首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
基于1992~2010年全国778个农业气象站土壤湿度观测资料、ERA-Interim、JRA55、NCEP-DOE R2和20CR土壤湿度再分析资料,通过平均差值、相关系数、差值标准差、标准差比四个参数,利用Brunke排名方法和EOF(Empirical Orthogonal Function)分析,对四套土壤湿度再分析资料在中国西北东部—华北—江淮区域的适用性进行了分析。主要结论如下:不同季节的平均偏差空间分布上,JRA55资料同观测数据的平均偏差在±0.08m~3 m~(-3)之间,春、夏季西北东部JRA55土壤湿度偏小,ERA-Interim、NCEP-DOE R2、20CR资料较观测数据偏湿,华北南部、江淮地区平均偏差小于西北东部、华北北部。在年际变化上,各个季节ERA-Interim资料同观测资料最为接近,能稳定地再现西北东部、华北、江淮地区土壤湿度干湿变化趋势,反映出重要的旱涝年。整体而言,四套再分析资料中ERA-Interim资料同观测资料接近,JRA55、NCEP-DOE R2资料次之,20CR资料最差。  相似文献   

2.
利用中国气象局中国气象数据网提供的地面观测资料集及JRA-55、ERA-Interim、NCEP/NCAR和NCEP/DOE四种再分析资料集的日最高温度资料,运用线性分析、方差分析、EOF分析和滤波等方法,对1979—2013年中国东部地区夏季不同再分析资料和观测资料日最高温度的多时间尺度特征进行对比分析。结果表明:夏季最高温度多年平均由南向北逐渐降低,长江以南在30℃以上,JRA-55对东部地区夏季日最高温度的多年平均特征的再现能力较优;近35年东部地区夏季日最高温度整体呈增长趋势,长江中下游以及内蒙古东部地区增长趋势明显;再分析资料对最高温度长期变化特征的再现能力在不同地区各有优劣,JRA-55略优于其他资料。夏季最高温度空间上以长江中下游以南与其以北地区反位相变化为其主要特征,其中ERA-Interim的空间分布特征与观测资料较为相似,其次为NCEP/DOE;时间变化则以年际变化为主,ERA-Interim的年际变化特征最接近观测资料。JRA-55、NCEP/NCAR以及NCEP/DOE在21世纪之后变化特征与观测资料较为相似,表现为振幅减弱而后回升的趋势;在季节内尺度上,夏季日最高温度主要周期为20~60天,其方差贡献在云贵、东北地区以及甘肃东部、陕西一带较大,再分析资料对季节内时间尺度的再现能力由高到低依次为JRA-55、ERA-Interim、NCEP/DOE、NCEP/NCAR。  相似文献   

3.
中国近50 a地温的变化特征   总被引:20,自引:2,他引:20  
利用1954-2001年中国532站的月平均0.8m层地温资料,对我国及其不同区域地温的变化特征进行了分析。结果表明,近50a,全国年平均地温的年代际变化大致为下降阶段,相对气候冷期及上升阶段。地温的区域变化特征显著,90年代后东北地区地温增温最显著,西南东部地区地温下降趋势明显,青藏高原东部地温在1980年前后发生一次急剧下降的突变过程。地温季节变化中,冬季地温年代际变化特征与其他季节相比差异较显著,而春季地温年际变化出现异常的频率最大。  相似文献   

4.
多套土壤温湿度资料在青藏高原的适用性   总被引:13,自引:0,他引:13  
刘川  余晔  解晋  周欣  李江林  葛骏 《高原气象》2015,(3):653-665
利用青藏高原中部和东部土壤温度和湿度观测资料,通过计算两套再分析资料(ERA-Interim和CFSR)和六套陆面模式资料(ERA/land、MERRA/land、GLDAS-NOAH、GLDAS-CLM、GLDAS-M OSAIC和GLDAS-VIC)分别与观测资料之间的平均偏差、偏差标准差、相关系数、标准差比等统计参数,结合Brunke排名法,综合评估了再分析资料和陆面模式资料中土壤温湿度数据在青藏高原的适用性。结果表明:对于土壤温度,CFSR与观测值最接近,其次是MERRA/land和GLDAS-CLM,而ERA-Interim和ERA/land与观测值相差较大;除GLDAS-CLM土壤温度比观测值偏高外,其他资料土壤温度在大部分站点比观测值偏低,其中ERA-Interim和ERA/land土壤温度比观测值偏低较多,部分站点平均偏差超过-20℃。对于非冻结期(5 10月)土壤湿度,GLDAS-CLM与观测值最接近,其次是GLDAS-NOAH或ERA-Interim;与观测值相比,CFSR、ERA-Interim和ERA/land的土壤湿度偏湿,平均偏差大部分在0.05~0.20 m3·m-3之间,而GLDAS-NOAH、GLDAS-CLM和GLDAS-M OSAIC的土壤湿度偏干。  相似文献   

