首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 224 毫秒
1.
利利用1960—2011年湖北省81个气象站气象观测资料和湖北省2004—2012年220~500 k V高压输电线路覆冰事故资料以及海拔高度、坡度、坡向等9类地形数据信息资料,给出风口、突出山体、迎风坡和背风坡4种特殊地形的判断指标,分析特殊地形因子对电线覆冰的影响,并对湖北省冰区分布图进行地形订正。结果表明:风口判断指标为冬季(当年12月至翌年2月)日均风速大于8 m·s-1的日数超过1.56 d·a-1,迎风坡判断指标为坡向0°~45°或315°~360°且坡度大于10°,背风坡判断指标为坡向135°~225°且坡度大于10°,突出山体判断指标为起伏度大于200 m且海拔高度大于起伏度;4种特殊地形下冰厚订正系数分别为1.75、1.62、0.68和1.82;风口处影响覆冰的主导气象因子为风速,迎风坡处影响覆冰的主导气象因子为降水量,突出山体处影响覆冰的主导气象因子为液水含量,气温对3种特殊地形下的冰厚变化均有显著影响;经过地形订正后的冰区图,能更好地反映鄂西南山区、鄂北中部和西部等地受特殊地形影响而出现的较严重覆冰区。  相似文献   

2.
以江西萍乡-莲花110KV高压输电线路为实例,根据1956~1995年共40a气候资料中最大积雪量计算当地最大覆冰厚度,以弥补当地覆冰观测资料的不足.同时利用地理信息系统中的数字地形分析技术,结合电线覆冰高度模型,充分发挥GIS的空间分析功能,计算并制作了输电线路沿线的覆冰厚度,取得了较好的效果.  相似文献   

3.
基于逐5 min地面气象要素观测数据、逐日气象观冰站电线覆冰观测数据、安庆站逐12 h探空观测资料以及逐6 h ERA-Interim再分析资料,对2018年初安徽省沿长江及跨江线路电线舞动过程中气象要素进行分析,并对导致电线覆冰和大风的天气成因进行探讨。结果表明:舞动位置附近出现不同程度冻雨导致的电线覆冰,并伴有较强的东北风,极大风速风向与舞动线路夹角多在45°以上,冻雨和大风是导致此次输电线路舞动的直接因素;此次输电线路舞动发生伴随的冻雨属于典型的"过冷暖雨";700 h Pa南支槽前西南气流为此次冻雨输送水汽的同时带来暖温度平流,维持暖层的存在; 925 h Pa大陆冷高压下东北气流带来的冷温度平流使近地面层降水处于过冷却状态;锋面后冷空气在华北地区上空堆积致使冷高压加强是导致安徽沿江地区较强东北风形成的主要因素。  相似文献   

4.
2013年1月初,宁波北仑地区附近山区输电线路上出现厚度20~30 mm的严重冻雨覆冰。本文利用电力部门收集的详细灾情信息和欧洲中心高分辨率(0.75°×0.75°)的全球再分析资料,对此次冻雨过程进行了分析。结果表明,冻雨覆冰期间的暖湿气流主要来自西太平洋,从海南岛以东区域北上输送到浙江省,不仅在北仑地区上空带来大的水汽通量,还形成典型的冷暖冷的逆温层结,具备产生冻雨的空中层结条件;虽然北仑城区地面气温一直在0℃以上,观测不到雨凇现象,但附近海拔300~400 m以上的山区地面气温维持在0℃以下,且山区风速较大,非常有利于冻雨在地物上冻结形成冻雨覆冰;经过40 h左右的持续冻雨,北仑山区出现严重的覆冰灾情。  相似文献   

