首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
胡秀清  黄意玢 《气象科技》2010,38(5):581-587
基于940nm近红外水汽吸收带及两侧窗区通道探测大气水汽总量是自20世纪80年代兴起的卫星遥感大气水汽方法,这一方法主要利用差分吸收概念反演柱水汽总量。文章分析比较了不同反演算法各自特点和存在问题,同时针对我国不同的卫星数据进行了多次水汽反演试验,最好结果的误差为0.04g/cm2,这为FY-3气象卫星中分辨率光谱成像仪陆地大气可降水业务产品算法的开发打下了坚实基础。  相似文献   

2.
利用FY-3A近红外资料反演水汽总量   总被引:4,自引:1,他引:3       下载免费PDF全文
该文介绍了利用搭载在FY-3A卫星上的中分辨率光谱成像仪 (MERSI) 的近红外 (NIR) 通道反演大气水汽总量 (PWV) 的方法。根据预先建立的查找表,大气水汽总量可以通过水汽通道与窗区通道的卫星测值相比反演得到。对MERSI近红外水汽通道灵敏度进行估算,结果表明:处于吸收带两翼的905 nm和980 nm通道对不同水汽量的敏感性表现比较接近,对较大水汽含量最为敏感;当水汽较弱时,强吸收的940 nm通道非常敏感。基于这3个通道对水汽含量敏感性的不同表现,采用3个通道水汽总量的加权平均值作为PWV产品的最终反演值。文中设计了水汽总量业务算法反演流程,并基于FY-3A/MERSI最新观测资料进行晴空大气水汽总量的业务处理生成试验,顺利生成MERSI单轨道水汽总量产品及日拼图中国区域产品和全球产品,同时生成多天合成产品,产品反映出MERSI具有较好的近红外水汽探测能力。将卫星反演结果与探空数据进行初步比对检验,显示卫星反演值有20%~30%系统性偏低,需要进一步改进反演查找表。  相似文献   

3.
轨道误差对近实时GPS遥感水汽的影响研究   总被引:5,自引:3,他引:5  
利用GPS技术近实时探测水汽对于气象预报、气候研究具有重要的应用价值,而近实时探测需要使用GPS卫星的预报星历,预报星历的误差会直接影响到实时水汽探测的精度。利用从IGS资料处理中心下载的精密预报星历和最终星历,对2000年北京GPS水汽试验中的资料进行了解算,并结合探空资料计算的水汽进行了分析。结果表明:以探空为标准,使用精密预报星历计算的水汽总量均方根误差为0.31cm,最终星历为0.30cm,二者差别不大,为0.01cm,证明使用精密预报星历可以满足近实时探测水汽的要求。  相似文献   

4.
蔺雷  朱民 《气象科学》2001,21(3):279-290
本文探讨了一种将卫星反演的水汽资料计入MM5中尺度模式的方法,并对长江流域暴雨实例进行了模拟试验。在工作中,分别比较了将T63同化资料、常规探测资料及卫星与常规资料融合的水汽初场加入到模式,做几种不同初场的12小时降水预报(每6小时输出结果一次),经比较其结果表明:卫星与常规资料融合后的数值模拟预报,一般比单独用T63及常规探测资料作初值进行预报效果要好,初步说明了这种新方法的可行性与合理性。  相似文献   

5.
利用GPS的倾斜路径观测暴雨过程中的水汽空间分布   总被引:1,自引:0,他引:1  
毕研盟  毛节泰  李成才  符养 《大气科学》2006,30(6):1169-1176
介绍了地基全球定位系统 (GPS) 沿倾斜路径方向观测水汽总量 (SWV) 的原理和方法; 不同时间和不同地点的GPS SWV与微波辐射计反演的SWV符合较好, 误差在3 mm左右, 表明GPS可以较高的精度探测SWV.计算了区域GPS观测网在一次暴雨过程中不同空间方位上的水汽观测结果, 为消除不同路径对SWV的影响, 把SWV转化为天顶方向的值VSWV; 分析了同一GPS站点对不同卫星方向VSWV的变化情况, 以及不同GPS站点对同一个卫星方向VSWV的关系.结果表明, 区域GPS观测网中倾斜路径观测可较好地探测不同方位上水汽的分布和变化; SWV相对于天顶方向的大气水汽总量PW而言, 能更好地代表真实大气水汽分布; 在探空或卫星观测等传统观测手段无法探测的情况下, GPS SWV数据可提供中小尺度暴雨结构中水汽分布和变化状况等有用信息.  相似文献   

