首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Simulation and projection of the characteristics of heat waves over China were investigated using 12 CMIP5 global climate models and the CN05.1 observational gridded dataset. Four heat wave indices (heat wave frequency, longest heat wave duration, heat wave days, and high temperature days) were adopted in the analysis. Evaluations of the 12 CMIP5 models and their ensemble indicated that the multi-model ensemble could capture the spatiotemporal characteristics of heat wave variation over China. The inter-decadal variations of heat waves during 1961–2005 can be well simulated by multi-model ensemble. Based on model projections, the features of heat waves over China for eight different global warming targets (1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 °C) were explored. The results showed that the frequency and intensity of heat waves would increase more dramatically as the global mean temperature rise attained higher warming targets. Under the RCP8.5 scenario, the four China-averaged heat wave indices would increase from about 1.0 times/year, 2.5, 5.4, and 13.8 days/year to about 3.2 times/year, 14.0, 32.0, and 31.9 days/year for 1.5 and 5.0 °C warming targets, respectively. Those regions that suffer severe heat waves in the base climate would experience the heat waves with greater frequency and severity following global temperature rise. It is also noteworthy that the areas in which a greater number of severe heat waves occur displayed considerable expansion. Moreover, the model uncertainties exhibit a gradual enhancement with projected time extending from 2006 to 2099.  相似文献   

2.
利用国际耦合模式比较计划第5阶段(CMIP5)中的21个气候模式的RCP4.5和RCP8.5情景预估结果,分析了全球变暖1.5℃和2℃阈值时青藏高原气温年和季节的变化特征。结果表明,对应1.5℃和2℃全球变暖,青藏高原变暖幅度明显更大,就整体而言,在RCP4.5/RCP8.5情景下,高原区域平均的平均、最高、最低气温变暖分别为2.11℃/2.10℃和2.96℃/2.85℃、2.02℃/2.02℃和2.89℃/2.77℃、2.34℃/2.34℃和3.20℃/3.14℃,冬季平均气温的变暖幅度(2.19℃/2.31℃和3.13℃/3.05℃)较其他季节更大;从空间分布形势上看,年变暖呈西南高东北低的分布,而春、冬变暖呈南高北低的分布,夏、秋变暖则呈西高东低的分布。到达同一温升阈值时,RCP4.5与RCP8.5情景下高原气温的响应也存在区域差异。高原年与各季平均气温对全球变暖1.5℃与2℃的响应差异均>0.5℃,其中冬季最明显,区域平均差异可达0.94℃,局地差异超过1.1℃。  相似文献   

3.

This study assesses the hydroclimatic response to global warming over East Asia from multi-model ensemble regional projections. Four different regional climate models (RCMs), namely, WRF, HadGEM3-RA, RegCM4, and GRIMs, are used for dynamical downscaling of the Hadley Centre Global Environmental Model version 2–Atmosphere and Ocean (HadGEM2-AO) global projections forced by the representative concentration pathway (RCP4.5 and RCP8.5) scenarios. Annual mean precipitation, hydroclimatic intensity index (HY-INT), and wet and dry extreme indices are analyzed to identify the robust behavior of hydroclimatic change in response to enhanced emission scenarios using high-resolution (12.5 km) and long-term (1981–2100) daily precipitation. Ensemble projections exhibit increased hydroclimatic intensity across the entire domain and under both the RCP scenarios. However, a geographical pattern with predominantly intensified HY-INT does not fully emerge in the mean precipitation change because HY-INT is tied to the changes in the precipitation characteristics rather than to those in the precipitation amount. All projections show an enhancement of high intensity precipitation and a reduction of weak intensity precipitation, which lead to a possible shift in hydroclimatic regime prone to an increase of both wet and dry extremes. In general, projections forced by the RCP8.5 scenario tend to produce a much stronger response than do those by the RCP4.5 scenario. However, the temperature increase under the RCP4.5 scenario is sufficiently large to induce significant changes in hydroclimatic intensity, despite the relatively uncertain change in mean precipitation. Likewise, the forced responses of HY-INT and the two extreme indices are more robust than that of mean precipitation, in terms of the statistical significance and model agreement.