5.
广西区是我国南方电网西电东送输电的重要通道, 2015年1月26日—2月8日期间广西区北部桂林地区发生了一次大范围超高压输电线路的连续覆冰事件, 其最大覆冰厚度可达24.83 mm。利用ERA5再分析资料和气象观测资料结合南方电网超高压输电线路覆冰观测资料, 从天气形势、温湿垂直层结、局地气象要素以及大气环流指数等方面综合分析了此次电线覆冰的天气学成因。结果表明, 东亚大槽偏强, 阻塞高压引导脊前偏北气流南下, 冷空气入境与西太平洋副热带高压带来的暖湿气流汇合, 在北方寒潮与南方水汽的共同作用下, 地处高海拔的输电线塔杆易出现覆冰。冷暖气团在桂林北部山区上空相互对峙形成准静止锋时出现两种覆冰变化特征: 当冷空气强盛且水汽充沛时, 过冷却雨滴冻结或者雾滴凝华形成电线积冰; 而在暖气团主导下电线覆冰则自然融化。准静止锋的锋区移动在很大程度上影响着电线的覆冰增长过程, 特别地, 冷暖空气的交替主导是电线反复积冰的主要原因。   相似文献   

6.
一种浙江省冻雨落区的推算方法   总被引:4,自引:4,他引:0  
康丽莉  邓芳萍  岳平  姜文东  王灿灿 《气象》2017,43(6):756-761
2008年初浙江省出现全省性的大范围强冻雨天气,在输电线路上形成很厚的覆冰,致使浙江电网遭受巨大的损失。然而,浙江省却仅有三分之一的气象站观测到冻雨,持续时间也很短。本文利用全球再分析资料ERA-Interim结合浙江电网覆冰灾情资料,分析了2008和2013年的两次强冻雨过程。研究表明浙江省强冻雨发生时具备冷暖冷的层结结构,且中间暖层气温0℃,但相比湖南省,浙江省的暖层中心气温稍低,下层冷层厚度略厚,暖层中的液态水进人到下层冷层后易被冻结,落到低海拔地面为冰粒,或者低海拔地面层气温高于0℃,冻雨落到地面为降雨,所以冻雨期间浙江省绝大多数气象站(海拔在200 m以下)观测不到雨凇,观测到的多是冰粒或降雨;而在海拔较高的山区,冷层厚度变薄,液态水被冻结的概率大大降低,而且山区地面气温多低于0℃,有利于冻雨落在山区地面形成雨凇,因此浙江省冻雨多出现在浙中海拔400 m以上和浙南海拔600 m以上的山区。根据浙江省冻雨的特点,采用全球再分析资料进行冻雨落区推算,结果与浙江电网实际的覆冰灾情吻合得较好。本研究利用输电线路覆冰厚度确定冻雨强弱和分布,采用再分析资料推算冻雨落区,为地形起伏度较大的省份开展冻雨研究,进行冻雨监测和预报提供一条新的思路。  相似文献   

7.
利用山西省18个积冰站电线积冰观测资料和91个气象站常规观测资料,采用逐步回归分析方法,针对不同气候区分别构建电线覆冰设计冰厚的气象估算模型,推算各站30 a、50 a、100 a重现期下的设计冰厚。在此基础上,结合DEM数据和电网运行覆冰观测资料,对设计冰厚进行地形订正和易冰区微地形运行经验修正,最终得到山西省电网电线覆冰厚度空间分布及区划结果。结果表明:(1)山西省电线覆冰的设计冰厚整体与气温、相对湿度、风速、水汽压等密切相关,其中高山区的设计冰厚还与降水量、日照时数关系密切,且受连续3 d的气象条件影响,而丘陵和平原区则与当日和前一日或前二日的气象条件密切相关;(2)构建的分区设计冰厚气象估算模型对各气候区的覆冰厚度模拟效果较好,估算偏差五台山前约2 mm,其余地区小于1.2 mm;(3)地形订正后的结果更为合理地反映山西省各重现期下电线覆冰厚度的空间特征,即覆冰厚度随纬度降低而减小,中、重冰区主要分布在恒山、五台山、管涔山、吕梁山、太岳山和太行山等高海拔地区,而沿黄河一带和盆地为轻冰区,且盆地覆冰最轻;(4)易覆冰区经运行经验修正后,其覆冰厚度能够更加精确表达局部微地形区覆冰真实情况,这对电力部门具有实际参考价值。  相似文献   

