首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A global three-dimensional model of the tropospheric sulfur cycle   总被引:9,自引:0,他引:9  
The tropospheric part of the atmospheric sulfur cycle has been simulated in a global three-dimensional model. The model treats the emission, transport, chemistry, and removal processes for three sulfur components; DMS (dimethyl sulfide), SO2 and SO4 2– (sulfate). These processes are resolved using an Eulerian transport model, the MOGUNTIA model, with a horizontal resolution of 10° longitude by 10° latitude and with 10 layers in the vertical between the surface and 100 hPa. Advection takes place by climatological monthly mean winds. Transport processes occurring on smaller space and time scales are parameterized as eddy diffusion except for transport in deep convective clouds which is treated separately. The simulations are broadly consistent with observations of concentrations in air and precipitation in and over polluted regions in Europe and North America. Oxidation of DMS by OH radicals together with a global emission of 16 Tg DMS-S yr–1 from the oceans result in DMS concentrations consistent with observations in the marine boundary layer. The average turn-over times were estimated to be 3, 1.2–1.8, and 3.2–6.1 days for DMS, SO2, and SO4 2– respectively.  相似文献   

2.
The CHIMERE mesoscale chemistry transport model is used for the quantitative assessment of the contribution of transboundary transport of anthropogenic admixtures from China to the surface concentrations of major suspended pollutants, aerosol PM10, ozone O3, and nitrogen oxides NOx in the Far Eastern region. Analyzed in detail are the time series of concentration of mentioned substances computed with the model taking account and not taking account of anthropogenic emissions in China. It is revealed that the transboundary transport of anthropogenic pollutants can cause the recurring episodes of manyfold increase in the concentration of PM10 in the south of Khabarovsk region, as well as more rare variations of O3 and NOx concentration. The trajectory and synoptic analysis demonstrated that the episodes of the increase in the concentration of PM10 and O3 in the south of the region mainly depend on the carryover of air masses from northeastern China in the front part of continental cyclones.  相似文献   

3.
Summary The three-dimensional long-range transport model EURAD has been applied to two episodes in 1986 to study the transport and transformation of air pollutants over Europe under different meteorological conditions. The spring episode is characterized by varying meteorological conditions over Europe and transport of pollutants is complex. The summer episode is suitable to study the enhanced formation of photooxidants as an almost stagnant high pressure system over central Europe favoured the accumulation of pollutants. Available observations from several monitoring networks in Europe are used to evaluate the near surface concentration predictions of the model. This is possible for the sulfur species, O3 and NO2 for the central part of the modelling domain. It is shown that O3 and NO2 trends in the western part of the model domain are estimated reasonably well. The strong bias for underpredicting NO2 in the eastern part of the domain reflects the quality of emission data for the two regions of the modelling area. Typically for regional scale Eulerian transport models when applied on larger grid sizes, EURAD overpredicts the observed minima and underpredicts the high observations. This is particularly true for O3 but also detectable in the sulfate comparisons. Several sensitivity simulations for both episodes were performed to test numerical algorithms, parameterizations or emission data. Results from these simulations clearly show the important role of cloud related processes during the spring time for the sulfur species. Further testing and assessment of cloud parameterizations and emission data for transport models is anticipated.With 22 Figures  相似文献   

4.
在对合肥地区污染源调查的基础上,利用CALPUFF模型模拟了合肥地区大气污染物SO2质量浓度场,通过与现场监测结果对比分析了模型的适用性,并根据模拟结果研究了不同排放源对合肥地区大气污染的贡献情况,建立了大气污染物传递矩阵;通过综合考虑城市区域的大气扩散能力、污染源贡献和大气环境质量目标等,采用线性规划模型测算了合肥市的大气环境容量.  相似文献   

5.
In this study, ideal but realistic numerical experiments are performed to explore the relative effects of changes in land use and emission distribution on air quality in the Pearl River Delta (PRD) region in winter. The experiments are accomplished using the Lagrangian particle transport and dispersion model FLEXPART coupled with the Weather Research and Forecasting model under different scenarios. Experiment results show that the maximum changes in daily mean air pollution concentration (as represented by SO2 concentration) caused by land use change alone reaches up to 2?×?10?6 g m?3, whereas changes in concentrations due to the anthropogenic emission distribution are characterized by a maximum value of 6?×?10?6 g m?3. Such results reflect that, although the impacts of land use change on air quality are non-negligible, the emission distribution exerts a more significant influence on air quality than land use change. This provides clear implications for policy makers to control urban air pollution over the PRD region, especially for the urban planning in spatial arrangements for reasonable emissions.  相似文献   