5.
再分析土壤温湿度资料在青藏高原地区适用性的分析   总被引:1,自引:0,他引:1  
利用2010-2016年中国科学院西北生态环境资源研究院青藏高原土壤温度与湿度监测网观测数据在不同气候区和植被条件的4个地区(阿里、狮泉河、那曲和玛曲)对8套土壤温湿度再分析产品(ERA-Interim、CFSR、CFSv2、JRA-55、GLDAS-NOAH、GLDAS-CLM、GLDAS-MOS和GLDAS-VIC)进行对比分析,使用相关系数、均方根误差、平均偏差、无偏均方根误差和标准差比等统计参数综合比较各土壤温湿度产品对观测值的模拟性能,寻找适用于青藏高原地区的长时间大尺度土壤温湿度产品。结果表明:对于土壤温度,GLDAS-CLM产品在大部分站点能够合理再现两层(0~10 cm和10~40 cm)土壤温度随时间的动态过程和变化细节,虽然结果略高估观测土壤温度值,但在数值上与观测值较为接近,并且与观测值呈显著正相关关系。对于土壤湿度,土壤冻结期再分析产品不能表现土壤湿度的动态变化特征;非冻结期GLDAS-NOAH和GLDAS-CLM产品能够较好的刻画各地区两层土壤湿度随时间变化的动态过程特征,不论在误差统计量还是相关性方面都表现为最优值。GLDAS-MOS、GLDASVIC、ERA-interim和CFSv2产品虽然在一定程度上能够展现部分地区土壤湿度的变化趋势,但对观测值的刻画效果并不理想,而JRA-55产品无法描绘各地区土壤温湿度变化。  相似文献   

6.
采用1979—2013年中国192站逐日最低温度观测资料和NCEP/NCAR、NCEP/DOE、JRA-55、ERA-Interim再分析资料及1979—2004年均一化资料,分别计算低温阈值并对比分析其气候态、年际和年代际变化、长期趋势等特征。结果表明:与观测结果相比,均一化资料阈值在东北、内蒙古西部和两广等地偏低,在青藏高原东侧、新疆北部和黄河中下游偏高,线性趋势则相反;再分析资料阈值在南方偏低、东北偏高,在东部的可信度高于西部;再分析资料能显示内蒙古中西部的降温趋势和青藏高原的增温趋势,但在数值和范围上有差异,且均低估了观测资料反映的华北地区的显著升温现象;再分析资料能体现观测资料阈值的全区一致性、东北与其他地区反相的空间分布及其年际变化特征,仅JRA-55和ERA-Interim可再现低温阈值的年代际变化特征。  相似文献   

7.
选取NCEP1、NCEP2和ERA-Interim中1981—2010年共30 a的风场、温度场和地面气压场再分析资料,利用"倒算法"计算青藏高原大气热源,对三套资料的计算结果进行了多方面比较分析,并运用Morlet小波法分析了区域平均的高原热源的时间变化特征。结果显示:(1)三套资料计算的季节平均的热源在空间分布上基本一致,夏季高原大部分地区为热源,冬季除高原西北部是热源外,其余地区为冷源。其中,ERA-Interim与NCEP1的分布更为接近;(2)三套资料均表明:就30 a平均而言,青藏高原大气为显著的热源,分布上ERA-Interim与NCEP1相似,量值上NCEP的两套资料更为接近;(3)区域平均热源的月际变化十分一致,相关系数均超过99%显著性检验。NCEP的两套资料对年际变化的描述更为一致,二者相关系数为0.88,ERA-Interim与NCEP两套资料的结果略有差距,相关系数分别为0.78和0.70;(4)整体而言,ERA-Interim资料在反映高原热源方面较优,但也要注意考察该资料给出的高原南坡强热源的真实合理性。  相似文献   

