首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
南海中尺度大气-海流-海浪耦合模式的建立及应用   总被引:3,自引:1,他引:2  
考虑到我国南海特殊的战略位置和复杂的海气相互作用特征,基于中尺度大气模式(MM5)、区域海洋模式(POM)和第三代海浪模式(WW3),利用消息传递的并行编程方案,建立了适用于我国南海海区的中尺度大气-海流-海浪三元耦合模式系统,将该系统用于对南海典型台风过程的模拟研究。结果表明:耦合模式运行高效稳定,较好模拟了两次台风过程,与非耦合大气模式相比,提高了对台风路径和强度的模拟准确率;耦合模式模拟出了上层海洋对台风系统的响应特征,在台风中心附近,海面温度降低,海表流场和海浪场增强,相对于台风路径,响应具有右偏性;耦合模式中的波浪效应增强了海表应力,阻碍了台风系统的发展,增强了海面降温幅度和海流近惯性振荡的振幅。大气-海流-海浪耦合模式系统是研究南海中尺度海-气相互作用,提高南海区域气象水文预报能力的一种有效手段。   相似文献   

2.
Upper ocean response of the South China Sea to Typhoon Krovanh (2003)   总被引:1,自引:0,他引:1  
To quantitatively investigate the dynamic and thermal responses of the South China Sea (SCS) during and subsequent to the passage of a real typhoon, a three-dimensional, regional coupled air–sea model is developed to study the upper ocean response of the SCS to Typhoon Krovanh (2003). Owing to the scarcity of ocean observations, the three-dimensional numerical modeling with high resolution, as a powerful tool, offers a valuable opportunity to investigate how the air–sea process proceeds under such extreme conditions. The amplitude and distribution of the cold path produced by the coupled model compare reasonably well with the TRMM/TMI-derived data. The maximum SST cooling is 5.3 °C, about 80 km to the right of the typhoon track, which is consistent with the well-documented rightward bias in the SST response to typhoons. In correspondence to the SST cooling, the mixed layer depth exhibits an increase; the increases in the mixed layer depth on the right of typhoon track are significantly higher than those on the left, with maxima of 58 m. This correspondence indicates that the SST cooling is caused mainly by entrainment. Under the influence of typhoon, a cyclonic, near-surface current field is generated in the upper ocean layer, which moves with the typhoon. The typhoon-induced horizontal currents in the wake of the storm have strong near-inertial oscillation, which gradually propagates downward. The unique features of the SCS response to Typhoon Krovanh are also discussed, such as Kuroshio intrusion and coastal subsurface jets.  相似文献   

3.
While previous studies indicate that typhoons can decrease sea surface temperature(SST) along their tracks, a few studies suggest that the cooling patterns in coastal areas are different from those in the open sea. However, little is known about how the induced cooling coupled with the complex ocean circulation in the coastal areas can affect tropical cyclone track and intensity. The sea surface responses to the land falling process of Typhoon Morakot(2009) are examined observationally and its influences on the activity of the typhoon are numerically simulated with the WRF model. The present study shows that the maximum SST cooling associated with Morakot occurred on the left-hand side of the typhoon track during its landfall. Numerical simulations show that, together with the SST gradients associated with the coastal upwelling and mesoscale oceanic vortices, the resulting SST cooling can cause significant difference in the typhoon track, comparable to the current 24-hour track forecasting error. It is strongly suggested that it is essential to include the non-uniform SST distribution in the coastal areas for further improvement in typhoon track forecast.  相似文献   

4.
While previous studies indicate that typhoons can decrease sea surface temperature(SST) along their tracks, a few studies suggest that the cooling patterns in coastal areas are different from those in the open sea. However, little is known about how the induced cooling coupled with the complex ocean circulation in the coastal areas can affect tropical cyclone track and intensity. The sea surface responses to the land falling process of Typhoon Morakot(2009) are examined observationally and its influences on the activity of the typhoon are numerically simulated with the WRF model. The present study shows that the maximum SST cooling associated with Morakot occurred on the left-hand side of the typhoon track during its landfall. Numerical simulations show that, together with the SST gradients associated with the coastal upwelling and mesoscale oceanic vortices, the resulting SST cooling can cause significant difference in the typhoon track, comparable to the current 24-hour track forecasting error. It is strongly suggested that it is essential to include the non-uniform SST distribution in the coastal areas for further improvement in typhoon track forecast.  相似文献   