  相似文献   

4.
利用CMIP5耦合气候模式的模拟结果,分析了不同排放情景下1.5℃和2℃升温阈值出现的时间。多模式集合平均结果表明:RCP2.6、RCP4.5和RCP8.5排放情景下,全球地表温度将分别在2029年、2028年和2025年达到1.5℃升温阈值;RCP2.6情景下直至21世纪末期都未达到2℃升温阈值,RCP4.5和RCP8.5排放情景下达到2℃升温阈值的时间分别为2048年和2040年。伴随着排放情景的升高,完成从1.5℃升温阈值到2℃升温阈值所需要的时间缩短。区域尺度上,达到同一升温阈值的时间主要表现为陆地比海洋早,且陆地对排放情景差异的敏感性相对较差,而海洋达到升温阈值的时间则随着排放情景的升高而明显提前。中国达到相应升温阈值的时间要早于全球,且以东北和西北地区出现的时间最早。  相似文献   

5.
Sao Tome and Principe is a small insular African country extremely vulnerable to rising sea levels and impacts such as inundation, shore line change, and salt water intrusion into underground aquifers. Projections of climate change have considered coarse model resolutions. The objective of this work is to dynamically downscale the global model projections to 4-km resolution and to assess the climate change in the Sao Tome and Principe islands. The global climate projections are provided by the Canadian Earth System Model under two Representative Concentration Pathways greenhouse gas scenarios, RCP4.5 and RCP8.5. The downscaling is produced by the Eta regional climate model. The baseline period is taken between 1971 and 2000, and the future climate period is taken between 2041 and 2070. The 2-m temperature simulations show good agreement with station data. The model simulates temperature more accurately than precipitation. The precipitation simulations systematically show underestimation and delay of the rainy and the dry seasons by about 1 month, a feature inherited from the global climate model. In the middle of the 21st century, projections show the strongest warming in the elevated parts of the Sao Tome Island, especially in February under RCP8.5. Warmer nights and warmer days become more frequent in the islands when compared with those in the present. While under RCP4.5, precipitation increases in the islands; under RCP8.5, it decreases everywhere in both islands. Heavy precipitation rates should increase, especially in the south-southwestern parts of the Sao Tome islands. Detailed spatial variability of the temperature and precipitation changes in the islands can only be revealed at very high spatial model resolution. Implications for the potential energy production from two major river basins are assessed in this work.  相似文献   

6.
本文基于耦合模式比较计划第5阶段(CMIP5)的17个全球气候模式,确定了1.5℃温升(相对于1861-1880年)的发生时间,预估了全球升温1.5℃时,北半球冻土和积雪的变化,并对预估结果的不确定性进行了讨论。结果表明,全球平均地表温度在3种排放情景下(RCP2.6,RCP4.5,RCP8.5)分别于2027、2026、2023年达到1.5℃阈值。当全球升温1.5℃,北半球多年冻土南界北移1°~3.5°,冻土退化主要发生在中西伯利亚南部。多年冻土面积在全球升温1.5℃时,在RCP2.6、RCP4.5和RCP8.5排放情景下较1986-2005年分别减少约3.43×106 km2(21.12%)、3.91×106 km2(24.10%)和4.15×106 km2(25.55%);北半球超过一半以上的区域雪水当量减少,只在中西伯利亚地区略微增加;北美洲中部、欧洲西部以及俄罗斯西北部减少较显著,减少约40%以上。青藏高原多年冻土面积在RCP2.6、RCP4.5以及RCP8.5排放情景下分别减少0.15×106 km2(7.28%)、0.18×106 km2(8.74%)和0.17×106 km2(8.25%)。青藏高原冬、春季雪水当量分别减少约14.9%和13.8%。  相似文献   

7.
依据政府间气候变化委员会(IPCC)第五次评估报告(AR5)未来不同排放情景(RCPs)下的多模式(CMIP5)气温和降水预估结果,构建基于气温和降水的未来径流量预估模型,并以宜昌站为例分析了不同模式不同排放情景下未来80年(2020~2099年)长江上游年径流量的变化趋势。多模式集合平均预估结果表明:在99%的置信水平下,未来80年长江上游年径流量在RCP2.6排放情景下呈不显著增加趋势,在RCP4.5排放情景下呈不显著减小趋势,而在RCP8.5排放情景下则呈显著减小趋势;在RCP2.6、RCP4.5和RCP8.5排放情景下未来80年长江上游年径流量预估均值相对于1961~2000年分别减少6.42%、10.99%和13.25%;同时,未来80年长江上游年径流量变化具有一定的年代际特征,在RCP2.6和RCP4.5排放情景下21世纪初期偏多、中期偏少而后期变化并不明显,在RCP8.5排放情景下则是21世纪中期以前偏多而中期以后明显偏少。本研究方法可为未来气候变化情景预估分析提供技术参考,本研究成果可供气候变化背景下长江上游乃至长江流域水资源开发利用及对策分析提供决策依据。   相似文献   