8.
冬季雪深再分析资料在欧亚中高纬地区的适用性评价   总被引:1,自引:0,他引:1  
欧亚中高纬地区的积雪是影响气候的重要因子,但是观测台站稀疏且记录只到1996年,导致积雪观测资料严重缺乏。基于目前国际上应用较为广泛的3套再分析资料:美国国家大气海洋局(NOAA)的20世纪再分析资料(NCAR-20th century reanalysis)、欧洲中期天气预报中心(ECMWF)的再分析资料(ERA-Interim)及日本气象厅(JMA)的全球大气再分析资料(JRA-55),利用前苏联站点观测的雪深资料评估雪深再分析资料在欧亚大陆区域的适用性。结果表明:3套再分析资料对积雪的时空变化均具有一定的描述能力;其中,尤以JRA-55再分析资料与观测事实最为接近,能较好揭示欧亚中高纬雪深变化的空间分布特征,反映雪深的长期变化趋势。JRA-55再分析资料揭示的欧亚雪深与169站观测有90%吻合,20世纪再分析资料有76%一致,而ERA-Interim再分析资料只有一半。区域尺度上,JRA-55再分析资料揭示的欧洲、西伯利亚南部雪深在1961~1990年的变化与观测是正相关,相关系数达到0.91、0.87,而20世纪再分析资料仅有0.77、0.32。长时间序列的雪深资料(JRA-55)表明欧亚大陆积雪存在年代际的变化特征:1960年代积雪偏少;1970年代偏多;从1980年代开始呈现减少趋势,持续至20世纪末,并且积雪的减少是高纬度积雪变化造成的。  相似文献   

9.
朱景  袁慧珍 《气象科技》2019,47(2):289-298
利用浙江省2016年71个气象台站观测的日平均气温和地表(0cm)温度资料对ERA再分析陆面温度资料的适用性进行了初步评估,通过计算2套再分析资料(ERA5和ERA-Interim)与观测资料之间的相关系数、平均偏差、平均绝对偏差、均方根误差和纳什效率系数等统计参数,综合评估了ERA再分析资料在浙江省的适用性。结果表明:①ERA2套再分析资料与观测值均较为接近,均能够较好地再现浙江省2m气温的时空分布特征且变化相关系数均高于0.98,日绝对偏差较小。②对于地表温度,2套再分析资料的适用性要差于气温,主要表现在2套再分析地表温度均低于观测值,且夏季的偏差显著大于其他季节,但绝大多数站点相关系数高于0.9,均方根误差高于2℃。总体来说,2套ERA再分析陆面温度资料对浙江省具有较好的适用性,ERA5整体上优于ERA-Interim,地表温度的改善更明显。  相似文献   

10.
利用气象台站观测地表温度,比较和分析了ERA-Interim、NCEP/NCAR和NCEP/DOE再分析地表温度资料在青藏高原的适用性.结果表明:三种再分析资料都揭示了青藏高原地表温度的基本特征,并较好地描述了高原地表温度的季节变化和年际变化特征;但三种再分析资料都比观测地表温度明显偏低,且对地表温度的长期变化趋势估计不足.比较而言,ERA-1nterim再分析地表温度产品在青藏高原的适用性最好,与观测地表温度的相关最显著,且能较好地反映高原地表温度的异常变化强度,可作为研究高原地表温度年际变化的代用资料;而NCEP/NCAR和NCEP/DOE 再分析地表温度产品在青藏高原的适用性不佳,其适用时段和适用区域需要进一步考察.  相似文献   

11.
利用农业气象站观测资料对长江中下游地区1988-2010年遥感土壤湿度进行了验证,并与NCEP和ERA-Interim土壤湿度做了对比分析。研究表明,ECV遥感土壤湿度冬季平均土壤湿度最高,春季和秋季次之,夏季平均土壤湿度最低;这种季节性干湿变化与农业气象站观测资料一致。但是,NCEP和ERA-Interim土壤湿度再分析资料,则夏季平均土壤湿度高,春季和秋季次之,而冬季平均土壤湿度最低;这种季节性变化与ECV遥感土壤湿度和农业气象站观测资料呈反位相。就年际变化而言,ECV遥感土壤湿度与农业气象站观测资料和两套再分析资料均有较高的一致性,并在春季和秋季最高,尤其是在长江以北地区和长江以南洞庭湖、鄱阳湖两大湖区,相关系数达到0.7~0.9;而夏季一致性最低,相关系数仅为0.4左右。在研究时段,ECV土壤湿度在冬季明显增加,在夏季则有明显下降趋势。  相似文献   