6.
基于MODIS近红外数据的贵州高原大气水汽反演研究   总被引:3,自引:1,他引:2       下载免费PDF全文
根据MODIS卫星第18和19波段的波段特征,首先从理论上证明从这两个波段表观反射率的比值反演大气可降水量的可行性,其次利用MODTRAN模型按照中纬度冬季和夏季两种大气模式对该比值与大气水汽的关系进行模拟,并建立了反演大气水汽的公式.利用贵州地区高空探测数据对反演公式进行验证,并与EOS发布的MODIS近红外水汽反演结果进行比较,发现该公式的反演结果更接近实际探测的结果.由于在反演过程中不必考虑地表覆盖和反射率的差异,摆脱了传统的根据查找表反演水汽的方式,并且直接由18、19波段表观反射率的比值计算大气可降水量,相对于传统算法更易于业务化运行.  相似文献   

7.
利用太阳辐射计940nm通道反演大气柱水汽总量   总被引:7,自引:4,他引:7  
利用太阳辐射计CE318近红外940nm水汽吸收通道和临近窗区道反演大气柱水汽总量,由于大气在940nm附近有水汽吸收。该通道不能采用通常Langley法处理,而采用改进的Langley法。利用MODTRAN3.7模式模拟出太阳辐射940nm通道透过率与水汽量关系常数,考虑了通道的光谱响应函数和不同大气模式的影响,模拟结果表明穿通道(小于10nm)上述关系常数受大气模式影响不大。总消光剔除气溶胶和分子散射,就得出水汽的透过率,从透过率反演水汽量。处理了敦煌和青海湖辐射校正场1999年7月场大气特征测量兼FY-1C辐射定标期间的数据,反演的平均水汽量与探空水汽积分比较,差异在12%以内。还计算出一天中不同时刻的水汽量,给出了同步观测6天卫星过顶前后15min平均水汽量,该水汽量用于FY-1C卫星遥感器辐射定标时辐射传输模式输入参数。结果表明太阳辐射计是一种便携有效测量水汽量仪器。  相似文献   

8.
静止气象卫星水汽图像的分析和应用(一)   总被引:3,自引:0,他引:3       下载免费PDF全文
长期多次人工增雨试验及探测证明,水汽条件是人工影响天气最主要的基础条件。利用近期开通的GMS-5静止卫星6.7 μm通道提供的水汽图像,并结合常规天气资料、卫星云图等,对黑龙江省1995年7月的3次暴雨过程进行了初步分析。发现在水汽图像上,3次暴雨对应3种不同的类型。并对其中7月25~27日具有明显水汽输送带的持续性暴雨作了综合分析。该水汽图像给出了这次典型气旋发展阶段暖区水汽输送带的清晰直观图像,得到了水汽输送带的宽度和长度数据,并分析了它的温湿结构,估算了暖锋段降水的降水效率。另外,分析了云物理特征及  相似文献   

9.
利用地基GPS测量大气水汽廓线的方法   总被引:6,自引:2,他引:6  
GPS倾斜路径的湿延迟反映了大气中水汽的三维非均匀分布,通过准确确定空间各卫星对地面各接收机的倾斜路径湿延迟,就可以利用断层扫描技术,确定大气层中水汽的三维分布和变化,从而增加目前还相对缺乏的大气水汽探测。文章就这方面介绍了国际上利用地基GPS测量倾斜路径大气湿延迟的两类方法(单点定位方法和双差定位方法)以及应用断层扫描技术利用这些观测进行水汽廓线遥感探测的两类方法(附加约束法和卡尔曼滤波法),并对这些方法的优缺点进行了初步的比较和探讨。  相似文献   