8.
Sea level rise (SLR) is one of the major socioeconomic risks associated with global warming. Mass losses from the Greenland ice sheet (GrIS) will be partially responsible for future SLR, although there are large uncertainties in modeled climate and ice sheet behavior. We used the ice sheet model SICOPOLIS (Simulation COde for POLythermal Ice Sheets) driven by climate projections from 20 models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to estimate the GrlS contribution to global SLR. Based on the outputs of the 20 models, it is estimated that the GrIS will contribute 0-16 (0-27) cm to global SLR by 2100 under the Representative Concentration Pathways (RCP) 4.5 (RCP 8.5) scenarios. The projected SLR increases further to 7-22 (7-33) cm with 2~basal sliding included. In response to the results of the multimodel ensemble mean, the ice sheet model projects a global SLR of 3 cm and 7 cm (10 cm and 13 cm with 2~basal sliding) under the RCP 4.5 and RCP 8.5 scenarios, respectively. In addition, our results suggest that the uncertainty in future sea level projection caused by the large spread in climate projections could be reduced with model-evaluation and the selective use of model outputs.  相似文献   

9.
1.5和2℃升温阈值下中国温度和降水变化的预估   总被引:1,自引:0,他引:1  
基于CMIP5耦合气候模式模拟结果对1.5和2℃升温阈值时中国温度和降水变化的分析表明,1.5℃升温阈值时,中国年平均升温由南向北加强且在青藏高原地区有所放大,季节尺度上升温的空间分布与其类似,就区域平均而言,RCP2.6、RCP4.5和RCP8.5情景下中国年平均气温分别升高1.83、1.75和1.88℃,气温的季节变幅以冬季升高最为显著;除华南和西南地区外中国大部分地区年平均降水量增多,降水的季节差异明显,以夏季降水的分布模态与年平均降水量的分布最为相似,区域平均的年降水量分别增加5.03%、2.82%和3.27%,季节尺度上以冬季降水增幅最大。2℃升温阈值时,RCP4.5和RCP8.5情景下中国年平均温度的空间分布与1.5℃升温阈值基本一致,中国年平均气温分别升高2.49和2.54℃,季节尺度上气温的变化以秋、冬季增幅最大;中国范围内年平均降水量基本表现为增多趋势,其中,西北和长江中下游部分地区表现为明显的季节差异,区域平均的年降水量分别增加6.26%和5.86%。与1.5℃升温阈值相比较,2℃升温阈值时中国年平均温度在RCP4.5和RCP8.5情景下分别升高0.74和0.76℃,降水则分别增加3.44%和2.59%,空间上温度升高以东北、西北和青藏高原最为显著,降水则在东北、华北、青藏高原和华南地区增加最为明显。   相似文献   

10.
This study examines the projections of hydroclimatic regimes and extremes over Andean basins in central Chile (~ 30–40° S) under a low and high emission scenarios (RCP2.6 and RCP8.5, respectively). A gridded daily precipitation and temperature dataset based on observations is used to drive and validate the VIC macro-scale hydrological model in the region of interest. Historical and future simulations from 19 climate models participating in CMIP5 have been adjusted with the observational dataset and then used to make hydrological projections. By the end of the century, there is a large difference between the scenarios, with projected warming of ~ + 1.2 °C (RCP2.6), ~ +?3.5 °C (RCP8.5) and drying of ~ ? 3% (RCP2.6), ~ ? 30% (RCP8.5). Following the strong drying and warming projected in this region under the RCP8.5 scenario, the VIC model simulates decreases in annual runoff of about 40% by the end of the century. Such strong regional effect of climate change may have large implications for the water resources of this region. Even under the low emission scenario, the Andes snowpack is projected to decrease by 35–45% by mid-century. In more snowmelt-dominated areas, the projected hydrological changes under RCP8.5 go together with more loss in the snowpack (75–85%) and a temporal shift in the center timing of runoff to earlier dates (up to 5 weeks by the end of the century). The severity and frequency of extreme hydroclimatic events are also projected to increase in the future. The occurrence of extended droughts, such as the recently experienced mega-drought (2010–2015), increases from one to up to five events per 100 years under RCP8.5. Concurrently, probability density function of 3-day peak runoff indicates an increase in the frequency of flood events. The estimated return periods of 3-day peak runoff events depict more drastic changes and increase in the flood risk as higher recurrence intervals are considered by mid-century under RCP2.6 and RCP8.5, and by the end of the century under RCP8.5.  相似文献   

