首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
一次局地大暴雨过程的数值模拟和诊断分析   总被引:14,自引:0,他引:14  
采用中尺度数值模式MM5(V3)对2002年8月15-16日发生在江苏启东附近的一次局地大暴雨过程进行了数值模拟,较好地模拟出了本次过程的暴雨中心落区和降水量,以及相关的中尺度系统的发生、发展过程.探讨了中尺度涡旋、局地环流对这次暴雨过程的影响,结果表明,中尺度涡旋对暴雨的发生起了至关重要的作用,局地环流的存在,也有利于降水的发生.  相似文献   

2.
利用常规观测站、地面加密站资料、卫星红外云图TBB和NCEP再分析资料,对2005年6月19-24日发生在广东的特大连续性暴雨过程进行了分析.天气分析表明:高空南亚高压前部的强辐散场,500 hPa河套阻塞高压以及低层低涡切变线横卧在江淮一带、低空急流源源不断地向华南输送暖湿气流的这种大尺度环流形势和相应的大范围动力热力及水汽条件,决定了暴雨的多发时期和持续性;区域暴雨多发期内5次强降水的具体发生和间歇,则与暴雨区大气动力、热力及水汽条件的5个α中尺度时间变化与震荡密切联系并受其影响;暴雨区动力条件的α中尺度时间变化与特定的大尺度环流背景下高低空急流的演变有密切的关系.降水的中尺度特征分析表明:暴雨过程中5场暴雨的发展和间歇对应5个α中尺度系统的发展和减弱,暴雨是由19个β中尺度系统直接造成19个β中尺度大雨团形成.进一步分析表明:强降水主要发生在地面静止锋和锋前暖区的中尺度切变线(或中尺度辐合线)和中尺度涡旋或中尺度辐合中心附近,中尺度涡旋内的降水是由飑线上γ中尺度对流单体形成的"列车效应"产生的,而中尺度切变线附近的降水则是飑线的发展合并加强产生的.发生在冷式切变线附近的强降水移动速度较快,发生在暖式切变线附近的强降水移动缓慢,发生在辐合中心的强降水在原地发展达最强后随辐合中心转为切变线减弱或直接在原地减弱消失而结束.  相似文献   

3.
"98.5"华南前汛期暴雨的非静力数值模拟和中尺度系统分析   总被引:25,自引:22,他引:3  
文莉娟  程麟生  隆霄 《高原气象》2005,24(2):223-231
为了对华南暴雨进行深入的数值模拟研究,在对1998年5月23~24日(简称“98.5”)华南暴雨进行天气分析的基础上,利用非静力中尺度数值模式MM5对该次暴雨过程进行了数值模拟。数值模拟结果和客观分析结果的比较表明,模拟结果可以再现造成暴雨的大、中尺度环流条件。造成此次暴雨的中尺度系统具有暖心高湿结构,高空辐散,低空辐合及对应的强上升运动和气旋性涡柱是造成这次暴雨的动力学机制,低空偏南气流对这次暴雨的产生和发展起着重要的作用。模拟的降水中心与观测的较接近,位置略偏南、偏西,雨量略小,但降水时段和雨区模拟较好。降水发生在喇叭口等有利地形;高低分辨率的地形资料对本次降水的模拟结果影响不大。  相似文献   

4.
彭军  张立凤  罗雨  徐锐  陈锋立 《湖北气象》2010,29(2):135-141
针对2007年7月17日发生在重庆地区的一次暴雨过程,利用AREM模式进行了数值模拟。结果显示,AREM模式较好地模拟了这次暴雨过程的雨带及雨带上双极值中心的分布。利用模式输出的高时空分辨率结果,对暴雨过程的中尺度特征进行了诊断分析,得到的主要结论有:24h累积降水的双中心峰值发生在不同时段;暴雨中心的动力场结构随时间的演变与降水量在中尺度特征值上有很好的对应关系,两个降水中心对应高低层的流场配置不同;暴雨是在西南涡及低空西南急流的直接作用下发生发展,低涡和急流的维持为降水中心的低层辐合及与之伴随的上升气流的发展提供了有利条件;对流层高层高压脊的变化和中尺度辐散区发展也是造成此次降水的重要因素,辐散区的移动造成强上升运动区的移动,这是引起降水中心移动的原因之一。  相似文献   