10.
GPS遥感区域大气水汽总量研究回顾与展望   总被引:16,自引:3,他引:16  
李国平  黄丁发 《气象科技》2004,32(4):201-205
20世纪90年代以来,GPS气象学迅速发展成为一个前沿性、多学科交叉的研究领域,利用GPS技术探测大气水汽含量的研究取得了很大进展,有望在未来大气探测、天气预报和气候变化的研究和业务工作中发挥重要作用。文章论述了利用GPS遥感大气水汽总量的气象学意义,比较了该技术相对于其它探测方法的特点和优势,简介了GPS遥感大气水汽总量的类型以及地基GPS气象学的基本原理,对国内外近10年来在应用地基GPS技术遥感大气水汽总量方面取得的主要成果、应用现状及未来发展趋势做了综合性评述。最后,分析了该技术目前存在的主要问题。  相似文献   

11.
应用AMSU-B微波资料识别强对流云区的研究   总被引:3,自引:1,他引:2  
方翔  邱红  曹志强  王新  洪刚 《气象》2008,34(3):22-29
微波遥感可以穿透云顶直接探测对流云内的冰态粒子分布,受冰晶粒子的强烈散射衰减作用,AMSU-B的3个微波水汽吸收波段亮温随冰粒子的增加而降低.由于探测权重高度不同,辐射传输过程中受冰粒子的散射影响也不尽相同,3个水汽通道之间存在亮温差异,这种差异与对流云的强弱密切相关.利用微波向量辐射传输模式(VDISORT)模拟了云雨粒子对微波水汽通道观测的影响,并利用2005年8月12日华北地区的对流天气过程,分析了AMSU-B通道亮温与对流强弱变化之间的对应关系.在此基础上,建立了一种利用NOAA卫星AMSU-B水汽通道亮温差定量判识深对流云和冲顶对流云的方法.利用该方法对典型对流降水云团进行判识,结果显示,微波识别的对流云区可以较好地表征强降水的分布,其中的冲顶对流区与可见光云系的上冲云顶结构有着很好的对应.  相似文献   

12.
探空、地面及卫星资料反演水汽含量的比较   总被引:1,自引:0,他引:1  
利用探空、地面等常规探测资料及卫星遥感资料计算了我国中西部地区2007年6月—2008年5月间水汽含量的空间分布和时间演变,结果显示:由探空资料计算的整层大气水汽含量的空间变化,总体形势是,纬度低的地区水汽含量多,纬度高的地区水汽含量少;各探空站上空水汽分布的季节演变规律比较一致,夏季水汽含量最大,冬季最小,春秋季节基本相当。根据探空资料建立地面水汽压与大气总水汽量的经验关系,利用地面站资料确定水汽分布,与同时次探空站资料估算的水汽场相比,两者分布趋势基本一致。利用FY-2C卫星的可见光和红外分裂窗通道资料,建立反演大气水汽含量的回归关系式,与探空资料计算的结果相比,总体上变化趋势较一致。  相似文献   

13.
大气中水汽混合比的Raman激光雷达探测   总被引:9,自引:0,他引:9  
介绍了作者自行研制的L625Raman激光雷达系统的结构和主要技术参数,叙述了Raman激光雷达探测水汽混合比的基本原理和数据处理方法。使用这台激光雷达在合肥地区进行了水汽混合比垂直分布的探测,对获得的水汽混合比垂直廓线进行了初步的分析和研究。最后就L625Raman激光雷达探测水汽混合比的误差进行了分析和讨论。  相似文献   