11.
本文基于一套在5个全球气候模式结果驱动下,RegCM4区域气候模式对东亚25 km水平分辨率的集合预估,分析了中、高温室气体典型排放路径(RCP4.5和RCP8.5)下,21世纪不同时期新疆地区的未来气候变化。对模式当代气候模拟结果的检验表明,区域模式的模拟集合(ensR)总体上能够很好地再现当代新疆平均气温、降水和极端气温、降水分布特征。ensR预估21世纪未来新疆平均气温和降水将不断升高或增加,RCP8.5下的变化大于RCP4.5。在21世纪末期RCP8.5下,区域年平均气温和降水将分别增加4.9°C和28%(102 mm),夏季(6~8月)的升温幅度略高于冬季(12~2月),降水则以冬季增加为主。极端温度以及高温日数同样将不断升高,其中年日最低气温最小值的增幅总体高于年日最高气温最大值,未来新疆地区的极端冷事件将减少,高温、热浪事件将增加。由极端降水指标日最大降水量反应的强降水事件将普遍增加,连续无降水日数总体以减少为主。积雪变化存在一定区域差异,具体表现为除塔里木盆地外的普遍减少。对总径流量和表层土壤湿度的预估分析表明,二者在新疆地区均以增加为主,但水文干旱在北疆会加重。ensR各模拟间无论是在当代模拟还是未来预估中都表现出较好的一致性,但在变化的具体数量及个别情况下符号均存在一定差异。最后,综合考虑ensR对各要素的预估发现,总体而言新疆未来更趋向于“暖湿化”,但这不会改变其干旱、半干旱气候的本质,而且水文干旱频率在一些地区会增加,未来新疆的水资源状况仍不容乐观。  相似文献   

12.
Against a background of climate change, Macau is very exposed to sea level rise(SLR) because of its low elevation,small size, and ongoing land reclamation. Therefore, we evaluate sea level changes in Macau, both historical and, especially,possible future scenarios, aiming to provide knowledge and a framework to help accommodate and protect against future SLR. Sea level in Macau is now rising at an accelerated rate: 1.35 mm yr-1over 1925–2010 and jumping to 4.2 mm yr-1over 1970–2010, which outpaces the rise in global mean sea level. In addition, vertical land movement in Macau contributes little to local sea level change. In the future, the rate of SLR in Macau will be about 20% higher than the global average, as a consequence of a greater local warming tendency and strengthened northward winds. Specifically, the sea level is projected to rise 8–12, 22–51 and 35–118 cm by 2020, 2060 and 2100, respectively, depending on the emissions scenario and climate sensitivity. Under the +8.5 W m-2Representative Concentration Pathway(RCP8.5) scenario the increase in sea level by2100 will reach 65–118 cm—double that under RCP2.6. Moreover, the SLR will accelerate under RCP6.0 and RCP8.5, while remaining at a moderate and steady rate under RCP4.5 and RCP2.6. The key source of uncertainty stems from the emissions scenario and climate sensitivity, among which the discrepancies in SLR are small during the first half of the 21 st century but begin to diverge thereafter.  相似文献   

13.
It is well-known that global warming due to anthropogenic atmospheric greenhouse effects advanced the start of the vegetation growing season(SOS) across the globe during the 20 th century. Projections of further changes in the SOS for the 21 st century under certain emissions scenarios(Representative Concentration Pathways, RCPs) are useful for improving understanding of the consequences of global warming. In this study, we first evaluate a linear relationship between the SOS(defined using the normalized difference vegetation index) and the April temperature for most land areas of the Northern Hemisphere for 1982–2008. Based on this relationship and the ensemble projection of April temperature under RCPs from the latest state-of-the-art global coupled climate models, we show the possible changes in the SOS for most of the land areas of the Northern Hemisphere during the 21 st century. By around 2040–59, the SOS will have advanced by-4.7 days under RCP2.6,-8.4 days under RCP4.5, and-10.1 days under RCP8.5, relative to 1985–2004. By 2080–99, it will have advanced by-4.3 days under RCP2.6,-11.3 days under RCP4.5, and-21.6 days under RCP8.5. The geographic pattern of SOS advance is considerably dependent on that of the temperature sensitivity of the SOS. The larger the temperature sensitivity,the larger the date-shift-rate of the SOS.  相似文献   