5.
廖捷  谈哲敏 《气象学报》2005,63(5):771-789
2003年7月4~5日在江淮地区沿梅雨锋有一系列中尺度对流系统相继生成和强烈发展,导致了江淮地区特大暴雨的形成。该研究利用中尺度数值模式MM5对这次梅雨锋暴雨过程进行了数值模拟,在模拟结果的基础上重点分析了不同尺度天气系统相互作用对这次特大暴雨过程的影响作用。在这次特大暴雨过程中,位于梅雨锋北侧的东北—西南走向深厚、稳定的短波槽系统与槽前从西南移来的低涡系统相配合,加强了位于梅雨锋北侧的反气旋性扰动发展,从而导致梅雨锋北侧反气旋性涡旋的形成。该类反气旋性涡旋形成对江淮切变线的加强与维持起重要作用。中尺度对流系统的潜热释放首先导致梅雨锋低层切变线上的中尺度对流性涡旋(MCV)的形成,而中尺度对流性涡旋的形成进一步加强了切变线上的低层辐合,中尺度对流性涡旋消亡后,在切变线上形成低涡。梅雨锋附近主要存在4种不同垂直环流,它在降水的不同阶段具有不同的结构、配置与动力学作用。其中跨锋面、高层非地转两支垂直环流对锋区的对流扰动发展和暴雨形成最为重要,而降水发展可以调整锋区垂直环流的结构、配置,随降水的减弱,梅雨锋区的不同垂直环流系统又重新恢复到先前结构。梅雨锋上不同尺度、高度的天气系统之间的相互作用主要通过这些垂直环流系统调整实现。  相似文献   

6.
陕西中西部地区一次暴雨过程的数值模拟研究   总被引:2,自引:0,他引:2  
刘燕飞  隆霄  王晖 《高原气象》2015,34(2):378-388
利用多种观测资料和NCEP再分析资料,分析了2011年7月28-29日发生在陕西中西部地区的一次中尺度系统暴雨过程,运用WRF模式模拟研究了此次暴雨过程的中尺度系统环流特征及其发生、发展的动力和热力特征。结果表明,此次暴雨过程与高空槽的发展演变密切相关,低空切变线是暴雨过程产生的中尺度系统。暴雨区存在弱低空辐合与强高空辐散,正相对涡度与垂直上升运动明显;暴雨发生前对流有效位能(CAPE)明显增大,未来3 h降水区域位于850 h Pa切变线和CAPE高值区附近,强垂直运动触发CAPE的释放,使其在12 h内减少量达2200 J·kg-1,是形成此次暴雨的重要因素。暴雨发生、发展过程中,非线性平衡方程残差大值区与未来1 h降水区相对应,与质量场和动量场之间的调整有密切关系,大气运动的不平衡通过散度场的变化调节,在中尺度区域激发出辐合、辐散的快速增长,从而激发出暴雨天气,非线性平衡方程残差值是表征激发暴雨天气的重要动力因子。  相似文献   

7.
一次江淮大暴雨过程中尺度系统结构分析   总被引:2,自引:8,他引:2       下载免费PDF全文
本文应用观测资料和中尺度数值模拟结果对1999年6月23日发生在江淮地区一次梅雨锋暴雨过程进行研究,揭示了影响这次暴雨过程的物理条件、云团的演变特征及与中尺度系统的关系,分析表明,在暴雨生成和发展过程中,多个中尺度云团在相继生成和移动发展,暴雨中心是几个发展较强的中尺度对流云团造成的,西南风低空急流为暴雨提供了水汽输送,并且通过强垂直运动向对流层中上层输送水汽,这次暴雨与中尺度系统发生发展有直接关系,西南涡分裂出一系列的小涡旋,这些小涡旋边向东移边减弱,并且同时在地面上引发小低压,这些中尺度低压增强低空水平辐合,成为触发不稳定能量的机制,低空急流中心与雨区相互对应,且急流风速增强,风速水平切变梯度增大的过程对应着强降水过程。  相似文献   