12.
利用1979—2015年ERA-Interim再分析土壤湿度、云量资料,NCEP/NCAR再分析环流资料和CPC土壤湿度资料,分析了东亚中纬度夏季陆面热力异常的时空分布特征及其与前期春季土壤湿度异常的联系,探讨了前期春季土壤湿度影响东亚中纬度夏季陆面增暖的可能途径。结果表明,东亚中纬度夏季土壤表层温度呈全区一致增暖趋势,其中贝加尔湖及以南地区温度变化最剧烈、增暖最迅速,且1990年代中期前后存在一个明显由冷向暖的年代际转变。进一步分析发现,春、夏季西西伯利亚到贝加尔湖北部地区的土壤湿度与夏季贝加尔湖及以南地区的土壤表层温度在年代际和年际尺度上均存在紧密联系:西西伯利亚到贝加尔湖北部地区土壤湿度异常偏高,通常对应贝加尔湖及南部地区夏季土壤表层温度偏高。西西伯利亚到贝加尔湖北部地区春、夏土壤湿度异常可以引起夏季大气环流异常,从而对东亚夏季中纬度陆面热力异常产生影响:春、夏土壤湿度偏高时,贝加尔湖及其南部地区上空位势高度为正异常,对应为反气旋性异常环流,云量减少,有利于东亚中纬度陆面增暖;反之,则对应为气旋性异常环流,不利于陆面增暖。  相似文献   

13.
基于南极18个站点探空气象观测数据对欧洲中期天气预报中心的再分析数据(ERA-Interim)和美国国家环境预报中心的再分析数据(NECP)在南极地区高层大气的适用性进行验证。结果表明:在南极上空,随着高度抬升,探空气象观测数据与两套再分析数据中四个气象要素的差值均逐渐变大,再分析数据数值愈加偏离实际观测数值。两套再分析数据的位势高度和温度与探空观测数据偏差较小;风向则和探空观测数据相差甚远;两套再分析数据的风速与探空观测数据在300 hPa偏差较大。在季节变化中,南极的春季,再分析数据中的位势高度和温度与探空观测数据相差较大,在其他季节相差相对较小。再分析数据中的风速与探空观测数据在南极的夏季相差较小。再分析数据中的风向与探空观测数据存在较大偏差,且差值没有明显的季节变化。尽管两套再分析数据都存在很大偏差,但ERA-Interim数据整体上优于NCEP数据。对比分析也表明,采用这些再分析资料作为初始条件和边界条件驱动南极区域大气模式将带来较大的误差。未来需要加强南极探空观测,改进再分析资料同化和数值模拟系统。  相似文献   

14.
利用在天山山区海拔超过1 500 m的气象站的逐日气温和气压数据与同期经过水平方向和垂直方向插值后ERA-Interim和NCEP/NCAR两套再分析数据进行回归分析,研究再分析数据在天山山区不同季节的适用性,并验证再分析数据偏差与气候区的一致性。结果表明:从整体上,ERA-Interim数据气压和气温的可信度优于NCEP/NCAR数据,但在局部存在差异。两套再分析数据的偏差与气候分区、高程和季节相关。中天山山区再分析数据气温偏差呈现暖偏差,而天山南坡呈现冷偏差。两套再分析数据的气温偏差在高山带呈现暖偏差,在中山带呈现冷偏差。春秋两季气温的偏差小于夏冬两季。气压的偏差在夏季低于其他三季。而偏差可能会导致以再分析数据为驱动的气候模式结果的偏差。  相似文献   