14.
利用国家气候中心完成的RegCM4区域气候模式在RCP4.5和RCP8.5两种排放路径下的气候变化动力降尺度试验结果,在检验模式对基准期(1986—2005年)气温和降水模拟能力基础上,进行华北区域21世纪气候变化预估分析。结果表明:RegCM4对华北区域基准期气温和降水的模拟能力较好。未来21世纪,两种情景下华北区域气温、降水、持续干期(consecutive dry days, CDD)和强降水量(R95p)变化逐渐增大,但变化幅度在高排放的RCP8.5情景下更为显著,其中近期(2021—2035年)、中期(2046—2065年)、远期(2080—2098年)RCP8.5情景下年平均气温分别升高1.77、3.44、5.82℃,年平均降水分别增加8.1%、14%、19.3%,CDD分别减少3、3、12 d, R95p分别增加30.8%、41.9%、69.8%。空间上,未来21世纪华北区域内年、冬季、夏季平均气温将一致升高,夏季升温幅度最大;年、冬季、夏季平均降水整体以增加为主,冬季降水增加幅度最大;CDD以减少为主,但近期和中期在山西和京津冀有所增加,而R95p以增加为主,表明21世纪华北区域干旱事件逐渐减少、极端降水事件不断增加。  相似文献   

15.
“一带一路”区域未来气候变化预估   总被引:1,自引:0,他引:1       下载免费PDF全文
利用耦合模式比较计划第5阶段(CMIP5)提供的18个全球气候模式的模拟结果,预估了3种典型浓度路径(RCP2.6、RCP4.5、RCP8.5)下“一带一路”地区平均气候和极端气候的未来变化趋势。结果表明:在温室气体持续排放情景下,“一带一路”地区年平均气温在未来将会持续上升,升温幅度随温室气体浓度的增加而加大。在高温室气体排放情景(RCP8.5)下,到21世纪末期,平均气温将普遍升高5℃以上,其中北亚地区升幅最大,南亚和东南亚地区升幅最小。对于降水的变化,预估该区域大部分地区的年降水量将增加,其中西亚和北亚增加最为明显,而且在21世纪中期,RCP2.6情景下的增幅要比RCP4.5和RCP8.5情景下的偏大,而在21世纪后期,RCP8.5情景下降水的增幅比RCP2.6和RCP4.5情景下的偏大。未来极端温度也将呈升高的趋势,增温幅度高纬度地区大于低纬度地区、高排放情景大于低排放情景。而且在高纬度区域,极端低温的增暖幅度要大于极端高温的增幅。连续干旱日数在北亚和东亚总体呈现减少趋势,而在其他地区则呈增加趋势。极端强降水在“一带一路”区域总体上将增强,增强最明显的地区位于南亚、东南亚和东亚。  相似文献   

16.
Climate changes over China from the present (1996–2005) to the future (2046–2055) under Representative Concentration Pathways 4.5 (RCP4.5) and Representative Concentration Pathways 8.5 (RCP8.5) scenarios are projected using the Weather Research and Forecasting (WRF) model, version 3.7.1. The WRF model was driven by the Global 6-Hourly Bias-corrected Coupled Model Intercomparison Project, Phase 5 (CMIP5), Community Earth System Model dataset over China with a resolution of 30?km. The results demonstrate that WRF downscaling generally simulates more reliable spatial distributions of surface air temperature and precipitation in China with higher spatial pattern correlations and closer in magnitude to the Community Climate System Model, version 4.0, simulation results, especially near mountain ranges. The WRF projections for temperature and precipitation for the future under the two emission scenarios are compared with the present simulation. Generally stronger warming, both in mean temperature and extreme statistics, is produced by WRF-RCP8.5 than by WRF-RCP4.5. The projections for precipitation changes are more varied with season and region for both scenarios.  相似文献   

17.
鉴于热带气旋(TC)对我国沿海地区的影响,研究全球变暖背景下未来登陆我国TC活动的变化,对于我国沿海地区的防灾减灾具有重要意义。基于CMIP5中全球气候模式HadGEM2-ES数据,文中利用区域气候模式RegCM4开展了历史时期和3种情景(RCP2.6、RCP4.5和RCP8.5)下未来东亚区域气候的动力降尺度模拟,检验了模式对历史登陆我国TC活动及其相关大尺度环境场的模拟能力,并预估了3种情景下2030—2039年、2050—2059年和2089—2098年,登陆我国TC的路径、强度和频率的变化特征。结果表明:模式能合理地再现东亚区域历史时期(1986—2005年)大气环流场的空间结构以及登陆我国TC的特征;在3种情景下未来登陆我国TC的平均强度和数量均有不同程度的增加,尤其是台风及以上级别TC的总数明显增加,其中RCP8.5情景最突出,到21世纪末期(2089—2098年)登陆我国TC的平均强度、台风及以上级别TC总数的年平均值较历史时期将分别增加7.56%和1.05个;不同情景下未来登陆我国TC的路径均有不同程度的北移趋势,且全球升温的幅度越大,北移趋势越明显,这可能与未来中国近海显著变暖和垂直风切变减弱有关。未来我国沿海地区尤其是中高纬度很可能将面临日益严峻的TC灾害风险,亟需尽快开展防灾减灾及对策研究。  相似文献   