8.
采用NCEP/NCAR逐月再分析资料、广西北部43个气象台站的温度、湿度、风、降水、导线覆冰等观测资料以及广西输电线路覆冰资料,建立雨凇覆冰厚度计算模型,并得出气象台站的历史覆冰厚度序列。采用数理统计和合成分析等方法研究典型覆冰年份的时空特征、环流背景及气象要素变化特征,结果发现:广西输电线路覆冰主要出现在冬季的桂北,并有逐年减轻的趋势,MannKendall突变检验表明,存在1个明显的突变点,出现在1985年;广西典型覆冰年份,500 hPa欧亚大陆中高纬地区呈明显的"两槽一脊"型,广西高空处于南支槽前,地面受冷高压脊控制;赤道中东太平洋,从夏季到秋季,海温由偏高转为偏低,到冬季SSTA维持为负距平,说明广西输电线路覆冰与LA NINA事件有较密切的关系。当日最低气温在0.2℃以下,风速5 m·s-1,并伴有雨凇和弱降水,低温寡照天气时容易出现覆冰。  相似文献   

9.
利用WRF模式和Jones电线积冰模型对发生在2010年2月10—11日湖北地区的电线覆冰舞动事故的天气过程进行分析,并对灾害性天气的可预报性进行初步探讨。结果表明:Jones电线积冰模型基于观测降水数据计算积冰厚度在1.3~5.4mm,与观测量级相同。由于WRF模式对此次天气过程的降水量模拟偏大而高估了电线积冰厚度。WRF模式模拟的10m风速风向与观测的一致性较好,模拟本次过程的风速为5~10m·s-1,风向为偏北风,而湖北地区输电线路以东西走向为主,较容易发生舞动事故。  相似文献   

10.
为了分析2008年初浙江省电网大面积覆冰事故发生的原因,在缺乏有代表性电线结冰观测的条件下,利用气象探空观测资料统计分析低空各个海拔高度上气温、湿度条件,发现低温与高湿度的配置条件出现状况与输电线路覆冰事故调查结果有较好的对应,可将这样的配置条件视作覆冰气象基本条件,并可通过对比历史上严重冰雪天气灾害发生期间的低空覆冰气象条件,分析评估电网覆冰事故。分析指出:2008年1月中旬至2月初,浙江内陆海拔100 m以上高度出现持续性较严重的覆冰气象条件,是有系统气象记录以来最严重的时段,覆冰条件随着海拔高度的增高而加强,其主要原因是大气层低空低温与高湿配置条件较好,持续时间长。  相似文献   

11.
无气象观测地区的电线覆冰厚度推算   总被引:3,自引:1,他引:2  
利用湖北省1962-2008气象数据与电线积冰数据,建立了各种气象要素与电线覆冰厚度的回归模型,该回归模型充分考虑了形成电线覆冰需具备相应的气候条件.通过动力降尺度计算了灾情发生地的气象数据,结合已建立的回归模型,推算出电线覆冰厚度.与实测电线覆冰厚度相比,推算准确率在62.8%~75.9%.表明依据建立的回归方程并结...  相似文献   

12.
基于潮州市100m×100m的高程数据和包含周边10个气象站点的日照百分率数据,应用GIS技术和回归统计模型对潮州市日照时数的空间分布进行了模拟、结果验证和分析。结果表明,创建的各月和年日照时数空间分布模型显著性水平大多为0.01,研究区内的2个气象站的日照时数模拟值和实际值之间具有很好的一致性,误差百分率在6%以下,模拟结果有实用价值。模拟结果分析发现,潮州市的日照时数除了受太阳高度角影响外,还受天气气候等因素的影响,最低和最高月日照时数分别出现在2月和7月;海拔、坡度等地形因子对日照时数有明显影响,最小日照时数出现在约1100~1200m海拔高度或坡度70°~75°上,低海拔地势平缓地区日照时数明显偏多。  相似文献   

