地形处的综合强迫做功明显小于地形复杂处。  相似文献   

19.
针对大规模多体系统动力学建模过程复杂及计算效率、精度不高的难题,在空间算子代数理论的基础上,通过旋量表达的有关力学量和运动量,将包含机构拓扑关系及运动、力递推关系的移位算子直接与Newton-Euler递推动力学计算相结合,实现了广义速度、广义加速度、广义力和广义质量沿着链正向或反向递推,避免了交叉运算和不必要的积分运算,得到了高效率、高精度的动力学建模方法.该方法形式简洁、物理意义明确,适于计算机编程和运算,具有重要的科学意义和工程应用价值,并通过算例验证了结果的正确性和有效性.  相似文献   

20.
本文对如何提高气象要素的垂直插值精度以减少数值模式中的计算误差的问题作了详细讨论。文中提出了三种温度对气压的分布关系,并检验了它们在数值模式中应用时的优劣。结果表明,温度随气压对数和随高度成线性关系的分布假设较好。试验还证明,当模式中具有高和陡的地形时,用模式大气底层的温压关系去外插地面以下的温度和位势高度时,会造成很大的不规则的误差。用等压面上局地温度相等的假定以及用水平热力结构相同的假设可大大减小外插误差并改善气压梯度力的计算方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号