8.
黔西南一次中尺度暴雨的数值模拟诊断研究   总被引:6,自引:0,他引:6  
乔林  陈涛  路秀娟 《大气科学》2009,33(3):537-550
使用WRF模式 (Weather Research and Forecasting model) 模拟了2006年6月12日贵州省西南部一次典型的突发性强对流暴雨过程, 模式较真实地模拟了这次局地发展的中尺度暴雨天气过程。对流层低层的中尺度辐合线造成了初始的上升运动, β中尺度对流系统首先在地面锋线前不稳定的暖区中生长, 辐合线南侧的偏南气流对水汽和热量的输送是对流能够持续生长的最重要因素。通过非地转ω方程的诊断证明, 在降水开始后, 凝结加热的释放对β中尺度对流系统的发展最为重要, 它强迫产生的上升运动分量超过了低层暖平流强迫造成的上升运动分量。在相应的热力、 动力结构的调整作用下, 对流层低层出现中尺度低空急流、 中尺度涡旋等动力结构。到降水过程后期, 由于偏北气流的侵入, 降水区上空对流层低层转为对流稳定的层结, β中尺度对流系统无法获得不稳定能量以维持其发展, 降水也逐渐减弱直至终止。  相似文献   

9.
一次梅雨锋暴雨过程的中尺度对比模拟分析   总被引:11,自引:6,他引:5  
王舒畅  季亮  潘晓滨  李毅 《气象科学》2005,25(6):569-578
使用新一代细网格WRF中尺度数值模式和MM5(V3)模式,对2003年7月4~6日发生在江淮流域的一次梅雨锋暴雨过程进行了数值模拟对比分析。结果表明:WRF和MM5都能较好的模拟这次暴雨过程雨带的分布和走向,而WRF能更好的模拟降水中心的位置和雨量;与暴雨过程相联系的低空急流和涡度场等分布特征的模拟,WRF模式亦优于MM5模式。此外,在云贵高原东麓山地,与WRF模式相比,MM5模式在低层模拟出虚假的低压环流,这可能与两模式所采用的垂直坐标差异有关。对WRF的模拟结果分析发现,700hPa湿位涡异常区与暴雨发生区对应很好。  相似文献   

10.
祁海霞  辜旭赞  白永清  钟敏  王晓玲 《气象》2017,43(3):268-277
利用地面加密自动站资料、FY 2E卫星TBB和NCEP/GFS 0.5°×0.5°分析场资料,对2013年7月5—6日发生在湖北鄂东的大范围暴雨过程β中尺度系统活动特征进行了研究,并利用WRF中尺度模式输出的高分辨率资料进行诊断分析。诊断分析表明:该次鄂东大暴雨过程发生在深厚低槽前正涡度区、低空切变线前部急流核附近与高空强辐散气流以及不稳定能量重合区域中,暖湿气团的抬升凝结高度较低,具有较高的降水效率;产生暴雨的直接原因是由3个不同时间和地域的近圆形β中尺度对流系统先后移动经过形成;采用WRF中尺度模式对这次大暴雨过程做了数值模拟,中尺度模式模拟总水物质(水汽+云水+云冰+雨水)通量散度降水率的诊断分析,得出7月5日夜间β中尺度对流系统中有多个γ小尺度单体活动,此物理量值一定程度上可以定量估算雨团的小时雨强,而模拟最大可能对流可降水率的诊断分析,可以反映雨团内部的水汽、热力条件与降水量之间关系。  相似文献   

11.
一次江淮切变线暴雨过程的数值模拟与诊断分析   总被引:1,自引:0,他引:1  
采用非静力中尺度模式WRFV3.3对2010年7月12-13日一次江淮切变线暴雨过程进行数值模拟,分析了暴雨形成的大尺度环流条件、中尺度气旋演变,并对涡旋与变形场的相互作用指数VDI与降水之间的关系进行了探讨。结果表明:本次暴雨过程为典型的切变线降水过程,是在高层200 hPa强大的南亚高压稳定少动,中层500hPa短波槽生成东移、西太平洋副热带高压维持的背景下,由低层700 hPa和850 hPa切变线上中尺度低涡以及地面梅雨锋扰动的共同作用造成的。WRFV3.3较好地模拟了本次暴雨过程的雨带和暴雨中心。中尺度气旋发生于长江中下游呈东北-西南走向的切变线上,暴雨发生于700 hPa切变线南侧、低空急流轴的左侧,急流轴上的大风速中心与1 h雨强有较好的对应关系。中尺度涡旋与大风速中心之间存在着明显的相关性,风速增强,涡旋增强。VDI指数对降水中心和强度有较好的指示性,有助于在实际预报业务中对降水中心和强度做出正确判断。  相似文献   