6.
A linked three-dimensional PBL and dispersion model in coastal regions   总被引:2,自引:0,他引:2  
In this paper a 3-D mesoscale PBL dynamic prognostic model for a coastal region with complex terrain was developed to simulate the 3-D flow field under a local sea-land breeze circulation. The output from the PBL model was used as an input to an Eulerian numerical model which can be used to simulate finely the temporal and spatial distributions of an air pollutant (SO2) during a sea-land breeze developing in a coastal region. With respect to its use as a diagnostic model, only a few data would be required to simulate the background winds controlled by a larger scale synoptic system, and then provide initial winds for the PBL model.Having linked the three models and defined the coefficients of turbulent diffusion in a simple form, an integrated 3-D numerical air quality model suitable for the coastal environment was designed. The period of May 29, 1986 was selected for simulating and analysing the distribution of air pollutants over the coastal area of Bohai-sea in Northern China. The results indicated that the calculated concentrations corresponded with the observed ones on the whole. Thus this linked model has been shown to be feasible and useful in practice.  相似文献   

7.
Described is a system of verification of mesoscale hydrodynamic forecasts for the territory of Sochi-2014 Winter Olympic Games worked out within the framework of FROST-2014 international project. A technological line comprises the observational and model output databases, the computing verification complex, and the optional program aids for aggregation and visualization of products. The METv4.0 verification complex developed in cooperation with forecasting and research centers of the USA is used as a core. The effectiveness of the verification system is demonstrated with the COSMO model products for the period of December 1, 2011–March 31, 2012. Preliminary assessments of the model potential in forecasting the surface air temperature, the velocity of the scalar wind, and the sea-level air pressure are made with the quality score aggregation over the selected polygons of verification.  相似文献   

8.
In Northeast Asia, the effect of long-range transport of air pollutants is generally pronounced in spring and winter, but can be important even in summer. This study analyzed summer-time atmospheric transport of elemental carbon (EC) and sulfate (SO4 2?) with the Community Multiscale Air Quality (CMAQ) model driven by the Weather Research and Forecasting (WRF) model. The WRF/CMAQ modeling system was applied to regions ranging from Northeast Asia to the Greater Tokyo Area in Japan in summer 2007. In terms of EC, while the model simulated well the effect of long-range transport, the simulation results indicated that domestic emissions in Japan dominantly contributed (85%) to EC concentrations in the Greater Tokyo. In terms of SO4 2?, the simulation results indicated that both domestic emissions (62%) and long-range transport from the other countries (38%) substantially contributed to SO4 2? concentrations in the Greater Tokyo. Distinctive transport processes of SO4 2? were associated with typical summer-time meteorological conditions in the study region. When a Pacific high-pressure system covered the main island of Japan, domestic emissions, including volcanic emission, dominantly contributed to SO4 2? concentrations in the Greater Tokyo. When a high-pressure system prevailed over the East China Sea and low-pressure systems passed north of Japan, synoptic westerly winds associated with this pressure pattern transported a large amount of SO4 2? from the continent to Japan. In addition, although heavy precipitation and strong wind decreased SO4 2? concentrations near the center of a typhoon, peripheral typhoon winds occasionally played an important role in long-range transport of SO4 2?.  相似文献   

9.
Summary The air quality modelling system (HIRES-AIRCHEM) of The University of New South Wales is tested with regard to forecast distributions of sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3) over the Sydney basin and surrounding area. This is achieved by assimilating the emissions inventory of the New South Wales State Environment Protection Authority. This inventory contains both road and non-road sources. The HIRES-AIRCHEM system was run over the greater Sydney metropolitan area for a four day period in February 1998. During this period O3 readings, in particular, exceeded the EPAs threshold maximum of 80ppb. The model forecasts of the NO2-, SO2- and O3-distributions verify well with the EPAs monitored readings. Diurnal concentrations are greatest in the late afternoon, as expected, when photochemical processes are most active. Furthermore, the forecast spatial distribution of NO2 and SO2 shows maximum values radiating out along major roads from the Sydney CBD and other population centres. This is consistent with NO2 and SO2 being major pollutants associated with vehicular traffic. These promising results have significant implications for possible future use of the system as a tool for routinely assessing air quality.  相似文献   