15.
A change in soil temperature (ST) is a significant indicator of climate change, so understanding the variations in ST is required for studying the changes of the Qinghai–Tibet Plateau (QTP) permafrost. We investigated the performance of three reanalysis ST products at three soil depths (0–10 cm, 10–40 cm, and 40–100 cm) on the permafrost regions of the QTP: the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim), the second version of the National Centers for Environmental Prediction Climate Forecast System (CFSv2), and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Our results indicate that all three reanalysis ST products underestimate observations with negative mean bias error values at all three soil layers. The MERRA-2 product performed best in the first and second soil layers, and the ERA-Interim product performed best in the third soil layer. The spatiotemporal changes of annual and seasonal STs on the QTP from 1980 to 2017 were investigated using Sen’s slope estimator and the Mann–Kendall test. There was an increasing trend of ST in the deeper soil layer, which was less than that of the shallow soil layers in the spring and summer as well as annually. In contrast, the first-layer ST warming rate was significantly lower than that of the deeper soil layers in the autumn and winter. The significantly (P < 0.01) increasing trend of the annual ST indicates that the QTP has experienced climate warming during the past 38 years, which is one of the factors promoting permafrost degradation of the QTP.  相似文献   

16.
利用江苏省2010—2015年的60个站点土壤湿度观测资料,对欧洲中心ERA-Interim再分析资料(ERA)和美国宇航局再分析资料(MERRA)的两套土壤湿度数据在江苏地区的可靠性进行了评估。结果表明:相比于ERA再分析资料,MERRA较好地再现出江苏省次表层年平均土壤湿度的空间分布特征,但是两种资料的次表层和深层土壤湿度的数值均小于观测。ERA和MERRA基本都能揭示出江苏省次表层土壤湿度的季节变化特征,但是深层土壤湿度与观测仍有较大差距。在时间演变方面,ERA次表层土壤湿度与站点观测在研究时段内较为接近,EOF分析揭示出1979—2016年江苏省次表层土壤湿度存在区域一致型与南北偶极型两个主要的年代际变率模态。但是对于深层土壤湿度时间演变而言,两种再分析资料都与观测有较大的差距。总体而言,再分析资料的次表层土壤湿度与站点观测较为接近,但是由于再分析资料陆面模式中地下水等影响深层土壤湿度的关键过程刻画较为简单,使得深层土壤湿度与观测有较大的差距。  相似文献   

17.
6种地表热通量资料在伊朗—青藏高原地区的对比分析   总被引:1,自引:1,他引:1  
刘超  刘屹岷  刘伯奇 《气象科学》2015,35(4):398-404
基于JRA25、ERA40、ERA-Interim、NCEP1、NCEP2和20CR,对比了不同资料中气候平均(1979—2008年)伊朗—青藏高原感热通量和波文比的季节演变,以及夏季高原感热的年际变率和线性趋势。6套资料均表明,由春到夏亚洲大地形区域地表热状况的季节演变存在明显差异,青藏高原东南部低空气旋生成,一方面增多了局地降水,减弱了地表西风,造成潜热加强,感热减弱,波文比减小;另一方面加强了伊朗高原的东北风,抑制了当地降水,令感热加强,波文比增加,构成了青藏—伊朗高原感热通量季节演变的纬向非对称分布。虽然近30 a来伊朗高原(青藏高原)夏季感热线性增加(减小)的趋势一致,但不同资料所反映的伊朗—青藏高原夏季感热通量的年际变化差别明显。  相似文献   

18.
利用ERA-Interim再分析资料分析了夏秋季西北太平洋季风槽的气候特征以及季节和年际变化特征及其对西北太平洋热带气旋和台风(TCs)生成大尺度环境因子的影响。研究结果表明了西北太平洋季风槽有很明显的季节变化,在6~7月,季风槽和强对流活动区在5°N~15°N的南海和西北太平洋西侧上空,并逐渐东伸;到了8~9月,季风槽和强对流活动区向北移动、并向东扩展,一般位于10°N~20°N的南海和西北太平洋西侧、中部上空,有的年份可东伸到西北太平洋东侧,强度加强;到了10~11月,季风槽迅速减弱,并成为涡旋,强对流活动区也向南移和向西收缩。同时,研究还表明了西北太平洋季风槽有明显的年际变化。在季风槽强的年份,季风槽和强对流活动区可以从南海经西北太平洋西侧和中部东伸到西北太平洋的东侧上空;而在季风槽弱的年份,季风槽和强对流活动区主要位于南海和西北太平洋西侧和中部上空,季风槽强度的年际变化对它的季节变化也有重要影响。此外,研究还表明了随着季风槽的季节和年际变化,西北太平洋TCs生成的大尺度环境因子分布也发生很明显的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号