13.
张祎  姜瑜君  赵伟  李浩 《气象科技》2019,47(3):513-519
利用2007—2016年浙江省地闪数据,数字地形海拔数据、土地覆盖数据和HWSD数据集,定量化分析海拔、坡度、坡向、土地覆盖类型、土壤电导率对该地区地闪的影响。研究结果表明:浙江省地闪主要集中在海拔0~600m、坡度0°~30°;坡向东南地闪次数最高,坡向西地闪次数最低;林地地闪次数最高,湿地地闪次数最低;地闪对应的电导率主要集中在0.1dS/m。单位面积下,地闪次数随海拔、坡度、电导率均呈现先增加后减少的趋势;坡向东、东南地闪次数较多,坡向西、西南地闪次数较少;土地覆盖类型地闪次数最高是城市和建筑区,最低是水体。此外,地闪强度平均值随海拔增加呈现先减小后增加的趋势;陡度平均值随海拔增加而减小。两参数均随坡度增加而减小;随电导率增加呈现先增加后减少的趋势。以5km×5km为网格单元统计网格内各参量平均值进行相关分析发现,浙江地区电流强度、陡度均和海拔、坡度呈现负相关。  相似文献   

14.
利用1991~2020年气象资料和DEM资料,系统分析高县热量、水分、光照以及地形、土壤等生态气候因子对桑树生长发育的影响,结合生产实际,选取高影响因子作为指标,运用GIS技术和集优法对高县桑树生态气候适宜性进行区划。结果表明:高县桑树气候条件总体适宜,且具有一定优势,影响桑树栽培的主要因子是热量条件和地形坡度,最适宜区主要分布在海拔500m以下的坝丘河谷区,适宜蚕桑规模化发展;适宜区主要分布在海拔500~700m的山地丘区,应适度发展蚕桑业;次适宜区主要分布海拔700~1000m的低山区,可作为桑叶补充生产区;海拔1000m以上或地形坡度30°以上的山区不适宜栽培桑树。  相似文献   

15.
龙思朝 《气象科技》2010,38(6):838-839
<正>贵州地处云贵高原,介于103°37′~109°35′E、24°37′~29°13′N之间,地势西高东低,自中部向北、东、南三面倾斜,平均海拔1100 m左右,以高原山地居多。受大气环流及地形等影响,贵州省成为我国出现覆冰现象较重的地区之一。资料显示,1972  相似文献   

16.
利用安徽省82个气象观测站自建站至2018年2月雨凇、雾凇、混合淞日数,15个观冰站覆冰厚度和海拔高度数据,通过建立覆冰厚度与凇日数之间的关系,推算安徽省82个测站30 a、50 a和100 a一遇的标准冰厚,最后利用地形对标准冰厚进行订正。结果表明:安徽省各重现期下的标准冰厚与雨凇、雾凇和混合凇总日数具有显著的正相关关系;海拔高度与各重现期下标准冰厚呈指数关系;对海拔高于100 m的地区利用海拔高度对标准冰厚进行订正,可得到更为合理的安徽省各重现期下标准冰厚空间分布。  相似文献   

17.
湖北省电线积冰微地形因子影响识别研究   总被引:2,自引:0,他引:2  
夏智宏  周月华  刘敏  刘来林  任永建 《气象》2012,38(1):103-108
电线积冰是影响电网正常运行的重要因素,研究电线积冰与微地形因子的关系对于电线积冰风险区划、电网建设可行性论证等具有重要指导意义。本文利用湖北省1:5万基础比例尺地形图数据和湖北省电网线路冰害故障调查统计数据,对电线积冰厚度与其对应的微地形因子进行相关性分析,识别对电线积冰有显著影响的微地形因子,分析电线积冰厚度与对其影响显著的微地形因子的定量关系,解析微地形因子对电线积冰敏感性等级。结果表明:地形起伏度、海拔高度、离水体远近程度、下垫面类型等是影响积冰厚度最显著的微地形因子;地形起伏度与积冰厚度呈乘幂函数关系,海拔高度与积冰厚度呈对数函数关系,离水体远近程度与积冰厚度呈分段函数关系,下垫面类型与积冰厚度无显式的函数关系,但积冰灾害发生点具有明显的随下垫面类型分布的特征;积冰厚度随地形起伏度、海拔高度的增加而增加,而其变化率和敏感性则逐渐减小;地形起伏度小于40 m时,其对积冰风险最敏感;海拔高度在25~100 m时,其对积冰风险最敏感;积冰厚度随离水体距离的增加呈先增后减的变化趋势,其变化率绝对值和敏感性也呈先增后减的变化趋势,当离开水体距离在2~2.7 km时,其对积冰风险最敏感;电线积冰灾害多发区域的下垫面主要为水体、林地,其次为农田和草地,水体对积冰风险的敏感性等级分别是林地、农田、草地的1.5、3.6和16.7倍。  相似文献   