5.
中尺度海-气耦合模式GRAPES_OMLM对台风珍珠的模拟研究   总被引:1,自引:0,他引:1  
利用全球/区域同化与预报系统GRAPES(Global/Regional Assimilation and Prediction System)和改进的Mellor-Yamada型海洋混合层模式OMLM(Ocean Mixed Layer Model),建立了一个新的中尺度海-气耦合模式GRAPES_OMLM,并利用该模式对发生于南海的台风珍珠(0601)进行了模拟研究,检验了GRAPES_OMLM对台风的模拟性能,并分析了局地海-气相互作用对台风的影响。结果表明,GRAPES_OMLM基本能模拟出台风天气过程中的主要物理过程。考虑了海-气相互作用的耦合试验所模拟出的台风强度、近台风中心最大风速以及台风后期移动路径,相对于两组控制试验(单独大气模式)的模拟结果都有较大的改进。而且,采用逐日变化海表温度作为下边界条件的控制试验2的模拟结果相对于SST不变的控制试验1更接近观测。耦合模式GRAPES_OMLM能较好地模拟出台风过境海表温度的变化,台风珍珠在其路径右侧有超过4.0℃的降温。SST的变化和海表风应力的变化呈反相关系,风应力的增大伴随着海洋近表层湍流动能(TKE)的加强,大风动力作用是SST降低的主要原因。SST的降低致使海洋向台风输送的热通量减少,进而削弱了台风的强度并改变台风环流结构,同时通过改变位势涡度趋势的一波结构(WN-1)来影响台风的移动路径。  相似文献   

6.
The upper-ocean responses to Typhoon Megi(2010)are investigated using data from ARGO floats and the satellite TMI.The experiments are conducted using a three-dimensional Princeton Ocean Model(POM)to assess the storm,which affected the Northwest Pacific Ocean(NWP)and the South China Sea(SCS).Results show that the upwelling and entrainment experiment together account for 93% of the SST anomalies,where typhoon-induced upwelling may cause strong ocean cooling.In addition,the anomalous SST cooling is stronger in the SCS than in the NWP.The most striking feature of the ocean response is the presence of a two-layer inertial wave in the SCS—a feature that is absent in the NWP.The near-inertial oscillations can be generated as typhoon wakes,which have maximum flow velocity in the surface mixed layer and may last for a few days,after the typhoon's passage.Along the typhoon tracks,the horizontal currents in the upper ocean show a series of alternating negative and positive anomalies emanating from the typhoon.  相似文献   

7.
利用一个海气耦合模式对台风Krovanh的模拟   总被引:5,自引:1,他引:4  
采用中尺度大气模式MM5和区域海洋模式POM构造了中尺度海气耦合模式, 模拟了Krovanh (0312) 台风过程中台风-海洋相互作用, 分析了台风引起的海面降温影响台风强度的机制和海洋对台风响应的特征。试验结果显示: 考虑台风引起的海面降温使台风强度模拟有了较大改进, 模拟的台风中心气压和近中心最大风速均与实况较符合。POM模拟的海表面温度与TRMM/TMI观测的海表面温度也较为一致, 台风Krovanh在其路径右侧95 km处引起较大的海面降温, 最大降温幅度达5.8℃。与海表面温度降低相对应的是混合层深度的增加, 较大的海面降温对应较大的混合层加深, 表明大风夹卷在海表面温度的降低中起主要作用。分析表明, 台风引起的海面降温降低海洋向大气输送的潜热通量和感热通量, 特别是在台风内核区, 平均总热通量减少了32.1%。热通量的减少使得湿静力能及湿静力能径向梯度减小, 削弱了台风强度。  相似文献   