12.
采用非静力中尺度模式WRFV3.3对2010年7月12-13日一次江淮切变线暴雨过程进行数值模拟,分析了暴雨形成的大尺度环流条件、中尺度气旋演变,并对涡旋与变形场的相互作用指数VDI与降水之间的关系进行了探讨。结果表明:本次暴雨为典型的切变线降水过程,是在高层200 hPa稳定少动,强大的南亚高压,中层500 hPa东移短波槽、西太平洋副热带高压维持的背景下,由低层700 hPa和850 hPa切变线上中尺度低涡以及地面梅雨锋扰动的共同作用下造成的。WRFV3.3较好地模拟了本次暴雨过程的雨带和暴雨中心。中尺度气旋发生于长江中下游呈东北-西南走向的切变线上,暴雨发生于700 hPa切变线南侧、低空急流轴的左侧,急流轴上的大风速中心与1 h雨强有较好的对应关系。中尺度涡旋与大风速中心之间存在着相互作用,风速增强,涡旋增强。VDI指数对降水中心和强度有较好的指示性,有助于在实际预报业务中对降水中心和强度做出正确判断。  相似文献   

13.
伍红雨 《湖北气象》2007,26(4):361-368
利用三重嵌套的非静力中尺度数值模式MM5V3.5,对2005年5月31日至6月1日贵州省发生的一次大暴雨天气过程进行数值模拟,并利用模拟结果对该过程进行诊断分析。结果表明:模式较好地模拟这次大暴雨过程,并对与暴雨过程相关的中尺度系统的发生发展做出了较成功的模拟,此次过程中,西南涡是造成大暴雨的主要影响系统。对中尺度系统的模拟表明:强降水与强上升运动区及正涡度区有很好的对应关系,低层辐合、高层辐散、西南低空急流、垂直运动增强等是此次暴雨维持和发展的重要机制之一。强降水与水汽辐合的大值密切相关,降水的强弱与辐合的强弱变化一致。  相似文献   

14.
华南暖区一次暴雨中尺度系统的数值模拟   总被引:8,自引:4,他引:4       下载免费PDF全文
覃丽  寿绍文  冠聪  刘泽军 《高原气象》2009,28(4):906-914
为深入了解华南暖区暴雨产生的机制, 首先利用观测资料和卫星云图对2005年5月9日华南暖区一次暴雨过程进行天气分析, 然后利用MM5V3.6数值模式对该次暴雨过程进行了模拟, 利用模拟的输出结果分析了中尺度系统的结构特征和成因。结果表明, 这次华南南部暖区的暴雨区出现在低空急流出口区左侧的辐合区与高空急流入口区右侧的辐散区相迭置的区域; 中尺度对流云团是暴雨的直接影响系统, 系统中心上空偏南气流强烈垂直上升与在系统以南对流层高层下沉的气流构成垂直闭合反环流, 低层气流风速辐合对暖区暴雨系统的形成和发展起决定性的作用。较大的螺旋度可能是暖区暴雨及其中尺度系统发生、 发展的一种重要机制, 可用来判断降水系统的形成和移动。  相似文献   

15.
王欢  倪允琪 《气象学报》2006,64(6):734-742
2003年7月4—5日淮河流域发生了一次中尺度强暴雨过程,致使淮河洪水泛滥。这次暴雨过程由中尺度对流系统(MCS)以及因其发展而产生的低涡造成。通过对此次过程的诊断分析和新一代细网格WRF中尺度预报模式的数值模拟,研究了这次过程发生发展的机制。模拟结果较好地描述了本次暴雨及中尺度系统发生、发展的时空演变过程。分析结果表明:此次移动性暴雨过程的前期由不断向东移动发展的MCS造成,后期降水则由低涡切变线产生的中尺度低涡引起。同时,副热带高压明显偏西偏北,并维持较长时间,造成雨带一直维持在淮河流域。高层辐合中心的加强使低空急流不断增强,低空急流的增强进而引起低层辐合的加强,而低层辐合的加强以及上升运动的潜热释放导致低涡的发生,低涡形成及形成后移动缓慢,造成了淮河流域的大暴雨。高层中尺度辐散区的抽吸对低层中尺度涡旋的发生发展起到了促进和加强的作用。低层的中尺度辐合场和高层的中尺度辐散场的发展与耦合对中尺度系统的发展有很好的预示作用。低层中尺度辐合区的减弱预示着系统的衰减,西南偏西的中层相对干冷空气侵入并在梅雨锋前缘下沉促进了系统的衰减。  相似文献   