18.
针对2005年初及2008年初2次低温雨雪冰冻天气造成的湖南电网冰灾情况,根据大量的实况资料,综合对比分析了其对湖南电网的损毁情况;并在此基础上,利用102~122.5°E,20.2~40.0°N之间59个气象站700、850hPa以及近地面的逆温层及地面气温、电网覆冰厚度资料,综合分析了2次冰冻的演变过程,冰灾的具体成因及特点:相同的电网覆冰极端厚度;偏强的副热带高压促使中低纬度维持稳定的大尺度纬向环流形势,对于2次长时间的低温雨雪冰冻天气的形成具有决定性的作用;中低层明显的强逆温和旺盛的暖湿气流使得湖南电网覆冰极端厚度相继打破历史记录。  相似文献   

19.
冻土在气候系统中起重要作用,研究并揭示冻土时空变化对于增加陆气相互作用的理解具有重要意义。本研究利用包含土壤冻结融化界面动态变化的陆面过程模式CAS-LSM(Chinese Academy of Sciences Land Surface Model),采用0.9°(纬度)×1.25°(经度)分辨率,结合4种大气强迫数据(全球土壤湿度项目强迫数据集GSWP3、美国国家大气研究中心/美国国家环境预报中心强迫数据集CRU-NCEP、普林斯顿全球强迫数据集Princeton、全球变化以及水文观测项目强迫数据集WFDEI)针对1960~2009年进行全球模拟,研究不同大气强迫作用下多年冻土活动层厚度变化趋势及其不确定性。通过与活动层厚度观测数据比较,陆面过程模式CAS-LSM模拟的活动层厚度与观测值比较接近。结果表明:在1960~2009年期间,不同大气强迫作用下多年冻土活动层厚度基本呈现增加的趋势,基于强迫数据WFDEI模拟的活动层厚度增加趋势最大。不同大气强迫数据模拟的活动层厚度区域平均和变化趋势范围为1.1~1.25 m和0.27~0.51 cm/a,相对变化的不确定性范围为11.2%~23.5%。其中青藏高原地区、北美地区、欧亚大陆北部地区的活动层厚度区域平均和变化趋势范围分别为2.26~2.81 m、1.07~1.31 m、1.32~1.48 m和0.47~1.0 4 cm/a、0.29~0.48 cm/a、0.25~0.55 cm/a。通过对地表温度以及气温的变化趋势分析表明:大气强迫数据中气温的差异是造成这些差异的主要原因。  相似文献   

20.
导线覆冰是在一定气象条件下发生的复杂的物理过程,贵州是我国南方导线覆冰最严重的受灾区,每年都会发生不同程度的覆冰灾害。本文利用地面观测资料、探空资料、NCEP再分析资料和覆冰资料,通过分析影响局地线路覆冰的大范围气候、天气背景及其变化特征,结合已有的覆冰灾害事件,侧重于气候背景的角度,分析总结了2008~2011年贵州产生覆冰的天气气候特征,气象要素条件以及地理环境因子与导线覆冰的关系,主要得出以下结论:贵州省导线覆冰与中高纬大气环流异常,西太平洋副高的北移,对流层下层逆温层的影响密不可分;贵州省地处云贵高原,北边小槽移动影响与南方来的暖湿空气汇集之地,容易形成冰冻天气,加之导线多分布于山上,则导线的材质与分布,导线所在环境的空气湿度,空气温度,风向风速,降水与天气状况等,决定了导线覆冰的厚度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号