8.
为了比较两个不同的海洋垂直混合参数化方案在中尺度海气浪耦合模式数值预报中的效果,采用军队T799全球预报系统和西北太平洋海洋预报系统的预报场资料驱动区域中尺度海气浪耦合模式,针对西北太平洋在2014年9月7—10日和17—20日的大气和海洋要素场进行数值回报试验,并将同期台风观测资料、NCEP再分析资料以及NOAA海表面温度数据各自与模式结果进行比较。结果表明,在无台风天气下使用GLS-ε方案对大气要素的预报效果更好,而MY2.5方案在台风天气影响下表现更好,同时其在连续8天的预报中无溢出现象,较GLS-ε方案稳定性更好;台风影响区域的海表面温度对MY2.5方案更敏感;台风天气过程中,MY2.5方案引起的海洋上层温度混合更强烈。   相似文献   

9.
A new mesoscale air-sea coupled model (WRF- OMLM-Noh) was constructed based on the Weather Research and Forecasting (WRF) model and an improved Mellor-Yamada ocean mixed-layer model from Noh and Kim (OMLM-Noh). Through off-line tests and a simulation of a real typhoon, the authors compared the performance of the WRF-OMLM-Noh with another existing ocean mixed-layer coupled model (WRF-OMLM-Pollard). In the off-line tests with Tropical Ocean Global Atmosphere Program’s Coupled Ocean Atmosphere Response Experiment (TOGA-COARE) observational data, the results show that OMLM-Noh is better able to simulate sea surface temperature (SST) variational trends than OMLM -Pollard. Moreover, OMLM-Noh can sufficiently reproduce the diurnal cycle of SST. Regarding the typhoon case study, SST cooling due to wind-driven ocean mixing is underestimated in WRF-OMLM-Pollard, which artificially increases the intensity of the typhoon due to more simulated air-sea heat fluxes. Compared to the WRF- OMLM-Pollard, the performance of WRF-OMLM-Noh is superior in terms of both the spatial distribution and temporal variation of SST and air-sea heat fluxes.  相似文献   

10.
In this paper we document the correlationship between sea surface temperature(SST) and low level-winds such as sea level wind and 850 hPa wind in the South China Sea(SCS) based on COADS(1958-1987) and ECMWF objective analysis data(1973-1986).Further statistical analyses tell us that there is a fixed SCS basin mode for variations both of SST and low-level winds in the region on the interannual time scale due to air-sea interactions.A simplified,coupled model that is designed following the McCreary and Anderson's(1985) model and includes the feedback between the upper ocean and the circulation of East Asian monsoon demonstrates an interannual oscillation in the coupled air-sea system,which is similar to the observations in the SCS.  相似文献   

11.
海气相互作用对台风结构的影响   总被引:5,自引:3,他引:2       下载免费PDF全文
利用前期工作中耦合试验和未耦合试验对台风Krovanh(2003年)数值模拟的结果,分析了海-气相互作用对台风结构的影响。结果表明,台风引起的海面降温大大降低了海洋向大气输送的潜热通量,同时使得感热通量向下传递到海洋。另一方面,台风引起的海表面温度(SST)降低,反馈到台风使其结构轴不对称性加强,且在中高层尤为显著。分析了台风对称结构的基本特征。  相似文献   

12.
邓雯  张耀存 《气象科技》2007,35(4):484-488
利用1982~1999年周平均海表温度资料和逐日近地面风场资料,采用合成分析与相关分析技术,研究了南海和孟加拉湾地区夏季风爆发前后短时间尺度SST变率的异常及其与近地面西南气流的关系。结果表明:季风爆发前2周,南海和孟加拉湾海温的上升除与海洋现象有关外,还与大气的影响因子有一定的关系;季风爆发后1~2周,南海和孟加拉湾海温变率出现较大差异,二者西南部海温降低,而其东海岸及西北部海温却升高;海温变率这种异常分布与西南气流的变化具有较好的相关性,即西南气流的增强导致南海西南部和孟加拉湾西南部海温降低及二者东海岸与西北部海温升高,这是由于离岸的上翻作用及海洋蒸发作用共同所致。  相似文献   