10.
Severe haze pollution that occurred in January 2014 in Wuhan was investigated. The factors leading to Wuhan’s PM2.5 pollution and the characteristics and formation mechanism were found to be significantly different from other megacities, like Beijing. Both the growth rates and decline rates of PM2.5 concentrations in Wuhan were lower than those in Beijing, but the monthly PM2.5 value was approximately twice that in Beijing. Furthermore, the sharp increases of PM2.5 concentrations were often accompanied by strong winds. A high-precision modeling system with an online source-tagged method was established to explore the formation mechanism of five haze episodes. The long-range transport of the polluted air masses from the North China Plain (NCP) was the main factor leading to the sharp increases of PM2.5 concentrations in Wuhan, which contributed 53.4% of the monthly PM2.5 concentrations and 38.5% of polluted days. Furthermore, the change in meteorological conditions such as weakened winds and stable weather conditions led to the accumulation of air pollutants in Wuhan after the long-range transport. The contribution from Wuhan and surrounding cities to the PM2.5 concentrations was determined to be 67.4% during this period. Under the complex regional transport of pollutants from surrounding cities, the NCP, East China, and South China, the five episodes resulted in 30 haze days in Wuhan. The findings reveal important roles played by transregional and intercity transport in haze formation in Wuhan.  相似文献   

11.
An experimental study involving the Mainz vertical wind tunnel is described where the rate of SO2 removed from the air by freely suspended water drops was measured for SO2 concentrations in the gas phase ranging between 50 and 500 ppb, and for various H2O2 concentrations in the liquid phase. In a first set of experiments, the pH inside the SO2 absorbing drops was monitored by means of colour pH indicators added to the drops. In a second set of experiments, the amount of SO2 scavenged by the drops was determined as sulfate by an ionchromatograph after the drops had been removed from the vertical air stream of the wind tunnel after various times of exposure to SO2. The results of our experimental study were compared with the theoretical gas diffusion model of Walcek and Pruppacher which was reformulated for the case of SO2 concentrations in the ppbv(v) range for which the main resistance to diffusion lies in the gas phase surrounding the drop. Excellent agreement between experiment and theory was obtained. Encouraged by this agreement, the theory was used to investigate the rate of sulfate production inside a drop as a function of pH. The sulfate production rate, which includes transport and oxidation, was compared with the production rate based on bulk equilibrium, as cited in the literature.  相似文献   

12.
Three online coupled chemical transport model simulations were analyzed for three summer months of 2015 in Poland. One of them was run with default emission inventory, the other two with NOx and VOC emissions reduced by 30%, respectively. Obtained ozone concentrations were evaluated with data from air quality measurement stations and ozone sensitivity to precursor emissions was estimated by ozone concentration differences between simulations and with the use of indicator ratios. They were calculated based on modeled mixing ratios of ozone, total reactive nitrogen and its components, nitric acid and hydrogen peroxide. The results show that the model overestimates ozone concentrations with the largest errors in the morning and evening, which is primarily related to the way vertical mixing is resolved by the model. Better model performance for ozone is achieved in rural than urban environment, as PBL and mixing mechanisms play more significant role in urban areas. Modeled ozone shows mixed sensitivity to precursor concentrations, similarly to other European regions, but indicator ratios have different values than are found in literature, particularly H2O2/HNO3 is larger than in southern Europe. However, indicator ratios often differ between locations and transition values need to be established individually for a given region.  相似文献   

13.
Air pollutant emission rates and concentrations in medieval churches   总被引:1,自引:0,他引:1  
A series of indoor air quality parameters were determined in two medieval churches, in Cyprus (temperature, relative humidity, total and UV solar radiation, CO2 indoors and O3, NO, NO2 *, HNO3 *, HCl, HCOOH, CH3COOH indoors and outdoors). These data were used as input in a validated indoor air quality model to predict indoor air pollutant source strengths and species concentrations that resulted from dark or photochemical reactions. The NO and NO2 emission rates due to the burning of incense or candles were estimated. Model results revealed that heterogeneous NO formation takes place simultaneously with the heterogeneous HONO formation. Also, model application has shown that indoor NOx emissions resulted in decreased free radical concentrations, in contrast to the organic compound emissions, which increased free radical concentrations. This effect of indoor emissions on indoor radicals can partly explain the indoor enhancement/depression of indoor gaseous acid formation.  相似文献   