14.
胡帆  王凌震  周文嫣  喜度  徐芬 《气象科学》2011,31(2):217-222
通过测量近地面层的水汽变化,可以研究中小尺度雷暴系统的初生和发展,进而可以根据水汽数据帮助作出未来中小尺度天气过程的临近预报.因此,水汽探测具有重要的研究和应用价值.研究和实验证明,目前我国大量布网的SA多谱勒天气雷达,能够开展大气折射率场的探测,并用探测到的折射率场反演水汽的变化.本文对用SA雷达实现这种探测的一些关...  相似文献   

15.
对流层中上部水汽对高原低涡形成影响的数值试验   总被引:6,自引:0,他引:6  
对1998年8月4日那曲低涡形成前的卫星监测水汽图像的分析,用η模式对该低涡进行的数值模拟,及对高原以南及洋面上空对流层中上部增加水汽的数值试验,得出:印度洋阿拉伯海是这次高原低涡形成在对流层中上部一个重要的水汽源,印度西部-阿拉伯海上空对流层中上部水汽增加,可使高原上出现有利于低涡形成的高底场,温度场条件,用卫星监测的水汽图像改善在高原以南及洋面上空对流层中上部水汽条件,对数值预报结果有改进。  相似文献   

16.
利用ENVI4.5软件对2007年7—9月间23 d的MODIS 1B晴空数据进行水汽的反演,从中提取乌鲁木齐地区水汽含量并与地基GPS水汽数据进行对比分析,发现经过MODIS 1B反演的近红外水汽相对于地基GPS水汽偏小,但两者的变化趋势基本一致。通过MODIS近红外水汽的订正公式对反演的水汽进行订正,可使乌鲁木齐地区MODIS晴空像元大气水汽含量精度明显提高。  相似文献   

17.
940 nm水汽通道反射率计算试验   总被引:3,自引:3,他引:3       下载免费PDF全文
利用近红外波段大气与辐射的相互作用解决用红外波段不容易遥测低层水汽的问题。选用940 nm水汽弱吸收带进行通道反射率计算试验,分析其对不同环境参数的敏感性。结果表明,940 nm附近通道的辐射信号携带了整层大气水汽信息,有可能用来获取大气水汽总量。  相似文献   

18.
不同云天条件下水汽含量特征及其变化分析   总被引:15,自引:7,他引:15       下载免费PDF全文
大气中水汽含量的探测,是人工影响天气的基础条件之一,我们利用2002年6月18日到28日期问,安徽屯溪站的GPS水汽监测数据分析了该站出现不同云天条件下的水汽含量的特征,提出了适合人工影响天气作业的云天条件。以及分析该时段内水汽含量时间变化序列,发现发生降水前,水汽含量会有一个跃变,一般会达到60mm以上,这是实施人工增雨作业的最佳时问。  相似文献   

19.
利用常规探测资料、卫星云图资料分析2010年1月21~24日大暴雨过程的环流特征、水汽条件和云图特征,并利用欧洲中心、T213、T639等数值预报产品对这次强降雨天气过程进行包括散度场分析、垂直速度分析等物理量诊断分析,揭示强降雨在动力、热力、水汽等方面特征,找出有利于大暴雨产生的环境条件和物理机制.  相似文献   

20.
许健民  方宗义 《气象》2008,34(5):3-8
最近科学出版社出版了译著<卫星水汽图像和位势涡度场在天气分析和预报中的应用>一书.此书的作者是法国的帕特里克·桑特里特和保加利亚的克里斯托·G·乔治夫.该书的特点是把动力气象的位势涡度理论、数值预报模式输出的物理量场和卫星遥感的水汽图像有机地结合起来,向天气预报人员介绍了一种可操作的预报思路,也为数值预报模式开发者提出了利用卫星水汽图像改进模式的潜在途径.在评述这本卫星气象新书的同时,简要地介绍了本书的结构,各章的主要内容和特点,希望能帮助中国的预报员更好地阅读和理解此书.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号