13.
In order to investigate air-sea interactions during the life cycle of typhoons and the quantificational effects of typhoon-induced SST cooling on typhoon intensity, a mesoscale coupled air-sea model is developed based on the non-hydrostatic mesoscale model MM5 and the regional ocean model POM, which is used to simulate the life cycle of Typhoon Chanchu (2006) from a tropical depression to a typhoon followed by a steady weakening. The results show that improved intensity prediction is achieved after considering typhoon-induced SST cooling; the trend of the typhoon intensity change simulated by the coupled model is consistent with observations. The weakening stage of Typhoon Chanchu from 1200 UTC 15 May to 1800 UTC 16 May can be well reproduced, and it is the typhoon-induced SST cooling that makes Chanchu weaken during this period. Analysis reveals that the typhoon-induced SST cooling reduces the sensible and latent heat fluxes from the ocean to the typhoon's vortex, especially in the inner-core region. In this study, the average total heat flux in the inner-core region of the typhoon decrease by 57.2%, whereas typhoon intensity weakens by 46%. It is shown that incorporation of the typhoon-induced cooling, with an average value of 2.17℃, causes a 46-hPa weakening of the typhoon, which is about 20 hPa per 1℃ change in SST.  相似文献   

14.
南海及邻近海区海况季节变化的模拟   总被引:1,自引:0,他引:1  
任雪娟  钱永甫 《气象学报》2000,58(5):545-555
文中使用改进的美国普林斯顿大学区域海洋环流模式 (POM)对南海及邻近海区海况季节变化特征进行了数值模拟 ,所得的主要结果与海洋观测及已有的一些研究结果相吻合。模拟结果表明 :1~ 1 2月 ,黑潮南海分支是南海北部的一支重要海流 ;黑潮右侧的大尺度反气旋性暖涡全年都存在。在所模拟的海区中 ,南海海区表层海流受季风影响最大 ,季节变化最明显示。改进的 POM对海温的季节变化特征也有较好的模拟能力 ,能再现西南季风爆发前后 ,南海及邻近海区表层海温的突增和暖水区的北推过程 ,以及东北季风开始前后 ,海温的下降过程。这为以后发展区域海气耦合模式奠定了基础。  相似文献   

15.
This study investigates the structure and propagation of intraseasonal sea surface temperature(SST) variability in the South China Sea(SCS) on the 30–60-day timescale during boreal summer(May–September). TRMM-based SST, GODAS oceanic reanalysis and ERA-Interim atmospheric reanalysis datasets from 1998 to 2013 are used to examine quantitatively the atmospheric thermodynamic and oceanic dynamic mechanisms responsible for its formation. Power spectra show that the 30–60-day SST variability is predominant, accounting for 60% of the variance of the 10–90-day variability over most of the SCS. Composite analyses demonstrate that the 30–60-day SST variability is characterized by the alternate occurrence of basin-wide positive and negative SST anomalies in the SCS, with positive(negative) SST anomalies accompanied by anomalous northeasterlies(southwesterlies). The transition and expansion of SST anomalies are driven by the monsoonal trough–ridge seesaw pattern that migrates northward from the equator to the northern SCS. Quantitative diagnosis of the composite mixed-layer heat budgets shows that, within a strong 30–60-day cycle, the atmospheric thermal forcing is indeed a dominant factor, with the mixed-layer net heat flux(MNHF) contributing around 60% of the total SST tendency, while vertical entrainment contributes more than 30%. However, the entrainment-induced SST tendency is sometimes as large as the MNHF-induced component, implying that ocean processes are sometimes as important as surface fluxes in generating the30–60-day SST variability in the SCS.  相似文献   

16.
冬季台风“南玛都”结构性质的初步研究   总被引:2,自引:0,他引:2  
利用1982~2001年NCEP/NCAR再分析的周平均SST场、逐日表面热通量场及近地层10米高度风场资料,分析了南海地区季风爆发前后几周南海多年平均SST随时间的变化和空间分布特征及其影响因子.结果表明,南海季风爆发前,SST急剧升高,季风爆发后,SST的变化呈现比较明显的空间差异,南海北部SST继续上升,而南部SST持续下降.南海季风爆发前,海面净得热,这是季风爆发前南海SST上升的主要原因.季风爆发后几周,海面净得热减少,此时的海表净热通量收支与SST无显著相关.而季风爆发期和爆发后几周,南海SST变化的不均匀性与西南气流具有很好的相关性,南海的降温区呈东北-西南走向,与低层西南气流的方向一致.因而,在季风爆发后的一段时间内,近地层风场导致的海洋表面及内部动力过程是影响南海SST变化的另一重要因子.  相似文献   