14.
Results of joint calculations with meteorological WRF ARW model and chemistry transport CHIMERE model are considered as a basis of the modern system of the air quality assessment and forecasting. The system was designed in the Russian Hydrometeorological Center and Institute of Applied Physics of the Russian Academy of Sciences. Detailed prognostic information about the atmosphere state provided by the WRF ARW was used in the CHIMERE model for describing the air mass transport processes, chemical transformation, and pollution deposition. Results of retrieval and forecast of surface ozone concentration as one of main air quality indicators are under consideration. Calculations of ozone concentrations for different configurations of a prognostic system differ in resolution of model grid and in the way the boundary conditions are prescribed.  相似文献   

15.
Atmospheric modeling is considered an important tool with several applications such as prediction of air pollution levels, air quality management, and environmental impact assessment studies. Therefore, evaluation studies must be continuously made, in order to improve the accuracy and the approaches of the air quality models. In the present work, an attempt is made to examine the air pollution model (TAPM) efficiency in simulating the surface meteorology, as well as the SO2 concentrations in a mountainous complex terrain industrial area. Three configurations under different circumstances, firstly with default datasets, secondly with data assimilation, and thirdly with updated land use, ran in order to investigate the surface meteorology for a 3-year period (2009–2011) and one configuration applied to predict SO2 concentration levels for the year of 2011.The modeled hourly averaged meteorological and SO2 concentration values were statistically compared with those from five monitoring stations across the domain to evaluate the model’s performance. Statistical measures showed that the surface temperature and relative humidity are predicted well in all three simulations, with index of agreement (IOA) higher than 0.94 and 0.70 correspondingly, in all monitoring sites, while an overprediction of extreme low temperature values is noted, with mountain altitudes to have an important role. However, the results also showed that the model’s performance is related to the configuration regarding the wind. TAPM default dataset predicted better the wind variables in the center of the simulation than in the boundaries, while improvement in the boundary horizontal winds implied the performance of TAPM with updated land use. TAPM assimilation predicted the wind variables fairly good in the whole domain with IOA higher than 0.83 for the wind speed and higher than 0.85 for the horizontal wind components. Finally, the SO2 concentrations were assessed by the model with IOA varied from 0.37 to 0.57, mostly dependent on the grid/monitoring station of the simulated domain. The present study can be used, with relevant adaptations, as a user guideline for future conducting simulations in mountainous complex terrain.  相似文献   

16.
Observations of the tropical atmosphere are fundamental to the understanding of global changes in air quality, atmospheric oxidation capacity and climate, yet the tropics are under-populated with long-term measurements. The first three years (October 2006–September 2009) of meteorological, trace gas and particulate data from the global WMO/Global Atmospheric Watch (GAW) Cape Verde Atmospheric Observatory Humberto Duarte Fonseca (CVAO; 16° 51′ N, 24° 52′ W) are presented, along with a characterisation of the origin and pathways of air masses arriving at the station using the NAME dispersion model and simulations of dust deposition using the COSMO-MUSCAT dust model. The observations show a strong influence from Saharan dust in winter with a maximum in super-micron aerosol and particulate iron and aluminium. The dust model results match the magnitude and daily variations of dust events, but in the region of the CVAO underestimate the measured aerosol optical thickness (AOT) because of contributions from other aerosol. The NAME model also captured the dust events, giving confidence in its ability to correctly identify air mass origins and pathways in this region. Dissolution experiments on collected dust samples showed a strong correlation between soluble Fe and Al and measured solubilities were lower at high atmospheric dust concentrations. Fine mode aerosol at the CVAO contains a significant fraction of non-sea salt components including dicarboxylic acids, methanesulfonic acid and aliphatic amines, all believed to be of oceanic origin. A marine influence is also apparent in the year-round presence of iodine and bromine monoxide (IO and BrO), with IO suggested to be confined mainly to the surface few hundred metres but BrO well mixed in the boundary layer. Enhanced CO2 and CH4 and depleted oxygen concentrations are markers for air-sea exchange over the nearby northwest African coastal upwelling area. Long-range transport results in generally higher levels of O3 and anthropogenic non-methane hydrocarbons (NMHC) in air originating from North America. Ozone/CO ratios were highest (up to 0.42) in relatively fresh European air masses. In air heavily influenced by Saharan dust the O3/CO ratio was as low as 0.13, possibly indicating O3 uptake to dust. Nitrogen oxides (NOx and NOy) show generally higher concentrations in winter when air mass origins are predominantly from Africa. High photochemical activity at the site is shown by maximum spring/summer concentrations of OH and HO2 of 9?×?106 molecule cm?3 and 6?×?108 molecule cm?3, respectively. After the primary photolysis source, the most important controls on the HOx budget in this region are IO and BrO chemistry, the abundance of HCHO, and uptake of HOx to aerosol.  相似文献   