18.
European forests are facing multiple natural and anthropogenic pressures that are expected to become more severe in the next decades. Tree diversity is projected to decline in many areas across the continent. How this will affect the provision of forest services remains an open question, whose answer depends, among others, on the practical and theoretical challenges of incorporating assisted migration into climate adaptation strategies. Here, we tackle the issue by combining a large dataset of tree species occurrences, future climatic projections, and data on tree functional traits and tree-specific forest services into a novel modelling framework. We estimate that, by the end of the century and under a natural dispersal scenario, the provision of forest services would decrease on average by 15% in Europe (for RCP 4.5; 23% for RCP 8.5), and up to 52% (70% for RCP 8.5) in the Mediterranean. To explore if and how management could reduce the projected losses, we simulated a suite of alternative assisted migration strategies aimed at identifying, for each locality, the tree species communities offering the best compromise in terms of resilience to climate change and delivery of specific combinations of ecosystem services. Such strategies could reduce losses of services by 10% (15%) on average in Europe, and even increase service availability in the Alpine and Boreal regions but not in the Mediterranean, where losses will remain as high as 33% (54% for RCP 8.5). Our findings highlight how science-driven management strategies could be vital to reduce an otherwise dramatic, European-wide decline of forest services. Our results are qualitatively robust to different assumptions on future carbon emissions and related climate trajectories. That is, our simulated assisted migration strategies identify similar tree species communities under different pathways (RCP 4.5 vs RCP 8.5). This makes our approach a powerful tool for forest management, as it generates advice that is valid regardless of whether, and to what extent, human society will steer away from business-as-usual emission trajectories.  相似文献   

19.
We assess economic costs of heat-induced reductions in worker productivity at global scale under RCP2.6 and RCP8.5. Losses in worker productivity are calculated by using an empirically estimated epidemiological exposure-response function, and the associated economic costs are assessed by using a dynamic multi-region, multi-sector computable general equilibrium model. Autonomous mechanisation of outdoor work in agriculture and construction is implemented in the model. We find that under RCP8.5 by 2100, heat-induced reductions in worker productivity result in an average decline of 1.4% in global gross domestic product (GDP) relative to the reference scenario with no climate change. This is approximately 0.4 percentage points less than when no autonomous mechanisation is assumed. For comparison, measuring the economic costs using occupational health and safety recommendations leads to a 2.4% reduction in global GDP, which is substantially larger than when the epidemiological exposure-response function is used. Countries of Africa, South-East Asia, and South Asia are the worst affected by heat stress. However, economic costs could be substantially alleviated if a 2°C global warming target is achieved. Under RCP2.6, the average reduction in global GDP is only 0.5%. A large fraction of global mitigation costs of achieving the 2°C global warming target could be offset by the avoided adverse impacts of heat stress on worker productivity at higher warming levels.  相似文献   

20.
Estimates of possible climate changes and cryolithozone dynamics in the 21st century over the Northern Hemisphere land are obtained using the IAP RAS global climate model under the RCP scenarios. Annual mean warming over the northern extratropical land during the 21st century amounts to 1.2–5.3°C depending on the scenario. The area of the snow cover in February amounting currently to 46 million km2 decreases to 33–42 million km2 in the late 21st century. According to model estimates, the near-surface permafrost in the late 21st century persists in northern regions of West Siberia, in Transbaikalia, and Tibet even under the most aggressive RCP 8.5 scenario; under more moderate scenarios (RCP 6.0, RCP 4.5, and RCP 2.6), it remains in East Siberia and in some high-latitude regions of North America. The total near-surface permafrost area in the Northern Hemisphere in the current century decreases by 5.3–12.8 million km2 depending on the scenario. The soil subsidence due to permafrost thawing in Central Siberia, Cisbaikalia, and North America can reach 0.5–0.8 m by the late 21st century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号