17.
Three experiments for the simulation of typhoon Sinlaku (2002) over the western North Pacific are performed in this study by using the Canadian Mesoscale Compressible Community (MC2) atmospheric model. The objective of these simulations is to investigate the air-sea interaction during extreme weather conditions, and to determine the sensitivity of the typhoon evolution to the sea surface temperature (SST)cooling induced by the typhoon. It is shown from the three experiments that the surface heat fluxes have a substantial influence on the slow-moving cyclone over its lifetime. When the SST in the East China coastal ocean becomes 1℃ cooler in the simulation, less latent heat and sensible heat fluxes from the underlying ocean to the cyclone tend to reduce the typhoon intensity. The cyclone is weakened by 7 hPa at the time of its peak intensity. The SST cooling also has impacts on the vertical structure of the typhoon by weakening the warm core and drying the eye wall. With a finer horizontal resolution of (1/6)°×(1/6)°, the model produces higher surface wind, and therefore more surface heat fluxes are emitted from the ocean surface to the cyclone, in the finer-resolution MC2 grid compared with the relatively lower resolution of 0.25°×0.25°MC2 grid.  相似文献   

18.
Studies on oceanic conditions in the South China Sea (SCS) and adjacent waters are helpful for thorough understanding of summer monsoons in East Asia. To have a 3-dimensional picture of how the oceanic currents vary, the oceanic elements in the South China Sea (SCS) and its neighboring sea regions in January~August 1998 have been simulated by using the improved Princeton University Ocean Model (POM) in this paper. The main results are in good agreement with that of ocean investigations and other simulations. The results show that the SCS branch of the Kuroshio Current is an important part in the north SCS from January to August; the SCS warm current is reproduced clearly in all months except in winter; there always exists a large-scale anti-cyclonic vortex on the right of the Kuroshio Current from January to August. In the model domain, the surface currents of the SCS have the closest relations with the monsoon with an apparent seasonal variation. In addition, the developing characteristics of the SST in the SCS and its neighboring sea regions before and after the summer monsoon onset are also well simulated by the improved POM. Those are the foundation for developing a coupled regional ocean-atmospheric model system.  相似文献   

19.
The high-resolution Weather Research and Forecasting (WRF) model is coupled to the Princeton Ocean Model (POM) to investigate the effect of air-sea interaction during Typhoon Kaemi that formed in the Northwest Pacific at 0000 UTC 19 July 2006. The coupled model can reasonably reproduce the major features of ocean response to the moving tropical cyclone (TC) forcing, including the deepening of ocean mixed layer (ML), cooling of sea surface temperature (SST), and decaying of typhoon.  相似文献   

20.
This study investigates the effects of air–sea interaction upon simulated tropical climatology, focusing on the boreal summer mean precipitation and the embedded intra-seasonal oscillation (ISO) signal. Both the daily coupling of ocean–atmosphere and the diurnal variation of sea surface temperature (SST) at every time step by accounting for the ocean mixed layer and surface-energy budget at the ocean surface are considered. The ocean–atmosphere coupled model component of the global/regional integrated model system has been utilized. Results from the coupled model show better precipitation climatology than those from the atmosphere-only model, through the inclusion of SST–cloudiness–precipitation feedback in the coupled system. Cooling the ocean surface in the coupled model is mainly responsible for the improved precipitation climatology, whereas neither the coupling itself nor the diurnal variation in the SST influences the simulated climatology. However, the inclusion of the diurnal cycle in the SST shows a distinct improvement of the simulated ISO signal, by either decreasing or increasing the magnitude of spectral powers, as compared to the simulation results that exclude the diurnal variation of the SST in coupled models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号