17.
山区复杂地形上区域大气质量模式的试验研究   总被引:3,自引:3,他引:3  
阎宇平  陈长和 《高原气象》1997,16(2):130-139
由于复杂地形上的气流多变,所以,进行区域空气质量模拟是比较困难的。根据大气污染总量控制和环境规划的需要,发展了一种可适用于山谷城市的大气质量模式,该模式的主要特点;(1)采用目前尚少的复杂地形上的三维边界层模式作为大气扩散模式所需城三维边界层要素场;(2)用复杂地形上的三维以模式和斯扩散氏架源(包括面源)和主架源所造在的地面SO2浓度,然后将两者的模拟浓度在相应网各上叠加。验证结果表明,该混合模式  相似文献   

18.
A high O3 episode was observed during 23–25 May 2004 at two high-mountain sites reflecting the regional pattern of air pollutants over East China. This episode lasted about three days with the maximum hourly O3 mixing ratios reaching 111 and 114 ppbv at Mt. Tai and Huang, respectively. Backward trajectories and meteorological analysis indicated that regional transport, associated with a weak high pressure system over the East China Sea, might play an important role in the formation of this high ozone episode. The nested air quality prediction modeling system (NAQPMS) was applied to investigate the formation and evolution of this high O3 event. The comparison of model results with observations showed that NAQPMS successfully reproduced the main observed patterns of O3 and meteorological parameters during the simulated period. The model results with emission over the Yangtze Delta and the East Central China switched on/off clearly showed that ozone and its precursors transported from the Yangtze Delta and the East Central China enhanced the high ozone episode at two sites, with a contribution of 20%–50% during the episode. In addition, based on process analysis with the model, chemical production and regional transport appeared to be the main causes of high ozone episode involving a large amount of high-ozone air masses and precursors transported from the surrounding areas. The horizontal transport is more active during the period of high ozone episode than that during the non-episode at Mt. Tai as well as Mt. Huang.  相似文献   

19.
20.
Connection between ozone concentration and atmosphere circulation is investigated based on measurements at BEO station, peak Moussala (2,925 m a.s.l.), for the period 09 August 2006 to 29 January 2008. Ozone concentration data are collected with UV-analyzer “Environnement O3 42” and meteo data with weather station “Vaisala”. There are measurements of 7Be. Data from NOAA HYSPLIT model for particle trajectories are also used. Eight wind directions and three ranges of wind velocities are employed in the analysis. A comparison of ozone concentrations in upward and downward air transport according to HYSPLIT model is made. The number of cases with ozone concentration above 63 ppb has been counted. Mann–Whitney nonparametric test is employed as a basic statistical method. Correlation between atmosphere pressure and tropospheric ozone content is made. The same is done for 7Be and ozone. The main conclusion is that there is not any local or regional pollution effect detectable at peak Moussala, but most of the ozone measured is due to emissions of hydrocarbons and NO x over a larger region. There could be some regional sources of ozone building substances in southwest direction from peak Moussala. Air transported from the north quarter has higher ozone concentrations compared to the south quarter. In vertical direction, upward transport of air masses shows higher values of ozone concentration. Higher wind velocity is associated with low ozone concentrations at peak Moussala. The annual course of ozone concentration has summer maximum and winter minimum. There is right connection between air pressure and ozone concentration. The same is valid for the correlation between 7Be and ozone. Diurnal ozone course shows daytime maximum in winter and nighttime maximum in summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号