16.
利用非静力平衡的中尺度模式WRF,对2009年6月3~4日广东地区的暴雨过程进行了模拟分析,结果表明:暴雨过程发生在有利的天气形势下,高空槽、切变线和低空急流是主要影响系统;弱冷空气南侵触发中尺度对流降水系统生成.降水集中区域多出现在假相当温度垂直梯度随时间变化较大并且有明显水平风切变的区域.湿位涡MPV对强降水的落区...  相似文献   

17.
一次广西暴雨过程的数值模拟及低涡系统分析   总被引:2,自引:1,他引:1  
应用WRF中尺度数值模式对2008年6月12日广西地区的一次大暴雨过程进行了模拟,利用模式输出资料,对引发这次大暴雨的西南低涡的演变情况及其物理场特征进行了分析。结果表明,低涡暴雨的发生具有明显的不均匀性,暴雨主要出现在低涡东侧暖区切变线附近;暴雨过程中充沛的水汽主要来源于孟加拉湾和中国南海,水汽的辐合不仅是涡旋区降水的必要条件,还是低涡发展加强的一个有利因素;强降水与强上升运动及正涡度区有很好的对应关系,低涡低层有强不稳定能量积聚也是造成此次大暴雨的重要原因之一。  相似文献   

18.
台风对远距离暴雨的作用形式复杂,容易出现极端降水,量级和落区的预报难度大。2014年8月8日江苏东部到浙江北部出现暴雨,通过研究数值预报形势场、再分析场和各类实况资料,发现暴雨的产生与远在1300km外的西太平洋上的台风"夏浪"有关。江苏东部暴雨主要由中尺度涡旋造成,台风通过北侧偏东气流向暴雨区输送暖湿空气,有利于暴雨的形成与维持;浙江北部暴雨是中尺度涡旋与台风环流结合的产物,台风北上过程中,中心与中尺度涡旋逐渐靠近,台风外围环流对涡旋产生牵引,流场形势发生改变,引导弱冷空气在浙北近海附近与暖空气交汇辐合抬升引发暴雨,不稳定能量剧烈释放产生的中γ尺度气旋造成了极端强降水。  相似文献   

19.
低涡与急流对"04.9"川东暴雨影响的分析与数值模拟   总被引:23,自引:11,他引:12  
何光碧  陈静  李川  冯汉中 《高原气象》2005,24(6):1012-1023
2004年9月3日~5日川东出现了大范围的强暴雨过程,本文分析了这次暴雨过程的云图特征和环流形势,并利用MM5中尺度数值模式对本次暴雨进行了二重嵌套模拟,分析及模拟结果表明,本次降水过程与中尺度云团、高低空急流和对流层中低层涡旋活动密切相关,同时还与副热带高压活动和“桑达”台风活动相关。盆地涡出现在低空急流的左侧,而川东强降水发生在高空急流的南面、低涡东南侧与西南低空急流大风出口区之问。盆地正涡度维持有利于盆地上空垂直上升运动的发展和维持,对暴雨的发生提供了动力条件。垂直上升运动是高低空急流和盆地涡联系的纽带,也是盆地涡动力驱动的结果。分析结果还表明,西南低空急流在暴雨出现前建立,暴雨和盆地涡同时出现,而暴雨、低空急流和盆地涡几乎同时减弱。高空急流在过程前和过程中是逐步加大,当高空急流出现剧减时,预示暴雨即将结束。  相似文献   

20.
AREM模式对“04·08”豫中大暴雨的数值模拟和诊断分析   总被引:1,自引:0,他引:1  
利用中尺度有限区域数值模式AREM,对2004年8月4日豫中一次大暴雨过程进行数值模拟和诊断分析。模拟结果表明:暴雨中心位于河南省中南部,中心强度达200 mm;高空冷平流南下,地面冷空气入侵,中低层有较强的辐合气流。模拟的暴雨落区与实况相一致,但中心强度较实况151 mm略大;模拟的环流形势也与实况环流形势一致。对模拟物理量诊断分析结果表明,在有利的垂直速度、散度场和比湿条件下,暴雨区中低空存在明显的水汽辐合,且水汽辐合区位于700 hPa及以下,强水汽辐合区位于900 hPa附近,从低层到高层较强的水汽辐合,暴雨区的水汽充分辐合上升,是造成此次大暴雨天气的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号